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Preface

This book is designed for a beginning or an intermediate graduate course in
stochastic modelling. It is intended for a serious student in probability theory,
statistics, actuarial sciences or financial mathematics. The overall objective is
to make the basic concepts of stochastic modelling and insurance accessible to
students and research workers in a comprehensive manner. Renewal theory,
random walks, discrete and continuous-time Markov processes, martingale
theory and point processes are among the major subjects treated. The
selection of the topics has been largely made on the basis of their relevance
within an actuarial or financial context. In this sense, the book is rather
special. On the other hand, one could have written a similar textbook but
with queueing theory or stochastic networks as the scrutinizing subject.

A few words are in order about the selection of topics. Space limitations have
forced us to make a choice from stochastic processes, actuarial mathematics
and the mathematics of finance. Also, each one of the authors, coming from
four European countries, had a list of favourite topics when the writing project
began.

One advantage of using insurance questions as guidelines in the selection
of the topics is that the treated subjects gain in coherence. Another facet
is that any important actuarial problem is highlighted from a variety of
different stochastic angles. A possible disadvantage might be that important
subjects are not duly treated. We consider the topics that are covered as
the basic intersection of stochastic modelling, insurance mathematics and
financial mathematics. As a result, we only give a few elements of branching
processes or of jump-diffusion processes. In the same fashion, we do not
cover credibility theory, IBNR. claims (IBNR = incurred but not reported)
or topics from advanced finance. On the other hand, we do treat some
uncommon subjects like subexponentiality, phase-type distributions, piecewise
deterministic Markov processes, stationary and marked point processes, etc.
We very much hope that what has been covered will be sufficiently stimulating
to encourage the reader to continue their efforts.

Some special features of this book are the following:
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1. The first chapter gives the reader a bird’s-eye view of the main themes
treated in the book. We have made an attempt to introduce the principal
concepts from insurance and finance in an intuitive fashion, avoiding rigour.
This chapter should however convince the reader about the need for the
mathematically sound treatment in the rest of the book.

2. The book is not covering the statistical aspects of stochastic models
in insurance and finance. However, to emphasize the relevance of the
stochastic models, a fair number of practical illustrations with real life
data have been included.

3. In a similar fashion, some numerical and algorithmic procedures have
been included since they make up a vital portion of current day practical
approaches in insurance.

4. An attempt has been made to make the book self-contained. Only well-
known results from analysis, probability and measure theory have been
mentioned without proofs. A couple of times we allude to results that are
only treated in a subsequent chapter. This happens most often when the
proof of a result depends on more sophisticated material treated in the
later part of the book.

5. Notes and comments at the end of each section include references to
additional reading material. An extensive list of references is included.
This bibliographical material should serve two purposes: helping the
probabilistically trained reader to find their way in the actuarial and
financial literature, while at the same time informing the practitioner on
the sources from which to find the mathematical treatment of one or the
other useful methodology.

Thanks to the unusual and unifying approach, many of the topics are put in
a novel framework. While we do not claim originality, a sizable set of results
and proofs appear here for the first time.

The numbering of chapters, sections, subsections, definitions, formulae,
lemma'’s, and theorems is traditional. Chapters are subdivided into sections,
while sections are further subdivided into subsections. References of the form
i.j.k refer to chapter ¢, section j, serial number % of subsections, definitions.
lemma’s, and theorems. If we refer to a formula, we write (i.j.k). References to
the literature are of the form: name(s) of the author(s) plus year; for example
Smith (1723) or Kovalyov and Smith (1794).

We emphasize that the book has been conceived as a course text. In an
attempt to keep the size of the book at a reasonable level, we decided not
to include sections with exercises. In many places, the reader is, however,
asked to provide additional arguments and parts of proofs. This, of course, is
not sufficient. A subject like stochastic modelling not only requires routine-
like skills; it also demands training and sharpening of accurate probabilistic
intuition which can only be achieved by tackling nontrivial exercises. We are
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convinced that the best way to help students and teachers is by supplementing
this textbook with a forthcoming Teacher’s Manual.

This book would never have been finished without the help of many people.
Individually, we take pleasure in thanking our home institutions for their
indulgence and logistic support, needed during the many working sessions
of the quartet. Each one of us extends his thanks to his students and
colleagues who patiently read first, second or n-th drafts of the manuscript
and who helped us whenever there were problems with the styling. Jointly,
our appreciation goes to a large number of colleagues in academia and in
insurance companies who helped us during the selection process of what and
what not to include.

In particular we are grateful to Sabine Schlegel for her invaluable help
during the whole process of the preparation of the book. Apart from reading
the manuscript and helping to eliminate a number of errors, she provided the
computer illustrations included in the text. Also, our contacts with J. Wiley
& Sons through Helen Ramsey and Sharon Clutton have always been pleasant
and constructive.

Further support and help is greatly acknowledged. TR thanks the
Department of Stochastics at the University of Ulm for their hospitality
and for creating optimal working conditions during his extended stays
in Ulm. The latter were made possible by the financial support of the
Deutsche Forschungsgemeinschaft and of the Institut fiir Finanz- und
Aktuarwissenschaften Ulm. TR and VS want to express their gratitude to
the Mathematisches Forschungsinstitut Oberwolfach and to the Volkswagen
Stiftung. The programme Research in Pairs granted them a very useful five-
week stay in Oberwolfach. TR and VS also acknowledge the financial support
from the Exchange Programme between the Deutsche Forschungsgemeinschaft
and the Polish Academy of Sciences.

Qur deepest gratitude is reserved for four loving families, who have endured
our preoccupation with this project for so long.

TOMASZ ROLSKI
HANSPETER SCHMIDLI
VOLKER SCHMIDT
JOZEF TEUGELS

August 1998
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CHAPTER 1

Concepts from Insurance and
Finance

1.1 INTRODUCTION

Let us start out with a concrete example. Consider all policies covering fire of
apartments in a suburb of a major city that are underwritten with a specific
insurance company. The insured goods have a comparable value and the
chances of fire are probably not very different from one building to another.
Such a set of policies makes up a homogeneous portfolio.

Most client-related insurance businesses use such portfolios as basic building
blocks. Properly compiled they make up branches within the insurance
firm, like fire, automobile, theft, property, life, health, pension, etc. The
branch fire contains many portfolios dealing with different types of risk.
Detached houses, terraced houses, apartments, apartment buildings, shops,
supermarkets, business premises and industrial sites constitute an incomplete
but already varied set of insurance risks for which different premiums have to
be designed. Indeed, for each of the mentioned portfolios, the probabilities of
a fire might depend on the portfolio. Moreover, the resulting claim sizes may
very well be incomparable.

In the chapters dealing with insurance aspects, we will restrict our attention
to one specific portfolio. Such a portfolio is characterized by a number of
ingredients of both a deterministic and a stochastic nature.

Among the first we mention the starting position and a time period. Usually,
data referring to an insurance portfolio refer to a time span of one year in
accordance with the bookkeeping of the company. Far more important is the
initial reserve or initial capital. One interpretation of the latter is the amount
of capital set aside to cover costs occurring during the initial period of the
portfolio when the company has not yet received the yearly premiums. In the
sequel the initial reserve will be denoted by u.

Among the elements that usually have a stochastic nature are the following:

e The epochs of the claims; denote them by o;,02,.... In some cases we
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consider an additional claim arrival epoch at time zero denoted by o¢ = 0.
Apart from the fact that the epochs form a nondecreasing sequence we do
not in general assume anything specific about their interdependence. The
random variables defined by T, = 0, — 0p—1, 7 > 1, are called the inter-
occurrence times in between successive claims.

o The number of claims up to time ¢ is denoted by N(t) where N(t) =
sup{n : 0, < t}. The intrinsic relation between the sequence of claim
arrivals {0p,01,02,...} and the counting process {N(t),t > 0} is given
by {N(t) =n}={op <t <0On+1}

o The claim occurring at time oy, has size U,,. The sequence {U,,n =1,2,...}
of consecutive claim sizes is often assumed to consist of independent and
identically distributed random variables. However, other possibilities will
show up in the text as well.

e The aggregate claim amount up to time ¢ is given by X (t) = Zﬁ__(f ) U; while
X(t) = 0if N(t) = 0. By its very definition, the aggregate claim amount is
in general a random sum of random variables.

¢ The premium income. In the course of time 0 to ¢ we assume that a total
of TI(t) has been received through premiums.

o The risk reserve at time ¢ is then R(¢) = u + II(¢) — X(¢).

The above setup allows flexibility in that an individual claim may mean a
claim from an individual customer (e.g. third-liability insurance) or a claim
caused by a single event (e.g. windstorm insurance).

In the following sections we will give more details on the concepts introduced
above and on actuarial quantities linked to them. We also show by practical
illustrations how the stochastic character of these elements can be formalized.
This approach will then automatically serve as an invitation for a thorough
probabilistic treatment by concrete stochastic processes later on in the book.

1.2 THE CLAIM NUMBER PROCESS

Let us start out by considering in more detail the claim number process
{N(t),t > 0}, built on the claim epochs. We will always assume that the
claim number process is a counting process. This means that we require the
process {N(t),t > 0} to satisfy the following three conditions. For all ¢, h > 0

o N(0)=0,
o N(t) e IN,
o N(t) < N(t+h),

N(t + h) — N(t) models the number of claims occurring in the time interval
(t,t+h]. We note that realizations of a counting process (also called the sample
paths or trajectories) are monotonically nondecreasing and right-continuous
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functions. Usually one assumes that the jumps are of size one so that multiple
claim arrivals are excluded. But there are cases where this assumption is not
valid. For example there is a vast proportion of road accidents where more
than one person is injured. It is then useful to associate a mark to each jump
epoch. The resulting generalization naturally leads to the notion of a marked
counting process treated in Chapter 12.

Let us write {px(t),k =0,1,...} with

k k+1
nlt) =PWV® =k =P(L T <t< 3 T)

=1 =1

for the probability function of the counting variable N(¢). In some cases, time
t does not play a significant role; if so, the t-dependence will be dropped from
the notation. This happens, for example, when the insurer is interested in the
number of claims received in successive one-year periods.

A general computational expression for the probabilities p(¢) is impossible
because we have not specified the interdependence between the epochs of the
claims. We indicate some possible choices.

1.2.1 Renewal Processes

Depending on the type of portfolio, the insurer can make a variety of different
assumptions on the sequence of inter-occurrence times {T,,n > 1}. In some
particular cases it might be useful to assume that this sequence is generated
by a renewal process {g,,n > 1} of claim arrival epochs, i.e. the random
variables T,, are nonnegative, independent and have the same distribution as
a generic random variable T. The distribution function of the inter-occurrence
time is then denoted by Fr(z) = P(T < z).

Because this model appears as a natural candidate for the underlying
stochastic mechanism in a wealth of processes, we will spend substantial space
on a thorough discussion of renewal processes in Chapter 6. One might think
that a renewal process is a rather simple type of process. However, the reader
may be surprised to see some of the highly nontrivial results that form the
backbone of all applications of renewal theory. In Chapter 6 we will deal
in more detail with the Sparre Andersen model, in which the claim number
process is a (general) renewal process.

Mathematically the simplest renewal process is the Poisson process intro-
duced in Section 5.2 where the generic random variable T is exponentially
distributed. Poisson processes have particular properties that distinguish them
from other renewal processes. The main reason for this extra structure is
provided by the lack of memory property of the exponential distribution.
The latter distribution plays a similar crucial role in actuarial applications of
stochastic processes as the normal distribution does in statistics. In particular,
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for the Poisson process we have

k
pﬂﬂ:ead¥;, k=0,1,...

and EN(t) = At, VarN(t) = Xt for all t > 0, where A™' = ET is
the mean inter-occurrence time. As a side result, the inder of dispersion
I(t) = Var N(t)/E N(t) is constant and equal to 1.

It should be mentioned that time is not to be considered as real time,
but as operational time. Indeed, some seasonal effects might affect the claim
reporting process and the portfolio does not have the same size over time. It
is therefore advantageous to measure time via the expected mean number of
claims. In Sections 1.2.2 and 1.2.3 we consider some possible deviations from
the constant expected number of claims per unit of operational time.

1.2.2 Mixed Poisson Processes

As early as 1948 actuaries noticed that the variability in a portfolio, expressed
for example by I(t), was often greater than 1, the value corresponding to the
Poisson case. One reason is this. The risk is exposed to some environment, for
example weather conditions in motor insurance. This environment is different
each year and influences the number of claims from the portfolio. If one could
know the environment completely, one would also know the mean number of
claims A to be expected in a particular year. Because one hardly has any
information on how the environment influences the mean number of claims,
one can estimate the distribution Fa of A and model the environment via Fj.
This observation naturally leads to the following representation for the claim
number distribution:

o] e—At()\t)k

e 4Fa(A), (12.1)

P =P(VO =8 = [
where Fjy(A) = P(A < A) is the distribution function of the mizing random
variable A.

Counting processes of this type are called mired Poisson processes. They
have appeared in this general form in the actuarial literature since 1959;
see Thyrion (1959). A sound definition can be given using the theory of
continuous-time Markov processes, the subject of Section 8.5. This treatment
is inspired by Lundberg (1964). Alternatively, mixed Poisson processes can
be introduced via the general theory of doubly stochastic Poisson processes
studied in Section 12.2.

The special case where Fy is a gamma distribution has already been
introduced by Ammeter (1948) and is known as the Pdlya process or the
Pascal process. Other choices are, however, possible. For example, the case
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where F) is an inverse normal distribution has great use in insurance but also
in geophysical modelling.

It is easy to prove that for the mixed Poisson model, I(t) = 1+¢{Var A/EA),
which equals 1 if and only if A is degenerate, the classical case of a
homogeneous Poisson process. The above explanation means that it is not
surprising that the mixed Poisson process has always been very popular among
insurance modellers.

1.2.3 Some Other Models

Of course, neither of the above models exhausts the possibilities for the claim
counting process. Let us just mention a few alternatives that will be discussed
in more detail in the forthcoming chapters.

o Recursively defined clatm number distributions. Panjer (1980) used a
recursion relation for the probability function {pi(t),k = 0,1,...} of the
number of claims N(t) to derive a recursive relation for the distribution of
the aggregate claim amount. In the actuarial literature we find an increasing
number of papers dealing with variations on the following recursion formula

()= (a+ %)pk_l(t), k=23,..., (1.2.2)
where the quantities a and b may depend on the time variable ¢. The above
class has been introduced by Sundt and Jewell (1981) in an attempt to
gather a variety of classical claim number distributions under the same
umbrella. Later on Willmot (1988) reconsidered equation (1.2.2) and added
a number of overlooked solutions. We will deal with (1.2.2) in Section 4.3.
Most often, time dependence in (1.2.2) is suppressed. Also, some authors
include the value ¥ = 1 in (1.2.2), hence lowering the number of free
parameters in the model. Special cases of the above model are (shifted)
versions of the Poisson, binomial, negative binomial (or Pascal) and
logarithmic distribution. On the other hand, the recursion relation (1.2.2)
can readily be generalized, and we find a variety of such extensions in the
actuarial literature.

e Processes with stationary or independent increments. Another line of
thinking is based on the following observations. The distribution of the
increment N (t +h) — N(t) of the counting process {N(t)} may be the same
for all ¢ > 0. This means that, as a function of time, the counting process has
stationary increments. This model is studied in Chapter 12, where {N(t)} is
said to be the counting process corresponding to a stationary point process.
For example, the number of industrial fires in a small region might easily
satisfy this type of stationarity condition, while the number of car accidents
on a road, experiencing different types of weather conditions, may fail.
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The counting process {N(t)} may also satisfy the independent increments
condition. This means that increments over disjoint time intervals are
independent random variables. For example, car portfolios usually satisfy
this condition. However, the number of severe accidents on oil platforms
probably does not, since imposing stricter safety regulations will change
the distribution of the number of similar accidents in later periods.
Compound Poisson processes. In general it is a complicated matter to
derive a closed expression for pi(t). However, in some cases it may
be mathematically much more convenient to work with the probability
generating function given by gy (s) = E sV, This is the case if claims
are arriving with stationary and independent increments. It follows from
arguments covered in Section 5.2.2 that in this case we have the relation

Gy (s) = e MI—dv ) (1.2.3)

where gy (8) is itself the probability generating function of a discrete random
variable V', concentrated on the strictly positive integers. As such the
counting process {N(t)} could also be called a discrete compound Poisson
process. The probabilities p,(t) are then given in the form

P (t Z e_M (/\t) ‘ "k 3

=0 7t

where {Pv ek = 1,2,...} is the j-fold convolution of the probability
function {ka,k = 1,2,...} with probability generating function gy (s) =
E Y. Neediess to say, the explicit evaluation of the ahove probabilities is
mostly impossible because of the complicated nature of the convolutions.
However, approximations and bounds are available. Some of them are
discussed in Chapter 4. If the probability generating function gy (s) is
known, a numerical method which is based on the inverse fast Fourier
transform can be used to compute the pi(t). This is discussed in Section 4.7.
Kupper (1963) gives a nice application of discrete compound Poisson
processes to claim counts. Assume that the number of accidents that have
happened in a factory up to time ¢ is denoted by N'(t). Assume that {N'(¢)}
follows a Poisson process with parameter A as defined before. In the n-th
accident the number of casualties is equal to V;,. The sequence {V,,n > 1}
is assumed to be a sequence of independent and identically distributed
discrete random variables with probability generating function gv(s) =
i, pv.isk. Note that the inclusion of pye would hardly make sense. If
the sequence {V5,n > 1} is independent of the process {N'(t),¢ > 0}, then
the probability generating function of N{t) = Zﬁ_’f’) V;, the total number
of claims up to time ¢, is of the form (1.2.3). A proper choice of jy (s) gives
a variety of possible processes. Note in particular that this claim number
process allows multiple jumps.
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The compound Poisson process will constantly appear as a backbone model
for the claims arrival process. We will recognize it in its own right in
Chapters 4 and 5. Later on it will reappear as a special type of continuous-
time Markov processes in Section 8.3.1, as a piecewise deterministic Markov
process in Section 11.3 and again as a particular point process in Chapter 12.

o Claim number distributions related to Markov chains. Another model for
the claim number process which generalizes the classical Poisson process
can be provided by a (nonhomogeneous) pure birth process as treated in
Section 8.5.4. Here the probabilities p (t) satisfy the Kolmogorov differential
equations, well known from the theory of continuous-time Markov processes.
Explicitly,

dpy(t)

5 = "% OPe(t) + ge—1()pr-1 (1) (1.2.4)

for some nonnegative functions g (t), where we take p_,(¢) = q-1(¢) = 0.
A further example of a claim number process related to a continuous-
time Markov process is the Markov-modulated Potsson process studied in
Chapter 12 in the general framework of marked point processes. Here,
instead of considering a single mixing random variable as in (1.2.1), we
truly investigate more general claim number processes where, for example,
the claim arrival rate can fluctuate in time according to the realizations of
a Markov chain.

1.3 THE CLAIM SIZE PROCESS

In most chapters of this book, we will assume that the sequence U, Us,...
of successive claim sizes consists of independent and identically distributed
random variables generated by the distribution Fy of a generic random
Varxable U. The n-th moment of the claim size distribution will be denoted
by uU =E{U") = fo 2" dFy(z). Forn =1 we s1mply write pg = ui,) For

the variance of the claim sizes we write VarU = [LU - (uu)?.

1.3.1 Dangerous Risks

A nonnegative random variable or its distribution is frequently cailed a risk.
In principle any distribution, concentrated on the nonnegative halfline, can
be used as a claim size distribution. However, we will often make a mental
distinction between “well-behaved” distributions and dangerous distributions
with a heavy tail. Concepts like well-behaved or heavy-tailed distributions
belong to the common vocabulary of actuaries. We will make a serious attempt
to formalize them in a mathematically sound definition.

Roughly speaking, the class of well-behaved distributions consists of those
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distributions F with an exponentially bounded tail, i.e. 1 — F(z) < ce™* for
some positive a and ¢ and all ¢ > 0. The condition means that large claims are
not impossible, but the probability of their occurrence decreases exponentially
fast to zero as the threshold z becomes larger and larger. As we will see
in later chapters, this condition enhances the exponential-type behaviour of
most important actuarial diagnostics like aggregate claim amount and ruin
probabilities.

In Chapter 2 we will give a somewhat streamlined approach to heavy-
tailed distributions. For such distributions there is no proper exponential
bound and huge claims are getting more likely. A natural nonparametric
class of heavy-tailed claim size distributions is the class S of subezponential
distributions introduced and studied in Section 2.5. The class & has some
extremely neat probabilistic properties that will be highlighted whenever
possible. For example, the aggregate claim amount is mainly determined
by the largest claim in the portfolio. From the practical point of view,
however, the class S is too wide since it cannot be characterized by parameters
having a useful interpretation. For this reason practitioners usually fall back
on “weakly parametrized” subexponential distributions. For example, the
lognormal distribution belongs to S and is extremely popular in modelling
motor insurance claim data. However, for the case of fire or catastrophic event
insurance, the Pareto distribution F' with 1 — F(z) = (e/z)?, for z > ¢, seems
to be sufficiently flexible to cope with most practical examples. It is fortunate
that, over the past few decades, the asymptotical and statistical properties
of subexponential distributions have received considerable attention. In this
textbook we will, however, mainly deal with asymptotic properties and only
touch upon some of the resulting statistical issues.

1.3.2 The Aggregate Claim Amount

The aggregate claim amount at time ¢ given by X(t) = Zfi(lt) U; has the
distribution function

N(t)
Fx(o(=) = P(X(t) <o) = P(} Ui <3).

=1

Sometimes the reference to X(t) is omitted and then we write F(z) for
Fx()(z). The derivation of an explicit formula for Fx () is almost always
impossible. In any case, more specific knowledge on the interdependencies
between and within the two processes {N(t)} and {U,} is needed.

It is most often assumed that the processes {N(t)} and {U,} are stochas-
tically independent, and we usually will follow this practice. However, it is
easy to imagine situations where the processes {N(t)} and {U,} will not be
independent. Suppose that we are considering a portfolio of road accidents.
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In winter time there might be a large number of claims due to poor road
conditions. However, most of these claims will be small since the weather
conditions prevent high speeds. A similar kind of thinking applies to the
summer period where the number of accidents will usually be rather small
but some of them will result in severely large claims due to reckless driving
at high speeds.

As another example, take the portfolio of accidents on oil platforms of a
certain type. As soon as a severe accident happens on one of these platforms,
improved safety measures will try to prevent similar accidents in the future.
This action hopefully results in a subsequent drop in the number of accidents.

In Chapter 4 we will cover a variety of different approaches to determine
the aggregate claim amount X(¢). They all have in common that they are
geared to investigate the behaviour of Fx () for a fixed ¢, which henceforth
will be mostly omitted.

As already stated, the most studied case, however, is that where the
two processes {N(t)} and {U.} are independent. Even then, calculation of
Fx(t)(x) remains a formidable undertaking. By an application of the law of
total probability it is easy to see that we have the following fundamental
relation

20
Fxa(z) = P(X(0) <) = Y pe()FH(@), (1.3.1)
k=0
where Fy* refers to the k-th convolution of Fy; with itself, i.e. Fj*(z) =
P(U, + Uz + ... + Uy < x), the distribution function of the sum on k
independent random variables with the same distribution as U. One of the
unfortunate aspects in the applications of formula (1.3.1) is that k-fold
convolutions are seldom calculable in closed form. One often needs to rely
on approximations, expansions and/or numerical algorithms. In Section 4.4
we deal with recursive and numerical algorithms, while in Section 4.6 we look
for approximations by easier compounds.
An alternative way of writing the above formula is given in terms of the
Laplace-Stieltjes transform lx () (s) = Ee*X(t) Namely,

Ixq)(s) = vy (iu(s)), (1.3.2)

where gn(s)(s) is the probability generating function of the number of claims
N(t) up to time t and Ii;(s) is the Laplace-Stieltjes transform of U. But then
inversion techniques as in Section 4.7 or even more specifically as in Section 5.5
may be useful.

If the number of claims is very large, then one can forecast that a central
limit effect will be dominant. A large-scale approzimation like

~EX(t
Fx(p)(z) = Q(T/_V—aTT%) ’
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where ®(z) denotes the standard normal distribution function, might be
possible. In more concrete situations one can even replace E X (t) and Var X (¢)
by subsequent approximations. For example, if {N(t)} is a renewal counting
process, these approximations follow from the basic renewal theorems, as will
be shown in Section 6.2.3.

On the other hand, the above large-scale approximation has often
been shown to be rather unreliable. Practitioners have tried to remedy
this shortcoming by using refined versions of the central limit theorem.
For example, Fdgeworth ezpansions and Gram-Charlier series resulted in
significant but still not always satisfying improvements. Other approaches
like the normal-power approzimations or approximations using gamma-
distributions have been tried out.

The main reason why results inspired by the central limit theorem often give
poor results is that the number of those claims that de facto determine the
entire portfolio is actually (and fortunately) very small. This is particularly
true in the case of large claims. The outcome is that a genuine centralization of
the claims is totally absent and any central limit approximation is meaningless.

1.3.3 Comparison of Risks

We have already alluded to the difference between light-tailed and heavy-
tailed claim size distributions and we have tried to fit this intuitive idea into a
mathematically sound definition. On the more methological level, one might
like to compare risks and even order them according to some ranking criterion.
A first and general attempt to ordering of risks is made in Section 3.2. On
further Jocations, we investigate how this ordering translates into a subsequent
ordering of compounds in Section 4.2.4 and of ruin functions in Section 5.4.5.
Running along sample paths, we can even compare full processes and decide
which one is most apt to incorporate essential features of a risk situation. In
Section 7.4.2 we compare discrete-time Markov chains, while Section 8.1.4
treats a similar comparison in the continuous-time setup. Another illustration
of a comparison of entire processes is given in Section 12.2.4, where Markov
modulated Poisson processes, Poisson cluster processes, mixed Poisson
processes and merging renewal processes are put in proper perspective to
homogeneous Poisson processes with the same arrival intensity.

1.4 SOLVABILITY OF THE PORTFOLIO

1.4.1 Premiums

We have used the abbreviation II{t) to denote the totality of premiums
collected from the policy-holders within the portfolio up to time ¢. Usually
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premiums are individually collected once a vear, but the insurer can safely
assume that premium income is evenly spread over the year.

The determination of a functional expression for II(t) is one of the few
things where the insurer can intervene in the overall process. The function II(t)
should be determined in such a way that the solvability of the portfolio can be
guaranteed. This requires II(¢) to increase fast enough to cope with incoming
claims. On the other hand, a very high value of II(¢) may be rather undesirable
since then rival insurance companies might attract clients by offering lower
premiums while covering the same risk.

The whole area of determining the specific shape of the function II(¢) is
called premium calculation and constitutes an essential part of the actuarial
know-how. For an exhaustive treatment, see Goovaerts, De Vylder and
Haezendonck (1984). In Chapter 3 we cover a few and isolated premium
principles underlying the general thinking behind premium calculations. From
these general principles a wide set of possible candidates emerges. Note that
most often these premiums are nonrendom even if their calculation involves
information on the stochastic elements within the portfolio.

The most popular form of the premium function II(t) is

(t) = (1+nEN@®EU, (1.4.1)

where E N (t) is the expected number of claims up to time ¢, while EU is
the mean claim size. The constant 7 is the safety loading which has to take
care, not only of the administrative costs from handling the portfolio, but also
of the necessary gain that the company wants to make ultimately. Moreover,
it is clear that n will be portfolio-dependent, as, for example, the higher the
risk, the higher 7 has to be. Note that in the case of a Poisson process {N (%)}
the premium function II(#) given in (1.4.1) is of the form I(¢) = St for some
constant 3 > 0.

The premium principle of the form (1.4.1) with » independent of the
portfolio is called the expected value principle. Of course, the expected value
principle does not keep track of the variability in the portfolio and so
alternative principles include, for example, the variances of N(t) and U. A
few other possibilities are also covered in Chapter 3.

Another aspect of premium calculation is that not all individual policies
in a portfolio must be charged with the same premium. For example, the by
now classical bonus-malus premium calculation principle is widely spread in
car insurance. Depending on the past history of a policy-holder, the insurer
ranks the client in a certain state and charges an amount typical for that
state. In the course of time the customer will move from one state to another,
depending on his claim record. If we denote by X,, the state of a client at the
beginning of year n, then the process {X,,n > 0} describes a jump process
adequately modelled by a discrete-time Markov chain. No course on stochastic
processes can be considered complete if it would lack a serious treatment
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of this important building block of stochastic modelling. We will deal with
discrete-time Markov chains in general in Chapter 7 and with bonus-malus in
Section 7.1.4 in particular. In Chapter 8 we will then continue this discussion
by changing from discrete time to continuous time.

1.4.2 The Risk Reserve

Recall from the introduction that the risk reserve at time t is given by
R(t) = u + II(t) — X(t), where u is the initial reserve. The quantity R(t)
is, of course, random. The ultimate hope would be to get some information
on the distribution of R(t) or, if this is impossible, on the first few moments
of R(t). As has already been pointed out, the distribution of X(t) is very
complicated. If we superimpose a possibly random character of the premium
income, then the overall situation will become even worse.

There is one particular situation, however, where we can give a full
treatment of the stochastic nature of the risk reserve. Assume that time is
measured in integers. We then add all premiums collected in period n in one
single number I, = II(n) — II(n — 1), which can even be assumed to be
random. Similarly we add all claims arriving in period n and call this amount
X, where X, = X(n) — X(n — 1). The risk reserve after period n is then
equal to

r
R.=Rn)=u+(n)-X(n)=u—-Y (X;—TL).
i=1
The resulting stochastic process {Sn,n > 0} of partial sums S, = Y., Y;
is called the (discrete-time) claim surplus process. In particular, {S,} is a
random walk if we assume that the sequence {Y,,n > 1} with Y, = X, - II,,
consists of independent and identically distributed random variables.

The definition of a random walk is very similar to that of a renewal process,
the only difference being that now the generic random variable is no longer
concentrated on the nonnegative halfline. The theory of random walks makes
up a substantial chapter in a traditional course on stochastic modelling. We
will cover the most important aspects of random walk theory in Chapter 6.

If premiums are nonrandom we can write

P(R(t) > ) = P(X(t) < u+11(t) - 2) = Fxy(u+T(t) - 2)

which shows how important it is to have workable expressions for the
distribution of the aggregate claim amount.

1.4.3 Economic Environment

A number of problems in insurance and finance contain an economic element
like interest, discounting or indexing. As such, a variety of subjects will be
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treated within an economic environment.

Consider data from car insurance. When calculating the premium, the
insurer needs certain characteristics of the claim sizes, such as their mean
value and variance. Just using the common estimators for mean and variance
would lead to problems. Over the years, cars have become more expensive.
Therefore, the claim data from some years ago cannot be compared directly
with claim data of today and so need to be adjusted.

Suppose that we consider a time horizon of n years. Then, for each
i = 1,...,n, an index I; for year ¢ is defined which is related to the costs
of that year, including, for instance, prices of new cars and repair costs. This
index is then used to measure all claims in units of year 0. Denote by X; the
aggregate claim amount of year ;. Then adequate estimators for mean and
variance of the aggregate claim amount measured in units of year 0 are given
by

- 1 =2 1 ¢ 2
4¥=;ZX¢'/I;'1 & =mZ(Xi/Ii—X) -
i=1 i=1
The corresponding estimates for year n + 1 are then
Xn+l = ‘n+1Xy &n+1 = i3+16'2 ’

where fn+1 is an estimate of the index for year n + 1.

The indices I; are often expressed via the interest rates r; = I;i/I;_; — 1.
This is particularly advantageous in life insurance. For example, in the case of
a single premium payment, suppose that the dependant of the policy-holder
will get a predefined lump sum z in the case of the death of the policy-holder
within n years. The insurance company will invest the premium. Thus the
value V of the payment will be different depending on the year of death. Let
ps denote the probability that the policy-holder dies in year ¢ after the issue
of the policy. Then, for a given sequence ry,...,rn_1 of interest rates, the
expected value EV of the contract is

EV=pz+pz(l+r)+...+p2(1+r)...(L+rp_1).

The problem with the above expression is that, at policy issue, the interest
rates r; are not known in advance. Therefore insurance companies use a
technical interest rate r instead of the true interest rates r;. This leads to
a technical value V' with expectation

EV' =piz+pez(1 +7) + ...+ px(l + )% 1.

We will use this kind of economic setting in Section 7.3, where we
deal with Markov chains with rewards. In Section 11.4 we deal with risk
processes in an economic environment within the framework of piecewise
deterministic Markov processes. Questions of insurance and finance connected
with stochastic interest and discounting are discussed in Chapter 13.
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1.5 REINSURANCE

Reinsurance is a prime activity of almost all insurers. We first explain why
reinsurance may be necessary. Then we give a number of specific forms of
reinsurance and point out how each one of them provides further support for
the topics that will be treated in later chapters.

1.5.1 Need for Reinsurance

As phrased by Borch (1960), a company makes arrangements for reinsurance
when it seeks to reduce the probability of suffering losses which may jeopardize
the position of the company. Among the reasons to ponder reinsurance the
insurer can think about the following.

e The appearance of ezrcessively large claims; here we think about claims
resulting from severe accidents as with nuclear power stations or cases
of serious medical maltreatment. In other instances an insurer might be
confronted with large claims coming from a policy involving very valuable
items such as air carriers, oil tankers, dams and large building complexes.

e An unusually large number of claims or clustering of claims, whether large
or not. Extensive forest fires may temporarily lead to a very large number
of more or less large claims. Hurricanes, earthquakes and floods can cause
similar explosions of the number of claims.

o Unexpected changes in premium collection as in the case of a sudden
inflation or unforeseen increase in handling costs. Under these circumstances
the company actually does not quite receive the premium income it had
expected at the beginning of the book year.

o There are legal restrictions forcing the company to have reserves to cover a
certain part of future claims. For a smaller company these restrictions would
cause a noncompetitive premium. Taking reinsurance is a comfortable way
of solving that problem.

e If a company can take reinsurance, it can also offer more services to its
clients. Reinsurance can therefore be considered to increase the capacity of
the company.

There exists a variety of reinsurance forms. What they all have in common
is the desire to diminish the impact of the large claims. In what follows
we provide the mathematical formulation of most of the currently employed
reinsurance treaties.

1.5.2 Types of Reinsurance

Recall that we use {Uy,Us,..., U N(t)} as the sequence of successive claims up
to time ¢ when the underlying claim number process is {N(t),t > 0}. Further
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the aggregate claim amount over that period is X (t) = ZZ—(: 'U;.

On the basis of the past history of the portfolio or stimulated by one or more
arguments under Section 1.5.1, the insurer will redesign the portfolio in such
a way that he himself keeps a certain amount of the aggregate claim amount
X (t) while he looks for reinsurance for the remaining part. The amount that
he keeps is called the deductible and will be denoted by h{X(t)) or h(U;),
depending on whether the reinsurance form acts on the whole portfolio or
on single claims. The remaining part, i.e. X(¢) — h(X(t)) or U; — h(U;) is
the reinsured part. Acting like that, the insurer himself is taking an insurance
with a reinsurance company and hence himself becomes a client. The first line
insurer is still drafting the premiums to be asked from his own customers. Part
of that premium now has to be transferred to the second line insurer, who has
agreed to cover the risk at a negotiated premium. The second line insurer can
then again redivide the risk and go to a third line company, hence building
up a reinsuraence chain, where at each step deductibles and corresponding
premiums have to be negotiated and transmitted down the chain to the first
underwriter.

Here are the most commonly used types of reinsurance. The first form
of reinsurance is proportional or quota-share reinsurance where a certain
proportion, say a, of the total portfolio is reinsured. This means that h(zx)
takes the special form h(z) = az. But then

N(t) Nft)

hX@®) =aX(t)=a ) U= hU)
=1

=1

where 0 < a < 1 is the proportionality factor.

This form of reinsurance is very popular in almost all insurance branches,
presumably because of its conceptual and administrative simplicity. Moreover
this kind of reinsurance is often used at the start of smaller companies
to broaden their chances in underwriting policies. In general the first line
insurance cedes to the reinsurer a similarly determined proportion of the
premiums.

From the distributional point of view the basic properties of h(X (#)) can
be derived from the analogous properties for the case a = 1. Indeed, by its
definition

P(h(X(t)) < z) = P(X(t) < z/a) = Fx((z/a).

This formula shows again how important it is to get reliable and accurate
formulae for the distribution of the aggregate claim amount.

Another important form of reinsurance is excess-loss, which is determined
by a positive number b, called the retention level. The reinsured amount is
then equal to Zf_’__(lt (U; - b)4, where 2, = max{z,0}. This reinsurance form
covers the overshoot over the retention level b for all individual claims whether
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or not they are considered to be large. It is clear that excess-loss reinsurance
limits the liability of the first line insurer. It appears as if the underwriter of
the policy decides that he himself will cover all claims below the retention b.

Among the insurance branches where this type of reinsurance is used we
mention in particular general liability, and to a lesser extent motor-liability
and windstorm reinsurance. Excess-loss reinsurance is particularly interesting
if a relatively small number of risks is insured, and the individual claim size
distributions are heavy-tailed. Because of its very form, all claims have to
be checked individually and as such this reinsurance contract leads to an
expensive administration.

From the distributional angle, the excess-loss amount has a distribution
which is completely similar to that of the aggregate claim amount but with
a claim size distribution truncated at the retention. Again the importance of
good approximations to the distribution Fx)(z) is apparent.

A reinsurance policy that considers each claim as an integral part of the
entire portfolio is determined by the quantity

N(b)
(Z Ui - b)+ = (X(t) - b)+

where the retention b determines the stop-loss reinsurance. In this type of
reinsurance, the small claims also show their influence on the total amount
reinsured. In particular, when the number of claims is very large, the aggregate
claim amount is highly dependent upon the small claims as well. On the
other hand, stop-loss reinsurance seems a natural adaptation of the excess-
loss treaty, but then to the portfolio as a whole.

Stop-loss reinsurance is used in windstorm and hail reinsurance and
occasionally in fire insurance. Due to its form, stop-loss reinsurance is very
simple to apply and does not require expensive individualized administration.
In general one would not use stop-loss reinsurance unless the number of
policies were large. Moreover we will show in Chapter 3 that stop-loss
reinsurance has some desirable optimality properties.

From the distributional point of view one notices the necessity to derive
compact expressions for the probabilities of overshooting a certain barrier.
If one indeed considers the portfolio as a single policy, then again the
approximations and bounds for the aggregate claim amount are of prime
importance.

There are still other types of reinsurance contracts.

¢ Thinking especially about coverage against large claims, it seems desirable
to look for treaties based on the largest claims in the portfolio. If we
denote by (U1), U(a),-- -, U(nqy)) the order statistics of the random vector
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(U1,Uz,...,Unqy) of claim sizes, then

T N{t)
Z@t) = Z Un@-irny = rUney-ry) = Z(Ui = Unigy—r))+

i=1 i=1

would make up a rather neat reinsurance treaty. It has been introduced by
Thépaut (1950) and is called excédent du coit moyen relatif (ECOMOR).
The amount Z(t} covers only that part of the r largest claims that
overshoots the random retention U(n(y)—r), where Uin(y—r) = 0if N(t) <.
In some sense the ECOMOR treaty rephrases the excess-loss treaty but with
a random retention at a large claim.

Not much is known about ECOMOR treaties and as such this reinsurance
form has been largely neglected by most reinsurers. The main reason is the
rather complicated form of Z(t), which defies a simple treatment.

¢ A reinsurance form that is somewhat akin to proportional reinsurance is
surplus reinsurance. Here the reinsured amount is determined individually
and proportionally by the value of the insured object. The insurer is forced
to introduce the value of the insured object as an extra unknown and
basically random quantity. The overall value of the insured amount is the
key factor when choosing this type of reinsurance.

e Of course there are possibilities for combined reinsurance contracts. For
example, the insurer can first apply an excess-loss retention on the
individual claims; at the next step he applies an additional stop-loss cover
to the remaining excess over a certain retention.

We will not develop any systematic study of these last three reinsurance
treaties and restrict ourselves to the basic theory.

1.6 RUIN PROBLEMS

Ruin theory has always been a vital part of actuarial mathematics. At first
glance, some of the theoretically derived results seem to have limited scope
in practical situations. Nevertheless, calculation of and approximation to
ruin probabilities have been a constant source of inspiration and technique
development in actuarial mathematics.

Assume an insurance company is willing to risk a certain amount u in a
certain branch of insurance, i.e. if the claim surplus exceeds the level u some
drastic action will have to be taken for that branch. Because in some sense
this part of the business starts with the capital u we can safely call u the
initial capital. The actuary now has to make some decisions, for instance
which premium should be charged and which type of reinsurance to take, see
Section 1.5. Often, the premium is determined by company policies and by
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tariffs of rivals. A possible criterion for optimizing the reinsurance treaty would
be to minimize the probability that the claim surplus ever exceeds the level u.
To be more specific, consider the risk reserve R(t) = u+II(t)— X (¢) and define
the random variable 7 = inf{t > 0 : R(t) < 0}. The instant 7 gives us the ruin
time of the portfolio, where we interpret ruin in a technical sense. Of course,
we should allow the possibility that no ruin ever occurs, which means that
7 = co. We should realize that 7 is dependent on all the stochastic elements
in the risk reserve process {R(f)} as well as on the deterministic value u.
For this reason one often singles out the latter quantity in the notation for
the ruin time by writing 7(u) for 7. More specifically, the survival or nonruin
probability in finite time will be defined and denoted by

P(u;z) = P(oi?iz R(t) > 0) = P(r(u) > z)

when we consider a finite horizon r > 0. The survival probability over an
infinite time horizon is defined by the gquantity

Plu) = P(gg R(t) > 0) = P(r(u) = ) .

Alternative notations that are in constant use refer to the ruin probabilities
which are defined by the equalities

Yuiz) =1-Y(we),  9u)=1-9).

Each year the insurer of a portfolio has to negotiate a reinsurance contract.
While an optimal strategy will depend on R(t), the insurer has to apply the
contract at the beginning of the year. Simultaneously, the future policies
of the reinsurance companies have to be taken into account. The resulting
problem is hard to solve. In one approximation procedure, the premium and
the reinsurance treaty is fixed for the whole future and then the optimal
reinsurance is chosen; see, for instance, Dickson and Waters (1997). Then this
new reinsurance treaty is chosen as input and the procedure is repeated. To
get rid of the dependence on the initial capital, an alternative approach is to
consider the adjustment coefficient introduced in Chapter 5. The adjustment
coefficient is some sort of measure of risk. Maximizing the adjustment
coefficient is in some sense minimizing the risk for large initial capitals. This
optimization procedure was, for instance, considered in Waters (1983).

Ruin theory is often restricted to the classical compound Poisson risk model.
The latter model will therefore appear over and over again as a prime example.
Unfortunately, because of its intrinsic simplicity, the compound Poisson model
does not always give a good description of reality. There are more realistic
but still tractable models in the literature, that hopefully will find their
way into actuarial applications. We will review a number of these models. In
Chapter 11 we introduce piecewise deterministic Markov processes to broaden
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the Markovian treatment of risk analysis. Interest and discounting can then be
easily introduced as elements of economic environments. Another prospective
area of actuarial and financial applications can be found in the theory of point
processes that will be treated in Chapter 12.

As one can expect, ruin probabilities will depend heavily on the claim
size distribution. If the latter is well-behaved the ruin probabilities will turn
out to be typically exponentially bounded as the initial capital becomes
large. However, when the claim size distribution has a heavy tail, then one
single large claim may be responsible for the ultimate ruin of the portfolio.
The reader will definitely appreciate how the class S of subexponential
distributions provides a beautiful characterization for the heavy-tailed case
as shown in Sections 5.4.3, 6.5.5 and in even more depth in Sections 12.6 and
13.2.4.

Phase-type distributions form another and versatile alternative class of
distributions for which more or less explicit calculations are possible. They
are treated in some detail in Section 8.2 and applied to ruin calculations later
on.

The results for ruin probabilities on which we will focus in this book can
be characterized by the following features.

e Only in the easiest cases will we succeed in getting explicit formulae for the
ruin probabilities as in Section 5.6.

e As soon as we allow more complex models, one way out is to use
approximations of Cramér-Lundberg type for large initial capital as in
Sections 5.4, 6.5 or more generally in Chapters 11, 12 and 13. In all these
models, a surprisingly different asymptotic behaviour of ruin probabilities
is observed depending on whether light-tailed or heavy-tailed claim size
distributions are considered.

e An alternative is to employ numerical procedures as in Section 5.5.

o A further and even more important theme of the text is the derivation of
bounds for the ruin probabilities. A vast number of Lundberg bounds have
been derived in the text, ranging from the simplest in Section 5.4.1 in the
compound Poisson model, over Section 6.5.2 in the Sparre Andersen model,
to the more general in Chapters 11, 12 and 13. Another type of bound is
obtained in Section 12.2.4, where we are dealing with the comparison of
ruin probabilities for risk reserve processes with identical safety loadings
but with different volatilities.

e Finally, simulation methods are discussed in Section 9.2.5.

Quite a few of the above results have been derived using martingale
techniques. Martingale theory makes up a vast portion of current day
probabilistic modelling and cannot be left out of any serious treatment of
risk analysis and financial mathematics. In Chapter 9 we treat the fairly
easy discrete-time situation, making links to random walk theory and life
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insurance. The more demanding continuous-time martingale theory is treated
in Chapter 10. This chapter is also vitally needed in the treatment of financial
models; it nevertheless provides some unexpected links to finite-horizon ruin
probabilities in Section 10.3.

1.7 RELATED FINANCIAL TOPICS

1.7.1 Investment of Surplus

In Section 1.4 we have already mentioned that the calculation of premiums
constitutes an essential part of the actuarial know-how. Although these
premiums are nonrandom for a certain time horizon, their calculation involves
information on the stochastic elements within the portfolio and within the
economic environment. However, even once the premiums are fixed, the future
premium income of an insurer is not deterministic. For one reason, the number
of customers may increase or decrease in time outside the control of the
insurer. Since the insurer invests the surplus in financial markets, there still is
another source of uncertainty which is caused by the random fluctuations of
these markets. Notice that interest and inflation rates usually change in much
smaller steps than the risk reserve of an insurance portfolio changes with
the arriving claims. This situation is modelled in Section 13.2 by means of
perturbed risk processes, which are defined as the sum of a usual risk reserve
process {R(t)} and a stochastic perturbation process. Typically, perturbed
risk processes belong to the class of jump-diffusion processes. Their sample
paths change discontinuously from time to time since jump epochs and jump
sizes are random. In the intervals between the jumps they behave like the
sample paths of a diffusion process; see Section 1.7.2. This class of stochastic
processes is one of the main subjects of financial mathematics.

Over recent years, a number of textbooks have appeared that provide
introductions to the mathematical theory of finance. We refer to the
bibliographical notes in Chapter 13. An inclusion of all the technical material
needed to do full justice to this contemporary subject would increase the size
of our monograph substantially. On the other hand, we felt a need to at least
include a streamlined introduction to the subject. We made a special attempt
to show the clear links between the material already mentioned above and a
subset of topics from the realm of financial stochastics.

1.7.2 Diffusion Processes

The description of the stochastic properties of stock prices, interest rates,
etc. in terms of diffusion processes has been one of the great break throughs
of stochastic thinking in a real-life context. It is by now generally accepted
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that an appropriate formulation for the time-evolution of a diffusion process
{X(t)} should be given in terms of a stochastic differential equation of the
form

dX(t) = a(t, X(£)) dt + o(t, X (£)) AW (2) -

Here, {W(t)} is the usual Brownian motion, which is at the core of stochastic
analysis. Further, a(t,z) takes care of the drift of the process, while o(¢, x)
describes the strength of the extraneous fluctuations caused by the Brownian
motion. In Section 13.1 we give an abridged treatment of stochastic differential
equations and we show existing links with martingales and Markov processes.

For specific choices of a(t,z) and o(£,z) we arrive at a wealth of possible
models. Here is a more concrete example. A major step forward in the use
of stochastic calculus in finance came from an attempt to price options on
a security. This led to the popular Black-Scholes formula, for which the
Nobel price 1997 was won. In fact, the use of the Black-Scholes model for
option pricing, induced a change in the economy so that stock prices in liquid
markets became very close to a Black—Scholes model. Up to 1972, the Black-
Scholes model for option prices was a bad approximation to real prices. In the
above terminology, the price process takes the form X (¢) = e% X*(t), where §
refers to the force of interest, while { X *(t)} satisfies the stochastic differential
equation with the choice a(t,z) = (4 — d)z and o(t,z) = ozx. The drift is
regulated by the difference between the expected rate of return u and the
force of interest J, while the fluctuations are modelled by the volatility o.

In Section 13.3.1 we will explain how trading stategies in a market with two
financial goods can be developed once the option is chosen. In particular, we
consider the case of a Furopean call option where the option-holder has the
right (but not the obligation) to buy an asset for a fixed price at a fixed point
in time.

1.7.3 Equity Linked Life Insurance

Section 13.3.2 provides an inspiring link between the Black-Scholes model and
stochastic modelling of life insurance.

From the Middle Ages, states and towns in Europe have been selling
annuities. Life insurance mathematics arose in response to the need for
evaluation of the price of these annuities. These calculations stimulated
developments in different fields, like demography and probability theory. In
London, early life tables were proposed by John Graunt in 1662. However, it
is considered that the first life table in the modern sense was constructed
by E. Haley in 1693. He used data from Breslau in Silesia, collected by
the pastor and scientist Casper Neumann during the period 1687-1691. For
further historical details, the reader is referred to the survey by Hald (1987).

The subsequent mathematical modelling of life insurance is based on
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probability theory, since in our modern terminology lifetimes are random
variables. A classical life table contains the expected proportions of that
part of a population of age a that reaches a later age c. If we use T, as
the stochastic notation for the remaining lifetime of a policy-holder of age a,
then the life tables give us the necessary means to estimate (sometimes using
interpolations) the distribution P(T, < y) = P(T <y | T > a), where T is
the typical lifetime of any member of the population.

Under a classical life insurance contract, the insured benefit typically
consists of one single payment — the sum insured. Other useful types of
contracts in life insurance are life annuities, consisting of a series of payments
which are made during the lifetime of the beneficiary. Furthermore, there are
combinations of a life insurance contract with an annuity. The subsequent
problem is then to follow such contracts from the instant of policy issue up
to the death of the customer.

Take, for instance, the case where a customer of age a underwrites a classical
term insurance policy where he gets the value max{X(T,), b} at time T, of his
death. Note that this value is similar to the value of a European call option,
but the payoff is now paid at a random time. Here, b > 0 is a guaranteed lower
bound and {X (¢)} is a stochastic price process as described in Section 1.7.2.
With the additional notions of discounting and interest, one is now equipped to
develop a coherent theory of equity linked life insurance contracts. A detailed
treatment of the above life insurance situation is given in Section 13.3.2 in
the case of a constant force of interest § > 0. As there is no obvious reason
why the force of interest should be kept constant, the final Sections 13.3.3
and 13.4 cover a few possible forms of a stochastic force of interest {4(¢)} via
appropriate stochastic differential equations.
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CHAPTER 2

Probability Distributions

2.1 RANDOM VARIABLES AND THEIR
CHARACTERISTICS

2.1.1 Distributions of Random Variables

Random variables are basic concepts in probability theory. They are math-
ematical formalizations of random outcomes given by numerical values. An
example of a random variable is the amount of a claim associated with the
occurrence of an automobile accident. The numerical value of the claim is
usually a function of many factors: the time of year, the type of car, the
weather conditions, etc. One introduces a random variable X as a function
defined on the set 2 of all possible outcomes. In many cases, neither the set
nor the function X need to be given explicitly. What is important is to know
the probability law governing the random variable X or, in other words, its
distribution; this is a prescription of how to evaluate probabilities F(B) that
X takes values in an appropriate subset B of the real line R. Usually these
subsets belong to the class B(R) of Borel subsets, which consists of all subsets
of R resulting from countable unions and intersections of intervals.

For reasons of mathematical convenience, it is useful to consider a certain
family F of subsets of , called events. Furthermore, a probability P on F
assigns to each event A from F its probability P(A4). The crucial assumptions
on F and P are the closeness of F with respect to countable unions and
intersections of sets from F. In the terminology of probability theory, F is a
o-algebra and the additivity property of P with respect to countable unions
of disjoint sets from F make P a probability measure.

More formally, a random variable is a measurable mapping X : @ —- R,
i.e. the set {X € B} def {w € 2 : X(w) € B} belongs to F for each
B € B(R). The distribution F of X is the mapping F : B(RR) — [0, 1] defined
by F(B) = P(X € B). Furthermore, F : R — [0,1] with F(z) = P(X < )
is called the distribution function of X. We use the same symbol F' because
there is a one-to-one correspondence between distributions and distribution
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functions. By F(z) = 1 — F(z) we denote the tail of F. We say that a
distribution F is concentrated on the Borel set B € B(R) if F(B) = 1.
In actuarial applications, a nonnegative random variable is frequently called
a risk.

There are two important but particular types of random variables - discrete
and continuous ones. We say that X is discrete if there exists a denumerable
subset E = {zo,2;,...} of R such that P(X € E)} = 1. In this case, we define
the probability function p: E — [0,1] by p(xi) = P(X = z); the pair (E, p)
gives a full probabilistic description of X. The most important subclass of
nonnegative discrete random variables is the lattice case, in which E C AIN,
i.e. zx = hk for some h > 0, where IN = {0,1,...}. We then simply write
p(zx) = pr and say that X is a lattice random variable.

On the other hand, we say that X is absolutely continuous if there exists a
measurable function f : R — R, such that [ f(z)dz =1 and P(X € B) =
[ f(z) dz for each B € B(R). We call f the density function of X.

The distribution of a discrete random variable is called discrete. If X is a
lattice random variable, then we call its distribution lattice, otherwise we say
that it is nonlattice. Analogously, the distribution of an absolutely continuous
random variable is called absolutely continuous. Sometimes the distribution F
of the random variable X is neither purely discrete nor absolutely continuous,
but a mizture F = 6F) + (1 — 8)F;, where F; is a discrete distribution with
probability function p, and F; is an absolutely continuous distribution with
density function f; 0 <8 < 1.

In order to emphasize that we consider the distribution, distribution
function, probability function, density function, etc. of a given random variable
X, we shall use the notation Fx,px, fx,.... The index X is omitted if it is
clear which random variable is meant.

For two random variables X and Y with the same distribution we write
X =Y. Furthermore, we write (X;,...,X,) 4 (Y1,...,Y,) if two vectors of
random variables (X7,...,X,) and (¥},...,Y,) have the same distribution,
i.e.

P(X,€B,,....Xp, € B,)=P(Y1 € By,...,Y, € By)

for all B,,..., B, € B(R) or, equivalently,
P(Xl S xlv"'a‘Yn S zn) = P(}’l S z]a""Yn S zﬂ)

for all z,,...,z, € R. We say that (X;,...,X,) is absolutely continuous if
there exists a nonnegative and integrable function f : R® — R, with

/m.../mf(zl,...,m,,)dzn...dxl =1

such that P(X; € B,...,X,, € B,) = fB1 o Jp fzr, o zp)dey . A2y
for all Borel sets By,...,B, € B(R). The function f is called the density
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of (Xi,...,Xy). If the random vectors (X,,...,Xn-1) and (X),..., X,) are
absolutely continuous with densities fx,,..x,_, and fx, .. x. respectively
and if fX,.....X,,-; (z, yeoo ,2,;-1) > 0, then

fXx.---,Xu (21, cee ,.‘tn)

fx.[x;,...,x,-.(zn l Z),. '°1zn—l) = f

XtvonXaor (Z1se e Znot)
is called the conditional density of X, under the condition that X, =
Z1,...,Xpn-1 = Zp-y1. For other basic notions related to the concepts of

independence and conditioning, see also Section 2.1.3.

For two random variables X and Y with P(X =Y) = 1 we simply write
X =Y. Furthermore, for a sequence of random variables X, X, X»,... with
P(X = limpo00 Xn) = 1 we write X = limy—00 Xn-

For n fixed and for all k = 1,2,...,n and w € Q, let X(x)(w) denote the k-
th smallest value of X;(w),...,Xn(w). The components of the random vector
(X(1),- - -+ X(n)) are called the order statistics of (X;,...,Xpn).

2.1.2 Basic Characteristics

Let X be a random variable and g : R & R a measurable mapping. We can
then consider the random variable g(X). For example, if X is an insurance
risk, g(X) can be that part of the risk taken by the (first) insurer, while
X - g(X) is the residual risk passed on to the reinsurer. In Chapter 3 more
specific examples of reinsurance agreements are studied, such as

X fX<a
g(X)-{ e fX>a

(stop-loss reinsurance or, alternatively, excess-of-loss reinsurance, with reten-
tion level a > 0) and g(X) = aX (proportional reinsurance; 0 < a < 1).
Define the value E g(X) by

e g(ze)p(zr)  if X is discrete
Eg(X =

JZoo 9(x) f(x)dz if X is absolutely continuous

provided that ¥, |g(zs)|p(zx) < 00 and [7_|g(z)|f(z) dx < o0, respectively.
If g is nonnegative, we use the symbol E g(X) whether finite or not. If the
distribution of X is a mixture, then we define E g(X) by

Eg(X) =03 g(zi)p(zs) + (1 - 6) / ” g(@)f@)dz. 21.1)
k -0

It is obviously convenient to consider the expectation E g(X) given by (2.1.1)
in the more general framework of the Stieltjes integral

Eg(x) = [ : o() dF(z),
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taken with respect to the distribution function F : R — [0,1] of X.
Alternatively, we could also use the Lebesgue integral E g(X) = [ g(z)F(dz),
with respect to the distribution F : B(R) — [0,1] of X. Moreover, both
expressions define the expectation for cases not of the form (2.1.1). In most of
our applications, however, integrals will be of the form (2.1.1). For g(z) = z
the value ¢ = E X is called the mean, the expectation or the first moment of
X. For g(z) = z", '™ = E(X") is called the n-th moment. The variance of
X is 02 = E(X — u)? and 0 = Vo? is the standard deviation. Sometimes the
symbol Var X will be used instead of o%. The coefficient of variation is given
by cvx = o/u, the indez of dispersion by Ix = 0%/u, and the coefficient of
skewness by E (X — u)30~3. For two random variables X,Y we define the
covariance Cov(X,Y) by Cov(X,Y) = E((X-E X)(Y —EY)) provided that
E X2, EY? < co. Note that, equivalently, Cov(X,Y) = EXY -EXEY. If
Cov(X,Y) > 0, then we say that X,Y are positively correleted. Similarly,
X,Y are negatively correlated if Cov(X,Y) < 0, while they are uncorrelated
if Cov(X,Y) =0.
A medien of the random variable X is any number ¢, /; such that

PX<Gp)23, PX2qp)>1.

We call kx = E|X — (;/;| the absolute deviation of X (from median (; /»).
Note that we can relate the expectation E with the probability P using
the notion of the indicator function I(A) : & — R, which is given by

_J 1 ifwe A,
I(4,w) = { 0 otherwise.
Thus, if A € F, then X(A4) is a random variable and P(4) = EI(A).
Furthermore, we use the notation E[X; A] = E(X1(4)) for any random
variable X and any event A € F.
If we want to emphasize the random variable X or its distribution F when

using the mean, n-th moment, variance, etc. we write px,u("),ag‘,... or
(n) ’

BF, g ,G'?:-,' [
2.1.3 Independence and Conditioning

An important idea in probability theory is the concept of independence. The
random variables Xj,..., X, : @ — R are independent if

n
P(X; € By,...,Xn € Ba) = [ P(Xs € By)
k=1
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for all B,,..., B, € B(R) or, equivalently,

n
P(X;<zy,...,.Xn<20) = HP(Xk < zk)
k=1

for all z1,...,z, € R. An infinite sequence X;, X, ... is said to consist of
independent random variables if each finite subsequence has this property.
We say that two sequences X1, X»,... and 1;,Y5, ... of random variables are
independent if

P(()(xi <=0 ()ri <up) =@ (Nexe<=0)e P(( )0 <)

for all n,m € IN and zy,...,Zn, ¥1,...,¥m € R. For a sequence X;,X,,...
of independent and identically distributed random variables, it is convenient
to use the notion of a generic random variable X with the same distribution.
Sometimes we say that a random variable or a sequence of random variables is
independent of an event A € F, by which we mean that the random variables
are independent of the indicator random variable I(A4).
Let A € F. The conditional probability of an event A’ given A is
P(A' [ A) = { PA'NA)/P(A) if P(A). >0,
0 otherwise.

In connection with this concept of conditional probability, an elementary
and useful formula is given by the so-called law of total probability. Let
A, Ay, Az,... € F be a sequence of events such that 4;NA; =@ fori # j and
S ioy P(Ai) = 1. Then,

P(4) = i P4 | A) P(4;). (2.1.2)

i=1

We will find use of the notion of the conditional ezpectation E(X | A) of a
random variable X given that the event A has occurred. By this we mean the
expectation taken with respect to the conditional distribution Fx,4, where
Fxa(B) = P({X € B}n A)/P(A) for B € B(R). In later chapters of the
book we will use more general versions of the above conditional concepts. A
typical example is the conditional expectation E (X | G) with respect to a
sub-c-algebra G of F. Under the assumption that E|X| < co, the conditional
expectation is a mapping E(X | G) : @ — R which is measurable with
respect to the sub-o-algebra G and for which E [E (X | §); A] = E[X; A] for
all A € G. The conditional expectation is unique in the sense that if Y is
another G-measurable random variable with E[Y; A] = E[X;A]forall A € G
then P(Y = E(X |G)) =1
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2.1.4 Convolution

The convolution operation for distributions allows us to compute the distri-
bution of the sum X + Y of two independent random variables X and Y
from their respective distributions F and G. The convolution F x G of two
distribution functions F,G is defined by

F+G(z) = /w F(z -uw)dG(u), z€R. (2.1.3)

Note that F * G is absolutely continuous provided that at least one of the
distributions F,G is absolutely continuous. If both X and Y have densities
f and g, respectively, then the density of X + Y is given by the {density)
convolution f * g(x) = [ f(x — u)g(u)du for z € R. The (discrete)
convolution of two probability functions {pi;k € IN} and {p};k € IN} is
given by
(p*p')k= Z PiP;" kE]N
i JEN:i+j=k

The operation of convolution can still be defined for other types of functions
like unbounded functions; what is important is that the integration in (2.1.3)
can be performed. The n-fold convolution of F, denoted by F*" is defined
iteratively: for n = 0, F*%(z) = do(z) with dg(z) = 1 if > 0 and &(z) =0 if
r<Owhileforn>1, F** = F*(*~1) x F = F ... % F (n times). The n-fold
convolution of other functions is similarly defined and denoted. For the tail of
F*™ we write F**(z) = 1 — F*"(z).

2.1.5 Transforms

Let I = {s € R : Ee’X < oo}. Note that I is an interval which can be the
whole real line R, a halfline or even the singleton {0}. The moment generating
function i : I —» R of X is defined by m(s) = Ee®X. Note the difference
between the moment generating function and the Laplace-Stieltjes transform
l(s) =Ee™*X = ffc’w e™** dF(z) of X or of the distribution function F of X.
Besides the Laplace-Stieltjes transform, we sometimes consider the Laplace
transform L(s) = ffc e **¢(z) dzx of a function ¢ : R — R,. Clearly, if the
distribution function F is continuous with density f, then its Laplace-Stieltjes
transform is equal to the Laplace transform of f. It is rather easy to prove
that the Laplace-Stieltjes transform I(s) of a distribution on R, is completely
monotone, i.e. for all integer values of n, (—1)"{(")(s) > 0. A classical result
from real analysis, known as Bernstein’s theorem, states that, conversely, every
completely monotone function I(s) satisfying {(0) = 1 is the Laplace-Stieltjes
transform of a distribution on R..

For lattice random variables on IN with probability function {px, k € IN} we

additionally use the notion of the probability generating function §: [-1,1] —
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R defined by g(s) = 3 po,pes®. If {ax, k € IN} is an arbitrary sequence
of real numbers, not necessarily a probability function, we also define the
generating function §(z) of {ar} by §(z) = Y re, 612" provided the sum is
convergent for 2 € D, where D is a subset of the complex plane €. For
example, a probability generating function can always be considered on the
unit sphere {z € € : {z| < 1}. If the generating function §(z) is well-defined
for all z € € with |z| < sg, then the supremum of all so > 1 with this property
is called the radius of convergence of §(z).

Let X be an arbitrary real-valued random variable with distribution F. The
characteristic function ¢ : R — C of X is given by

@(s) = Eel*X, (2.1.4)

In particular, if F is absolutely continuous with density f, then

&(s) = /oo e f(r)dz = /oo cos(sz)f(z)dz +1i /oo sin(sz) f(z) dz .

—oc —00 —oC

In this case, ¢ is the Fourier transform of f. If X : @ = IN is a discrete
random variable with probability function {pt}, then

P(s) = Zei"‘pk. (2.1.5)
k=0

If we want to emphasize the random variable X or its distribution F when
using the moment generating function, Laplace-Stieltjes transform, Laplace
transform, probability generating function or characteristic function, then we
write i x,...,$x or, alternatively, mp,...,¢rF.

Note that the formal relationships g(e®) = I(—s8) = ri(s) hold. Similarly
p(s) = §(e'*). However, it is somewhat more delicate to decide for what
arguments s the transforms 7(s) and i(s) are well-defined. For example, if
X is nonnegative, then i(s) is well-defined for all s < 0 while i(s) is well-
defined for all s > 0. But examples show that m(s) may be oo for all 3 > 0,
while others show that /i(s) is finite on {—00,a} for some a > 0.

There is a one-to-one correspondence between distributions of random
variables and their characteristic functions. For the moment generating
function, Laplace-Stieltjes transform, Laplace transform or probability gener-
ating function additional assumptions have to be imposed. If the n-th moment
of the random variable |X| is finite, then the n-th derivatives (™ (0),1(™(0)
exist provided that the functions #n(s),i(s) are well-defined in a certain
(complex) neighbourhood of s = 0. In this case, the following equation holds:

EX" = m™(0) = (-1)"[™(0) = (-)"¢™(0). (2.1.6)
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If rin(s) and i(s) are well-defined only on (—o0, 0] and [0, 00), respectively, then
the derivatives in (2.1.6) have to be replaced by one-sided derivatives, i.e.

EX" = m"(0-) = (-1 (0+), @1.7)

or by the corresponding derivative of the characteristic function . If the range
of X is a subset of IN and if EX™ < o0, then

EXX-1...(X-n+1))=§"1-). (2.1.8)

Another important property of m(s) (exactly the same holds for the trans-
forms I(s) and ¢(s)) is the following. Let X,..., X, be independent; then

Mx+..+%. (8) = [ x. (s). (2.1.9)
k=1

Similarly, if X1,..., X, are independent and take their values in IN, then

n

ax4.4%,(8) = [] 4. (3). (21.10)

k=1

More generally, for arbitrary measurable functions g;,....g. : R =& R we
have

E(H gk(Xk)) = [[ Ege(X0), (2.1.11)
k=1 k=1

provided that X;...., X, are independent.
Let X,X;,X2,... be real-valued random variables. We say that {X,}
converges weakly (or in distribution) to X if Fx, (z) = Fx(z) at all points

of continuity of Fx. We write X, 4 X. This definition is equivalent to the
following one, which is called the Helly-Bray theorem , saying that X, 4 X
if and only if
nl_l{goEg(‘X") =Eg(X) (2.1.12)
for each bounded continuous function g : R — R. A sufficient condition for
. d .
weak convergence is that X,, > X if

nli_x)récﬁzx“ (s) =mx(s) (2.1.13)

for all inner points s of the interval where m x (s) exists, provided this interval
is different from the singleton {0}. The following two results are related to

convergence in distribution and are known as Slutsky’s arguments. If X, S x
and Y, 4. € R, then

X YndeX, Xo+Y,dX+c (2.1.14)
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and Ross (1997a). More advanced background material on probability
and measure theory can be found, for example, in Billingsley (1995),
Breiman (1992), Feller (1968), Génssler and Stute (1977), Karr (1993) and
Pitman (1993). For Bernstein’s theorem on completely monotone functions,
see, for instance, Feller (1968). Slutsky’s arguments can be found, for example,
in Serfling {1980).

2.2 PARAMETRIZED FAMILIES OF DISTRIBUTIONS

In this section we introduce several classes of discrete or absolutely continuous
distributions appearing in insurance and finance. They all are characterized
by a finite set of parameters. Many of their properties are discussed in later
sections. See also the tables at the end of the book where formulae with
basic characteristics of these distributions are listed. Some special functions
repeatedly appear later and are stated in Section 2.2.5.

2.2.1 Discrete Distributions

Among the discrete distributions we have:

o Degenerate distribution 8, concentrated on a € R with p(z) = lifz = a
and p(x) = 0 otherwise.

o Bernoulli distribution Ber(p) with p; = p*(1-p)' % fork=0,1;0<p< 1:
the distribution of a random variable assuming the values 0 and 1 only.

e Binomial distribution Bin(n,p) with pr = (P)p*(Q - p)»~* for k£ =
0,1....n; n € IN,0 < p < 1: the distribution of the sum of n independent
and identically Ber(p)-distributed random variables. Thus, Bin(n,,p) *
Bin("?al’) = Bin(nl + n'29p)~

e Poisson distribution Poi()\) with pg = e *Af/klfork =0,1...; 0 < A < o0:
one of the building blocks of probability theory. Historically it appeared as a
weak limit of binomial distributions Bin(n,p) for which np = A as n — oc.
The closure property of the class of Poisson distributions under convolution
is important in that the sum of two independent Poisson-distributed random
variables is again Poisson-distributed, that is Poi(A;) * Poi(A2) = Poi(A; +
Az2).

o Geometric distribution Geo(p) with py = (1 —p)p* for k = 0,1...; 0 <
p < 1: the distribution with the discrete lack-of-memory property - that is,
P(X>i+j|X>j)=PX >i)foralli,j € INiff X is geometrically
distributed.
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e Negative binomial distribution or Pascal distribution NB{a,p) with px =
Mla+k)/(T(@)T(k+1))(1-p)*pt for k=0,1,...; > 0,0 < p< 1. Using

(g)=l, (:)zz(z—l)..l;!(z—k+l),

forz € R, k=1,2,... as a general notation, we have
a+k-1 -a
Pk=( k )(l—p)"p"=(k)(l-p)"(—p)’“-

Moreover, for a = 1,2,..., NB(a,p) is the distribution of the sum
of a independent and identically Geo(p)-distributed random variables.
This means in particular that the subclass of negative binomial distri-
butions {NB(a,p),a = 1,2,...} is closed with respect to convolution,
i.e. NB(ay,p) * NB{az,p) = NB{ay + ag,p) if a1, a2 = 1,2,.... Moreover,
the latter formula holds for any ay,a3 >0 and 0 <p < 1.

e Delaporte distribution Del(\, a, p) with Del(), a, p) = Poi()) * NB(a, p) for
A>0,a>0,0<p< 1.

o Logarithmic distribution Log(p) with p, = p*/(—klog(l — p)) for k =
1,2,...; 0 < p < 1: limit of truncated negative binomial distributions;
alternatively limit of the Engen distribution when ¢ — 0.

o (Discrete) uniform distribution UD(n) with py =n"lfork=1,...,n;
n=12,...

o Sichel distribution Si(0, A, a) with

. = ik.(l + 2q)"$0+0) Kotk (A av/1+ 2a)
k! Kp(A/a)

for k =0,1,..., where Ky(z) denotes the Bessel function of the third kind
(see Section 2.2.5 below); A\, a > 0,8 € R.
o Engen distribution Eng(§, a) with

_ 0 a*T'(k - 6)
e T =P KT -0)°

p

0<f,a<l, k>1.

2.2.2 Absolutely Continuous Distributions
Among the absolutely continuous distributions we have:

o Normal distribution N(p, 02) with f(z) = (2mo?)~1/2e~(=-#)*/(2¢") for all
z € R; u € R,0% > 0: another building block of probability theory. It
appears as the limit distribution of sums of an unboundedly increasing
number of independent random variables each of which is asymptotically
negligible. The class of normal distributions is closed with respect to
convolution, that is N(uz,0%?) * N(uz,02) = N(u1 + p2,0? + 03).
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Ezponential distribution Exp(\) with f(z) = Ae™? for z > 0; A > 0: basic
distribution in the theory of Markov processes because of its continuous
lack-of-memory property, i.e. P(X > t+s| X > 38) = P(X > ¢t) for all
s,t > 0if X is exponentially distributed.

Erlang distribution Erl(n, ) with f(z) = A"z" e **/(n-1); n=1,2,...:
the distribution of the sum of n independent and identically Exp(A)-
distributed random variables. Thus, Erl(ny, A)*Erl(ny, A) = Erl(ny +na, A).
x2-distribution x2(n) with f(z) = (2"/20'(n/2)) 'z(/D-1e-2/2 if £ > 0
and f(z}) = 0if x < 0; n = 1,2,...: the distribution of the sum of n
independent and identically distributed random variables, which are the
squares of N(0, 1)-distributed random variables. This means that x%(n,) *
x*(n2) = x*(n1 + ng).

Gamma distribution D(a, \) with f(z) = A*z®~te~*?/T'(a) for z > 0; with
shape parameter ¢ > 0 and scale parameter A > 0: if a = n € IN, then
I'(n,)) = Erl{(n,A). If X = 1/2 and a = n/2, then ['(n/2,1/2) = x*(n).
Uniform distribution U(a,b) with f(z) = (b—a) "t fora <z < b; —00 <
a<b<oo.

Beta distribution Beta(a, b,n) with

_ xa-—l(,7 _ x)b—l
(@) = e by T

for all 0 < z < n, where B(e, b) denotes the beta function (see Section 2.2.5);
a,b,n > 0;if a = b =1, then Beta(l,1,n) = U(0,n).
Inverse Gaussian distribution 1G(u, A) with

f(z) = (A(2r2*)"* exp (~A(z — 1)/ (2u3z))

forallz >0; peR,A>0.

Extreme value distribution EV(y) with F(z) = exp(—(1 + 'y:z)lll ™) for all
~ € R where the quantity (1 + 'y:c)_:l/ 7 is defined as e~ when v = 0. The
latter distribution is known as the Gumbel distribution. For v > 0 we obtain
the Fréchet distribution ; this distribution is concentrated on the half-line
(=1/7, +00). Finally, for v < 0 we obtain the extremal- Weibull distribution,
a distribution concentrated on the half-line (—oo, —1/7).

2.2.3 Parametrized Distributions with Heavy Tail

Note that, except the Fréchet distribution, each of the absolutely continuous
distributions considered above has an ezponentially bounded tail, i.e. for some
a.b > 0 we have F(z) < ae™® for all z > 0. Such distributions are
sometimes said to have a light tail. In non-life insurance one is also interested
in distributions with heavy tails. Formally we say that F' has a heavy tail if its
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moment generating function 7vp(s) fulfils hip(s) = oo for all s > 0. Typical
absolutely continuous distributions with heavy tail are:

e Logarithmic normal (or lognormal) distribution LN(a,b) with f(z) =
(zbv2m)~Lexp (—(logx — a)?/(2b%)) for z > 0; @ € R,b > 0; if X is
N{a, b)-distributed, then eX is LN(a, b)-distributed.

o Weibull distribution W(r,c) with f(z) = rex" lexp(—cz”) for z > 0
where the shape parameter » > 0 and the scale parameter ¢ > 0;
F(z) = exp(—cz"); if r > 1, then W(r,c) has a light tail, otherwise W(r, c)
is heavy-tailed.

o Pareto distribution Par(a,c) with f(z) = (a/c)(c/z)**! for x > ¢; with
exponent or shape parameter o > 0 and scale parameter ¢ > 0, F(z) =
(¢/x)>.

o Pareto miztures of exponentials PME(a) with

00
f(l‘) = / a—a+l (a _ l)ay—(a+1)y-—le-z/y dy
(a—-1}/a

for > 0; a > 1, a class of distributions with heavy tails having an explicit
Laplace-Stieltjes transform for a = 2,3,.. .

i) = Yo (2] e

i=1

+ora(%27) omios (14 2.

Moreover, for arbitrary a > 1,

. oo o—1 a saf(a-1) ze
14 = —&r @ =
(s) /0 e fo(x)dz a( 5 ) /0 s+xdz

and F(z) ~ I'(a + 1)(a — 1/a)®z™® as ¢ — oo, where the symbol
91 (z) ~ go(z) means that lim,, g1(z)/g2(z) = 1.

Further parameterized families of heavy-tailed distributions being popular in
insurance mathematics are:

o Loggamma distribution LT (a, \) with f(z) = A?/T(a)(logz)® 'z~ *~! for
z>1; A,a > 0; if X is I'(e, A)-distributed, then eX is LI'(a, A)-distributed.

o Benktander type I distribution Benl(a, b, ¢) with F(z) = cz~0~le~bl082)* (g
+2blogz) for z > 1; a,b, e > 0, chosen in such a way that F is a distribution
on Ry. The latter requires that a(a+ 1) > 2band ac < 1.

o Benktander type II distribution Benll(a,b,c) with tail function Fi(z) =
caz= 0~ exp(—(a/b)zb) forz > 1;a>0,0 < b< 1and 0 < c < ale??
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2.2.4 Operations on Distributions

Starting from these basic parametrized families of distributions, one can
generate more distributions by means of the following operations.

Mixture Consider a sequence Fj,Fp,... of distributions on B(R) and
a probability function {py, n = 1,2,...}. Then, the distribution F =
> re, PeFy is called a mizture of Fy, Fy,... with weights p;,pa,... If X is
a random variable with distribution F, then Fj can be interpreted as the
conditional distribution of X, and p; as the probability that the conditional
distribution Fi is selected. We can also have an uncountable family of
distributions Fy parametrized by 8, where 8 is chosen from a certain subset ©
of R according to a distribution G concentrated on 6. Formally, the mixture
F(z) of the family {Fj, 6 € ©} with mizing distribution G is given by
F(z) = [q Fo(z}dG(8), z € R.

Truncation Let X be a random variable with distribution F and let
C € B(R) be a certain subset of R. The truncated distribution F¢ is the
conditional distribution of X given that the values of X are restricted to the
set C=R\C,ie. Fo(B)=P(X € B| X ¢ C), B € B(R). For example,
if X is discrete with probability function {px,k = 0,1,2,...}, then the zero
truncation Foy is given by the probability function {P(X =k | X > 1),k =
1,2,...}. In particular, if X is Geo(p)-distributed, then the zero truncation is
given by P(X = k| X > 1) = (1 — p)p*~! for k = 1,2,.... In the present
book we refer to this distribution as the truncated geometric distribution; we
use the abbreviation TG(p).

Modification If the distribution F is discrete with probability function
{px, kK = 0,1,...} and 0 < § < 1, by the #-modification G we mean the
distribution (1 — )8y + 6F. That is, a random variable X with the modified
distribution G is again discrete with probability function

n_J1-6+60p fk=0,
P(X_k)_{t?pk ifk>1.
In some cases, modification is the inverse operation of zero truncation. For
example, the p-modification of TG(p) is Geo(p).

Shifting By shifting the argument of a distribution function F(z) by some
a € R, we get the new distribution function G(z) = F(z + a). This means
that if X has distribution F, then X — a has distribution G.

Scaling By scaling the argument of a distribution function F(z) by some
a > 0, we get a new distribution function G(z) = F(z/a). This means that if
X has distribution F, then aX has distribution G.

Integrated Tail The notion of the integrated tail distribution F® of a
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distribution F on the nonnegative halfline is defined by

F*’(m)=ﬂipjo Fy)dy, 2320,

provided 0 < pp < oo. Sometimes F* is called the stationary ezcess
distribution or the equilibrium distribution of F.

2.2.5 Some Special Functions

We now collect some basic properties of a few special functions which will be
used in later sections of this book.

e Gamme function
o0
I'(z) = / t*"le"tdt, z>0.
0

Note that I'(z) is a continuous function. Furthermore, I'(1) = 1 and
I'(1/2) = /. Integration by parts shows that ['(z) = (z — 1)T'(z — 1)
and hence I'(n) = (n — 1)!.

e Beta function

' a1 b-1 = e
_ a- - —
B(a,b)—/‘; 1 -t) dt—-/(; mdt, a,b> 0.

Note that B(a,b) = I'(a)T'(b)/T'(a + b) = B(b,a).
¢ Modified Bessel function

e (z/2)2k+v

L) =S o2
®) = L i+ kv 1)

zeR, veR. (2.2.1)
o Bessel function of the third kind

1 o
Ko(z) = 5/0 exp(—3z(y+y "))y 'dy, £>0,6>0. (229

s Confluent hypergeometric functions

ala+1)...(a+n-1)z"
M(a,b;z) = Zb(b+1) Gin—1ar 0 CE€R. (223)

n=0

where b cannot be a negative integer; if a is a negative integer, i.e. a = —-m
for some positive m = 1,2,..., then M(a,b;z) is a polynomial of degree
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m. Useful relationships are d/dzM(a,b;z) = (a/b)M(a + 1,b + 1;z) and
M(a,b;z) = €M (b — a,b; —z). An integral representation is

I'(b) 1

M(a,b;z) = (- a)l(a) /;

et (1 — )bt e (2.2.4)
for a,b > 0. Another confluent hypergeometric function is

oy L(1-b) | . Tb-1) 1 .
U(a,b,x)———-F(1+a_b)‘\/l(a,b,z)+—ﬂ;)——z M(l+a-b2-bx).

It admits the integral representation

1 00
Ula,b;z) = ) / e o (1 + )2 1dt,  a,b>0.  (2.2.5)

We end this section by recalling a family of orthogonal polynomials.
e The generalized Leguerre polynomials are given by

Loa) = £2 0 (egnbay - i (-1)™ (" + “) 3‘;, (2.2.6)

n! daz® for n-—m

and for a = 0 we obtain the Laguerre polynomials, that is LS (z) = L,(z).
A useful identity is

d a a+l

o ln@) = —LaZi(2). (2.2.7)
The generalized Laguerre polynomials are related to the confluent hyper-
geometric functions by

n!

M(-n.a+1.2) = o G+ (atn

3 Li(z).

The generating function Yo, L3(z)z" is given by

Z Le(z)z" = (1 -z)"* texp ( le) (2.2.8)

n=0

Bibliographical Notes. An exhaustive survey of distributions is given
in the following volumes of Johnson and Kotz (1972), Johnson, Kotz and
Balakrishnan (1994, 1995), and Johnson, Kotz and Kemp (1992, 1996). Most
popular distributions in insurance mathematics are reviewed in books like
Beard, Pentikdinen and Pesonen (1984), Conti (1992), and Hogg and Klug-
man (1984); see also Benktander (1963). Pareto mixtures of exponentials were
introduced by Abate, Choudhury and Whitt (1994). For special functions and
orthogonal functions we refer to Abramowitz and Stegun (1965).
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2.3 ASSOCIATED DISTRIBUTIONS

In many applications of probability theory to actuarial problems, we need a
concept that has received a lot of attention in risk theory under different
names like associated distribution, Esscher transform, exponential tilting,
etc. In later chapters of this book several variants of this concept will be
used; see, for example, Sections 6.5.3, 9.2 and 10.2.6. Consider a real-valued
(not necessarily nonnegative) random variable X with distribution F' and
moment generating function mp(s) = Ee*X = f_ e dF(x) forall s € R
for which this integral is finite. Let sz = inf{s < 0 : rp(s) < oo} and
st = sup{s > 0 : mmp(s) < oo} be the lower and upper abscissa of
convergence, respectively, of the moment generating function 7tz (s). Clearly
sy < 0 < st. Assume now that mp(s) is finite for a value s # 0. From the
definition of the moment generating function we see that mp(s) is a well-
defined, continuous and strictly increasing function of s € (sg. sf) with value
1 at the origin. Furthermore,

mpr(s) -1

/ - (e°® — 1) dF(z)

0 0 o px
—3/ / e¥dydF(z) + 8/ / e**dy dF(z)
—ac Jr 0 0

0 00
—3/ F(y)e*¥ dy + s/ F(y)e® dy. (2.3.1)
—o0 0

This relation is useful in order to derive a necessary and sufficient condition
that 1hp(s) < oo for some s # 0.

Lemma 2.3.1 Assume that mp(se) < oo for some so > 0. Then there exists
b > 0 such that for allz >0

1-F(x) < be™ %%, (2.3.2)

Conversely, if (2.3.2) is fulfilled, then p(s) < oo for all 0 < 8 < sq.
Analogously, if mp(sg) < oo for some sy < 0, then there exists b > 0 such
that for all 2 <0

F(z) < be®®. (2.3.3)
Conversely, if (2.3.3) is fulfilled, then mp(s) < 0o for all 39 < 3 < 0.
Proof Assume that condition (2.3.2) is fulfilled. Then (2.3.1) leads to

1 o0
< [a-Faperays
0

-8
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for 0 < s < sp, which shows that mp(s} is finite at least for all 0 < s < sq.
Conversely, if rhp(s) is finite for a positive value s = sq, then for any =z > 0

nh — 0 z
o> PEEL s [ Fwemay+ [ e - P ay
(1] —00 0
1 e _ 1
> —;;+(1—F($)) P

This means that for all z > 0, 1— F(z) is bounded by be~?°* for some constant
b. The second part of the lemma can be proved similarly. o

Theorem 2.3.1 If at = liminf,_,, —z~}log F(z) > 0, then

at =st. (2.3.4)
Ifa™ =limsup,,_ . —z tlog F(z) <0, then

a” =3p. (2.3.5)

Proof We show only (2.3.4). Let ¢ > 0 be such that a* — ¢ > 0. Then, there
exists zo > 0 such that —z~!log F(z) > a* —¢ for z > z¢, which is equivalent
to F(zx) < e~(a"-97 for ¢ > zo. Because £ > 0 was arbitrary we conclude
from Lemma 2.3.1 that mig(s) < oo for all s < a*. Conversely, suppose that
mr(se) < oc for some sy > at. By Lemma 2.3.1, F(z) < be~*% for some
b> 0. Hence —z~!log F(z) > —z~ ' logb+ sp for z > 0, which yields a* > s0.
This contradicts s > a*. Therefore sf. = a*. i

From the above considerations we get s; = liminf; . —z~!log F(z) and
sp = limsup,_,_,, =7} log F(x) provided that the limits are nonzero. Note
that for nonnegative random variables sz = —o00, and in this case we write
8; = 8F.

Whenever sp < s},ﬁ, an infinite family of related distributions can be
associated with F. For each t € (57, s})

Fz) = ;z.;_(t_) /_ w WdF(y), ceR (2.3.6)

defines a proper distribution on R called an associated distribution to F. The
distribution F; is also called an Esscher transform of F. The whole family
{Fi;sF <t < st} is called the class of distributions associated to F.

Lemma 2.3.2 Let sp <t < s%. Then the moment generating function of F,

) g, (s) = e D (237
BT () -
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Jorsp—t<s< sF — t. Moreover, F, has all moments; in particular, the
expectation pg, of the associated distribution F, is given by

~ (1)
mp (¢
ua, = 528 ((t)) , (2.3.8)
while the variance a%,‘ of F; is given by
2 _ M @me() - (P (1))° (239)
£ (mF(t))2

The proof is left to the reader to be shown as an exercise. Note also that the
associated distribution ¥ has the following useful property.

Lemma 2.3.3 For all s <t < sf andn =1,2,... the fundamental equality
(mp(t))® dF;™(z) = '® dF*"(z) (2.3.10)
holds and, consequently for allz € R,

o0

1= F*(z) = (p()" / et dEwn(y) . (2.3.11)
T

Proof Raise equation (2.3.7) to the n-th power for any fixed n € IN. But

clearly (5, (s))™ is the moment generating function of F'" and so by unicity

of the moment generating function the relation

wpO) [ e dfre) = (et oy = [ esd( [ evarmi)

—00 faal® 2]

yields the fundamental equality (2.3.10). o

One of the important features of (2.3.11) is that on the right-hand side one
has a free parameter ¢ which is only restricted by the inequalities sz < £ < s; .
In practical applications a judicious choice of this parameter will rewrite
intractable formulae into simpler ones. Let us illustrate the above procedure on
a concrete example that will prove to be useful in a forthcoming application
of renewal theory to an actuarial problem; see Section 6.2.3. One possible
implication of (2.3.11) is that an exponential bound on the tail of a distribution
results in an exponential rate of convergence in the weak law of large numbers.

Theorem 2.3.2 Assume that pr ezists and sf > 0. Then for all0 < t < s}
1-F*"*(nz) =

(e~ mhp(t) 0t/n [ * otV (By™(nz + Buv/m) — Fy™(nz)) dv, (2.3.12)
0

where 8 > 0. Moreover, for each x > pr there exists 0 < ¢ = ¢(z) < 1 such
that 1 — F**(nx) < c® forn=1,2,....
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Proof Let ¢ € (0, st). Then, by an integration by parts we can rewrite (2.3.11)
in the form

1= (o) = ()" (e = By —t [ (1= () dy).

Note, however, that ¢ [ e~ dy = e™*% for 0 < t < s}. Hence the first term
on the right can be incorporated within the integration to give

o
1- F**(z) = t(mg(t))" / e W(F(y) - Fy(z)) dy. (2.3.13)
z

We now replace by nz and the variable of integration y by nz + 6/nv for
some constant 8 > 0 to get (2.3.12). Note that the quantity F**(nz+cv/n) —
Ey™(nz) can be interpreted as a probability P(nz < S, < nz + cvy/n) where
S is the sum of independent random variables Xj, ..., X, all with the same
associated distribution F;. Replacing this probability by 1 we get the upper
bound 1 — F**(nz) < (e **mp(t))", where we still have the free parameter
t € [0,s}). Keeping £ > ur fixed, we show that there has to be a positive
value of ¢ in this interval where the quantity g(t,z) = e **mp(t) is strictly
less than 1. To show that, note first that g(0,z) = 1. Further

a0
(( )’ -z,

which equals the value pr — z < 0 at the origin. So, £g(t,2)j;=0 < 0. Since
£ g(t, z) is continuous in ¢, £ g(t, z) is negative for some positive values of ¢,
and hence g(t,z) is strictly decreasing in t to the right of ¢t = 0. O

gt (t,z) = g(t, z)( (2.3.14)

Assume now additionally that F' is nondegenerate. Then there exists a
uniquely determined ¢ € [0, s}] which is optimal in the sense that the value of
g(t,z) = e~ p(t) becomes minimal. Namely, (2.3.14) together with a little
algebra shows that

o w2ty (t) - (WY 1))? g (t)
'at_gg(t’x) = 9(t1 .’L‘) ( (mF(t))z £ * (JZ mF(t) ) !

which is then positive for all ¢ € [0, s}) since the first summand on the right
can be seen as the variance of a nondegenerate distribution. Indeed, from
(2.3.9) the variance of F, is known and this variance is positive except for
the case where F; is degenerate, a possibility that we have excluded by the
assumption that F is nondegenerate. Hence in Theorem 2.3.2 we can put
c=infy .o ot g(t, z), where (2.3.14) implies that the value of ¢ which realizes

this infimum can be uniquely determined by z = m(;)(t) /mp(t) provided that
this equation has a solution in (0, sF].
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Note that besides the upper bound for 1— F**(nz) shown in Theorem 2.3.2,
one can derive an asymptotic expression for 1 — F*"(nz) as n = 0. We need
the following result, which is known as a local limit theorem.

Lemma 2.3.4 Let X;,X2,... be nonlattice real-valued random variables
which are independent and identicelly distributed such that EX; = 0 and
0 = E(X1)? < oo. Then limy—co m/sz(z i€ I) = (1| for any
finite interval I with length |I].
The proof is omitted. It can be found, for example, in Breiman (1992) and
Petrov (1975).
We now prove an explicit asymptotic estimate for the tail of the associated
distribution.
Theorem 2.3.3 Assume that F is nonlattice. If pr exists and 3}' > 0, then
for each > ur such that a solution iy = to(z) to z = mg})(t) [mEe(t) exists,
lim (1 — F™(nz))va (e~*0rme(to)) ™ = -0-1- : (2.3.15)
0

n—=o0

here 8 = mp(to)—l\/Zw(m;?)(to)mp(to) — (¥ (t0))2).
Proof We start from representation (2.3.13) to get

oo

1 - F*"(z) = t(sip (&))" [ e (Frn(y) - Fr(z)) dy

T

where we replace ¢ by nz and put y = nz + w/t. Shifting a factor from the
right-hand side to the left we obtain the expression

(e mp(t)) (1 — F**(nz)) = /Ooo e v (I:"t””(m: + —1:—') - F‘t"‘(nx)) dw.

Note again that the quantity Frr(nz + %) - F}™(nz) can be interpreted as a
probability P(nz < s < nx + %), where S is the sum of n independent
random variables all with the same distribution as Sf'). To apply Lemma 2.3.4,

choose t = tg in such a way that z = ES{t") and define X; = S§'°) —z. We
then obtain

V(e =rr () (1 - F"(n2)) = [ oV P (3% € 0. 2)) du
0 j=1

(2.3.16)
where 82 = 2xVar X, or, more explicitly,

0 = ip(to)~11/2m (A (to)mr (o) — (R (t0))2) -
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If we are entitled to apply the bounded convergence theorem, then on the
right-hand side of (2.3.16) we obtain
00 n oo
. —w , w e W 1
"lLHgO e "(0\/21m)P(Zl‘XjE(O,?))dwzfo e ¥—dw=—,
J:

1] t() to

which proves (2.3.15). The proof that the bounded convergence theorem can
be applied is left to the reader as an exercise. |

Bibliographical Notes. The Esscher transforms method was developed
to approximate the aggregate claim amount distribution (see, for example,
Esscher (1932)), where the concept of associated distributions is attributed
to Lundberg (1930). For a concise treatment see Jensen (1995). Recently, in
Gerber and Shiu (1996), an extension of the method of Esscher transforms
was studied in changing probability measures for a certain class of stochastic
processes that model security prices. The exposition on the abscissa of
convergence follows Section 5.5 of Widder (1971).

2.4 DISTRIBUTIONS WITH MONOTONE HAZARD
RATES

Instead of considering parametrized families of distributions it is sometimes
more appropriate to deal with classes of distributions of nonnegative ran-
dom variables which can be described by qualitative properties of some
characteristics. For example, hazard rates and, equivalently, mortality rates
reflect the conditional probability of dying at age z, given that age z is
reached. Another related characteristic is the distribution of the remaining
lifetime after age z. We study these and other characteristics and the classes
of distributions defined through them. Clearly, hazard rates are important in
life insurance mathematics. In a mathematically equivalent form this notion
is also considered in other areas of insurance, e.g. in fire insurance, but also
in survival analysis and reliability theory. Hazard rates of most distributions
sampled from real data do not possess global monotonicity properties, but
local monotonicity is often observed and has a natural explanation. On
the other hand, many parametrized families of (theoretical) distributions,
like gamma, uniform and Weibull distributions, have global monotonicity
properties.

2.4.1 Discrete Distributions

We first consider the case of discrete random variables taking their values
on a lattice, IN say. Let {ps} be the probability function of an IN-valued
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random variable X. A possible interpretation of X is that it measures the
year of death of an individual belonging to a certain population. Define
rn = P(X > n) = pp + Pns1 + ... and, for all n € IN such that r,, >0,

ma=P(X =n | xzn)=?ri'i. (2.4.1)
n

The quotient m,, in (2.4.1) is called the hazard rate of {px} in the n-th period.
It can be interpreted as the conditional probability that an individual, who
survived n — 1 years, dies in the n-th year. Clearly, the graph of {m,} can
have different shapes. For example, in life insurance one usually observes data
giving hazard rates whose graph has the form shown in Figure 2.4.1. Usually,
hazard rates are locally but not globally monotone.

Mn

0.1
0.01 -

0.001 -

0.0001 , , : ,
0 20 40 60 80

Figure 2.4.1 Hazard rates

In fire insurance one speaks of “extinction rates” instead of hazard rates.
Most fires are stopped at the very beginning, i.e. at this stage the extinction
rate is relatively large. However, if the early extinction fails, then the
extinction rate, i.e. the chance of stopping the fire, soon decreases. Another
interpretation of X, considered in reliability theory, is that X measures the
lifetime of a technical system until breakdown; then one speaks of “failure
rates” instead of hazard rates.

Hazard rates for discrete distributions often turn out to be monotonically
increasing or decreasing. Throughout this book we call a function g: B =+ R
defined on B C R increasing if g(z) < g(y) for all z,y € B such that z < y
and decreasing if g(z) > g(y) for all z,y € B such that z < y. Obviously,
in this terminology, a constant function is both increasing and decreasing.
This is the case with the hazard rates of the geometric distribution, where
it is easily shown that m, = 1 — p for all n € IN. This property illustrates
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the lack-of-memory property, which says that a geometrically distributed X
satisfies
PX>2i+j|X>2j)=P(X 21) (242)

for all 4, § € IN. For theoretical purposes it is convenient to distinguish classes
of distributions having special monotonicity properties.

We say that the probability function {ps} or, alternatively, the correspond-
ing distribution is:

o IHR, if the sequence {m,} is increasing (where IHR comes from Increasing
Hezard Rate and “d” means discrete),

e DHRy if the sequence {m,} is decreasing (where DHR comes from
Decreasing Hazard Rate).

We leave it to the reader to show that a mixture of distributions whose
probability functions are DHRy is again DHRy4. Hence all mixtures of
geometric distributions are DHR4. The proof that the property IHR4 is closed
with respect to convolution needs additional concepts (see the bibliographical
notes below). It is often rather difficult to decide straightforwardly whether
a distribution is IHRy or DHRy4. However, there are sufficient conditions
which in many cases can be checked more easily. We say that a probability
function {p} is logconvez if p? +1 < Pr+2p for all k € IN and logconcave if
Piiy > Pre2pi for all k € IN.

Theorem 2.4.1 (3) If {px} is logconcave, then it is IHRy.
(b) If {pr} is logconvez, then it is DHRg4.

Proof Let

_ ) Pns /pn if pp > 0,
b = { 0 otherwise. (2.4.3)

Assume that the probability function {pt} is logconcave. Then, it is easy to
see from the definition of concavity that the sequence {b,} is decreasing. Thus,
because of

mpl = 1+ PR L P2 byt bt + Brbraabaga + .., (2.4.4)
Dn Pn
the sequence {m,} is increasing. The proof of (b) is similar. a

Corollary 2.4.1 Each Poisson distribution is THR4.
Proof In view of Theorem 2.4.1 it suffices to observe that the probability
function of any Poisson distribution is logconcave. 8]

Corollary 2.4.2 The negative binomial distribution is IHRq4 if o > 1, end
DHRq if0<a<l. Fora=1,m,=1-p foralin e N.
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Proof The criterion given in Theorem 2.4.1 requires to check the monotonicity
properties of the sequence {b,} given in (2.4.3). For the negative binomial
distribution we have

FNa+n+1)

I( =P pans +

b = a)(n + 1)! _ _Ne+n+t ) pza np

"TTTadn); an  DadmEtD T a1 "
Tam PP

which shows that {b,} is increasing for 0 < @ < 1 (and also {p:} logconvex)
and decreasing for @ > 1 (and also {px} logconcave). o

2.4.2 Absolutely Continuous Distributions

Now we consider a nonnegative random variable X with absolutely continuous
distribution F' and density function f. For example, X can be interpreted as a
random lifetime sampled from very short periods. Drawing an analogy between
the discrete and continuous case, we define the hazard rate function m(t) by

__f@® :
m(t) = T FQ) if P(t) < 1. (2.4.5)
The formal infinitesimal interpretation
_ f(Hydt -
m(t)dt—l_F(t)—P(A tedt| X > 1)

explains this terminology and shows the similarity to the definition (2.4.1)
of {m,}. In life insurance mathematics, m(¢) given in (2.4.3) is called the
mortality rate function of F.

We say that the distribution F is IHR if m(t) is increasing, and DHR if
m(t) is decreasing. Analogous to the geometric distribution considered above,
the only absolutely continuous distribution F' which is both IHR and DHR
is the exponential distribution. Furthermore, the exponential distribution can
be characterized by the continuous version of the lack-of-rnemory property
(2.4.2). Namely, X is exponentially distributed if and only if for all 5, > 0

PX>t+s|X>s)=P(X >t). (2.4.6)

In later chapters of this book we make use of the following lemma, which is
of independent interest. It establishes a “randomized” version of the lack-of-
memory property (2.4.6) of exponential distributions.

Lemma 2.4.1 Let X be an ezponentially distributed random variable. If W
ts a rendom variable and 4 € F an event such that X is independent of W
and A, then for all z € R

P(X>z+W|{X>W>0}n4)=P(X >z). (2.4.7)
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Proof Let X be exponentially distributed with parameter A. Using the law
of total probability and the lack-of-memory property (2.4.6) of exponential
distributions we have for all z > 0

P{X >z+W,W>0}nA)
PH{X>W>0}nA4)
I PX>z+w)P(Wedw|d) e [Pe WP(W edw|A)
P(X>W>0]A) - P(X>W>0]|4)
e [PPX >w)P(Wedw|d) _,
P(X>W>0]|4) =°

PX>z+W [{X>W>0}nA4) =

z

For z < 0, (2.4.7) is obvious. o

Referring to (2.4.6), the notions of IHR and DHR can be introduced in
a slightly different way (without using the assumption that F is absolutely
continuous). Define the residual hezard distribution F; at t by

File)=P(X —t<z|X >1) (2.4.8)

if F(t) < 1. Note that Fi(z) = (F(t + z) — F(¢))(1 — F(t))~!. Consequently,
for the expectation ur, of F, we get

pr, = (1= F@)! /¢ °° F(r)dr HFE)<1. (2.4.9)

Since ur, = E(X — ¢t | X > t), the function ur(t) = pp,, t > 0 is called
the mean residual hazard function. It turns out that m(¢) is increasing or
decreasing if and only if the family {Fi} of residual hazard distributions is
stochastically decreasing or increasing, respectively. Here a distribution F is
called stochastically smaller (larger) than a distribution G if

F(z) < (>)G(=) (2.4.10)

for all z € R. In this case, we write F <4 G and F >, G, respectively.
Furthermore, we write X <, Y if X,Y have distributions F,G respectively
such that F <4 G.

Theorem 2.4.2 The distribution F is IHR (DHR) if and only if, for all
t S t2)
Fyy s (Sst)Ft, - (2.4.11)

Proof Note that F(z) = exp(— foz m(s)ds) and hence we get Fi(z) =
exp(— ftH'z m(s)ds). Thus, for each z, the function F(z) is decreasing in
t if and only if m(t) is increasing. The proof for DHR is analogous. O
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Similarly to the discrete case, a mixture of DHR distributions is again DHR.
We leave it to the reader to show this as an exercise. For example, a mixture
of exponential distributions is DHR. For THR, see the bibliographical notes.

Note that there is another interpretation of the distribution F; if X is
considered to be the accumulated loss in one year and the reinsurance treaty
is stop loss. That is, if X exceeds a fixed level ¢ (first risk), the reinsurer pays
the exceess amount X — t. Therefore F; is the conditional distribution of the
compensation and ug, is the conditional stop-loss premium. We discuss these
matters in Chapter 3.

Next we show how to weaken the monotonicity conditions IHR and DHR or,
equivalently, how to enlarge the corresponding classes of distributions. Such
weaker conditions are not only useful in fitting models to real data but also
give rise to more theoretical results.

In reliability theory, the following classes of distributions larger than those of
THR and DHR distributions are introduced. Following (2.4.10), a distribution
F is called NBU (New Better than Used) if

Fe < F (2.4.12)
for all t > 0. Analogously, F is called NWU (New Worse than Used) if
F. > F (2.4.13)

for all ¢ > 0. Since Fp = F, Theorem 2.4.2 yields that a distribution is NBU
(NWU) provided that it is IHR (DHR).

A distribution F is called NBUE (New Better than Used in Expectation) if
pur, < ur for all £ > 0. Analogously, one says that F' is NWUE (New Worse
than Used in Ezpectation) if pup, > pp for all t > 0.

Denoting the sets of distributions with the property IHR, NBU, ...
by the same symbol IHR, NBU, ..., respectively, we have the inclusions
IHR ¢ NBU C NBUE and DHR ¢ NWU Cc NWUE.

Another important class of distributions consists of the distributions with
heavy tails. As they are of special interest in reinsurance mathematics, we will
consider them in Section 2.5.

Bibliographical Notes. The notion of hazard rate is one of the measures
of mortality used in life insurance. For a detailed account, see Benjamin and
Pollard (1993) and also Gerber (1995). Classes of distributions with some
monotonicity property were developed in reliability theory, and the general
theory is summarized in Barlow and Proschan (1965,1975). In insurance
mathematics such classes were studied in Heilmann (1988), and Heilmann
and Schréter (1991), for example. A proof of the fact that the classes IHRq4
and THR are closed with respect to convolution can be found in Barlow and
Proschan (1965,1975).
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2.5 HEAVY-TAILED DISTRIBUTIONS

2.5.1 Definition and Basic Properties

In this section we study classes of distributions of nonnegative random
variables such that m(s) = oo for all s > 0. We call them heavy-
tasled distributions. Prominent examples of heavy-tailed distributions are the
lognormal, Pareto and Weibull distributions with shape parameter smaller
than 1. For example, actuaries believe that lognormal distributions are
plausible models for motor insurance, while they feel that Pareto distributions
are apt to model fire claim data.

Let ap = limsup,_,,, M(z)/z, where M(z) = —log F(z) is the hazard
function of F. This terminology is motivated by the following fact. If F has a
continuous density, then M (z) is differentiable and dM (z)/dzx = m(z), where
m(z) is the hazard rate function considered in Section 2.4. The proof is left
to the reader as an exercise. In this section we consider distributions on R4
fulfilling F(0—) = 0.

Theorem 2.5.1 If ap =0, then F' is heavy-tailed.

Proof Suppose that ap = 0. Then lim,_,o, M (z)/z = 0. Thus, for each e > 0
there exists an z’' > 0 such that M(x) < ez for all z > z'. Therefore for some
¢ > 0 we have F(z) > ce™** for all > 0 and hence

/oo e**F(z)dz = o0 (2.5.1)
0

for all s > ¢. Since € > 0 is arbitrary, (2.5.1) holds for all s > 0, which means
that F is heavy-tailed. O

Remark For a heavy-tailed distribution F we have
lim e**F(z) = o0 (2.5.2)
T—00

for all s > 0. We leave it to the reader to show this as an exercise.

2.5.2 Subexponential Distributions

Note that the term “subexponentiality” is motivated by (2.5.2), which is,
however, used to single out distributions from a smaller class of heavy-tailed
distributions. A distribution F on R is said to be subexponential if
1- F*%(x) .
R Ry (2:5.3)
Let S denote the class of all subexponential distributions. We show later that
the following important (parametrized) families of distributions are in S: the
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lognormal distributions, Pareto distributions and Weibull distributions with
shape parameter smaller than 1.

A direct consequence of (2.5.3) is that F(z) > 0 for all z > 0. However, not
all distributions with this property are subexponential. Note, for example,
that trivially the exponential distribution is not subexponential because in
this case (1 — F*2(z))/(1 — F(z)) = e **(1 + Az)/e~** = 00 as z — oc. On
the other hand, it is easy to see that if F' is subexponential and X;, X3 are
independent and identically distributed random variables with distribution F,
then we have for £ — oo that

P(X; + X2 > z) ~ P(max{X, X2} > ), (2.5.4)
since P(max{X;, Xz} > z) = 1 - F?(z) = (1 - F(z))(1 + F(z)) and hence

oV =F2(z) 1- F**(z) L 1-F*(z)
1=t i F) ~ i AT F@)1-F@) oo 1= Fa) -

The following identity is obvious:

F*2(z) /z F(z —y)
—_ =14+ ———dF{y), 2.5.5
F@) o F@) (224
from which we obtain that always
. P2 (x)
hﬂgéf 2 >2. (2.5.6)

The proof of (2.5.6) is left to the reader. Note that (2.5.6) implies that the limit
value 2 in (2.5.3) is minimal. Furthermore, (2.5.5) yields two useful properties
of subexponential distributions.

Lemma 2.5.1 If F € S, then for all ' > 0,
T — !
lim Flz—-z')

Jim g =1 (2.5.7)
and : B )
. r—y _
Proof For ' < z, identity (2.5.5) yields
F2z) _ = F(z—y) *Flz-y)
& " o YL TR
> 14 F@) + L8 (pa) - Py,
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which gives

(Faoe) ()
- F(zy T\ F(z)

1~ F(@))(F(e) - F@)™.

This completes the proof of (2.5.7) because, for F' € S, the right-hand side of
the last inequality tends to 1 as £ — oo. The limit in (2.5.8) is an immediate
consequence of (2.5.5). (]

Lemma 2.5.2 Let F € S and F' be o distribution with F'(0) = 0 such that
lim; o0 F'(z)/F(z) = ¢ for some c € [0,00). Then

FxF'(z) _
zglgo"'m——l-l-c. (2.5.9)
Proof We have to show that

lim o F'(z - y)dF(y) _ .
z—00 F(IB)

(2.5.10)

Choose ¢ > 0. There exists zo such that F'(z) < (c+¢)F(z) for z > zo. Then

Jo F'(z - y)dF (y) Jo " F(z-y)dF(y) . Flz—20) — F(x)

() s (e+e) F(z) T(z)
Jo Flz —y)dF(y) F(z - z0) — F(x)
< g @)

The latter expression tends by Lemma 2.5.1 to ¢+ € as * — oo. Thus

Jim b W(zr—( xy)) iF@) _

Similarly it follows that

Jo Flz —y)dF(@) .

i =
zi)rgo F(z) -
This proves (2.5.10) and also the lemma. ]

The next result shows that the class of subexponential distributions is
incorporated within the class of heavy-tailed distributions.

Theorem 2.5.2 Each F € S is heavy-tasled.
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Proof Let F € S. By Theorem 2.5.1 it suffices to demonstrate that ar = 0.
Taking the logarithmic version of (2.5.7) we have

Jlim (log F(z — y) —log F(2)) = lim (M(z) - M(z ~y)) =0

for all y > 0. Hence, for all € > 0, there exists xo > 0 such that for all z > zo
we have M(z) — M(z — 1) < e. By iteration we get

ME)<sMz-1)+e<ME-2)+2<...<M(x-n)+ne,
where n is such that 2o <z —n < x5 + 1. Thus

M{E)< sup M@E')+(z - z0)e, z> 2.
zo—1<z'<zo

Since ¢ is arbitrary we have lim;_,0 M(z)/z = 0. a

Using Lemma 2.5.2 we get the following characterization of subexponential
distributions.

Theorem 2.5.3 Let F be a distribution on R... Then, F € S if and only if
for each n = 2,3,... _
“n
lim @)
200 F(x)
Proof The proof is by induction on n = 2,3.... Assume that F is
subexponential. Then (2.5.11) holds for n = 2 by definition. Suppose that

(2.5.11) holds for n — 1. Then, Lemma 2.5.2 with F’ = F*("~1 yields the
assertion. ]

(2.5.11)

We recommend the reader to show the following natural extension of (2.5.4)
to an arbitrary (finite) number of random variables with subexponential
distribution: if X3,..., X, are independent and identically distributed with
distribution F € S, then P(}_[. | X; > z) ~ P(max;<i<n Xi > z) as z = 0.
Furthermore, Theorem 2.5.3 immediately yields that for distributions of the
form F(z) = Y p_o PxG**(z), where {po,p1,...,pa} is a probability function
and G a subexponential distribution, we have

F(z) Z Dk . (2.5.12)

:I:-*CX: G(m k=0

Such compound distributions F are important in insurance mathematics and
will be studied later, for instance in Chapter 4. For example, ruin functions of
some risk processes can be expressed by compound distributions. To study the
asymptotic behaviour of ruin functions in the case of subexponential claim size
distributions (in Sections 5.4.3, 6.5.5 and 12.6) we need an extended version
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of (2.5.12) for compound distributions of type F(z) = 3 s, pxG**(z) where
{po,p1,...} is a probability function. In connection with this the following
lemma is useful.

Lemma 2.5.3 If F € S, then for each ¢ > 0 there erists a constant ¢ < oo
such that for alln > 2

Fn(z)

@) <c(l+¢)", z>0. (2.5.13)

Proof Let ay, = supzzo(m(:c)/_F_(x)). Note that (2.5.11) implies a, < oo.
Furthermore, F*(n+1)(z) = F(z) + F * F*(z). Thus, for all a < 0o,
“F(z —y)

(3 < 14+ s ——dF

nt1 < up /0 @) ()
T AN Tl

+ sup (e —y) Fz —y)
z>a JO F(I - y) F(.’L‘)

F2(z) - F(x)
< 1 +Cp+ans _——mn
= a n z;lz F(z) s

dF(y)

where ¢, = 1/F(a) < co. Since F € &, for each ¢ > 0 we can choose a such
that apt1 <1+ ¢, + an(l +¢). Hence

apn < (I4+c)+(l+catan20l+e))(1+e)<...
< (Q+c)1+Q+e)+...+(1+)" )+ 14"
< I+ '(1+e)",
which implies (2.5.13). (]

Theorem 2.5.4 Let F(z) = zf:oka*k(a:), where {po,p1,...} s a
probability function and G € S. If 3 o, Pa(1 + &)™ < 00 for some e > 0,

then
lim F(x
z—»ooG(a;) kz_o (2.5.14)

Proof The assertion immediately follows from Lemma 2.5.3 and the dominated
convergence theorem. O

We close this section showing subexponentiality for an important class of
distributions, containing Pareto distributions and other parametrized families
of distributions like loggamma distributions. We first need a definition. We
say that a positive function L : Ry — (0,00) is a slowly varying function of =
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at oo if for all y > 0, L{zy)/L(x) = 1 as z — co. Examples of such functions
are | log? z|, and functions converging to a positive limit as z — oo. Note that
(2.5.7) gives in particular that, if F € S, then F(logz) is a slowly varying
function of z at co. We now say that the distribution F is Pareto-type with
exponent a > 0 if F(z) ~ L(z)z™® as £ — oo for a slowly varying function
L(z). In the literature, Pareto-type distributions are also called distributions
with regular varying tails.

Theorem 2.5.5 If F is Pareto-type, then F € S.

Proof Let X,X; and X, be independent and identically distributed risks
with Pareto-type distribution F. Note that {X, + X3 > z} implies that for
e€(0,1)

{X1>(Q—-¢)z} or {Xoa>(1-¢€)zx} or {X;>ex and X;>ex},
which yields P(X; + Xz > r) < 2P(X > (1 —¢)z) + (P(X > £z))%. Hence
. PX:+ X > x)

lim sup

z—00 L(z)z"’

<21-g)~“

Since £ > 0 is arbitrary, limsup,_,, F*2(z)/F(z) < 2. However, in view of
(2.5.6) this gives limy_,co F*2(z)/F(x) = 2 and the proof is completed. O

2.5.3 Criteria for Subexponentiality and the Class S$*

In most cases it is not an easy task to prove directly that a given distribution
is subexponential. In Theorem 2.5.5 we were able to verify subexponentiality
for Pareto-type distributions. However, for future applications in risk theory,
we need the integrated tail of the distribution F to be subexponential rather
than the distribution itself. Recall that for a distribution F of a nonnegative
random variable with finite expectation p > 0, the integrated tail distribution

F* is given by . .
ifx <9,
F*(x) ={ ! / Fly)dy ifz>0. (2.5.15)
3]

It seems to be not yet known whether F' € S and 0 < p < 20 imply FP € S
in general. Thus, it is useful to have conditions for a distribution with finite
expectation to be subexponential jointly with its integrated tail distribution.
On the other hand, there exist examples of distributions F on R, such that
FFeS but F¢s.

We now show that, for a certain subset S* of S which is defined below,
F € 8" implies F* € S. Throughout this section we only consider distributions
F on Ry such that F(0) =0,F(z) < lfor allz € R,.
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Definition 2.5.1 (a) We sey that F belongs to the class S* if F has finite
expectation p and

, Fz-y) &
LY

(b) We say that F belongs to L if for ally € R

Flz—y)
z—)ngo F(;p)

F(y)dy = 2¢. (2.5.16)

=1. (2.5.17)

Note that Lemma 2.5.1 implies § C £. Class £ will serve to show that class
S* of distributions on R has some desired properties. We leave it to the
reader to show as an exercise that all distribution functions with hazard rate
functions tending to 0 are in £. We also have the identity

z ’F(z _ y)__ N z/2 T _ x/2 F(fl‘
/0_—“15(:5) F(y)dy—/o ...+/m..._2/0 ———F() ) F(y) dy,

(2.5.18)
from which we get that (2.5.16) is equivalent to
 [*PF@-y=
leII;o A ) ——F(y)dy = pu. (2.5.19)

We now study the relationship between §* and {F : F € S and F® € S}.
For this we need three lemmas. In the first we give an equivalence relation for
subexponential distributions.

Lemma 2.5.4 Let F,G be two distributions on Ry and assume that there
exists a constant ¢ € (0, 00) such that

G(x)
z—+co F(x)
Then, F € S if and only if G € S.

Proof Suppose F € S and consider a distribution G for which (2.5.20) holds.
Remember that from (2.5.6) we always have liminf, ., G2(z)/G(z) > 2.
Thus, recalling the identity
G _, . [*Clz-y)
G(z) o Gz

it suffices to show that

(2.5.20)

dGy),

. *G(z—y) 9
hg:solip @ ———=dG(y) <1. {2.5.21)
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Let a > 0 be a fixed number. Note that for z > a, the function I;(z) =
f7_.G(z - y)/G(x) dG(y) can be bounded by

Gx)-G(z—a) G(z—-a) 3
G(z) Gz

0<h(z) < 1.

Thus, using Lemma 2.5.1 and (2.5.20), we have

: ot F@ Gl-a)
zli{rolo L(z) = a:li»ngo f(z —a) -G'-(:E) 1=

Choose now ¢ > 0 and a > 0 such that ¢ — ¢ < G(z)/F(z) < ¢+ ¢ for all
z > a. Then for the function I(z) = f; ~*G(z - y)/G(z) dG(y) we have

L@ < X£ /z'af(—f“—y—)dc(y)
0

c—¢ F(z)
< ¢te G@) - Jy Gz —y)dF )
= c—-¢ F(z)
_ c+e F(z) - G(@) + [f Gz — y) dF (y)
T c-¢ F(z)
_ c+e F(z)-G@) + Jo ‘Gz -y)dF(y) + [, CGlz - y)dF(y)
T ec-¢ F(z)
< ¢ +e {7(1:) —(c—€)F(z) + (c+¢) foz“a F(z —y)d F(y)
= c¢c-¢ F(z)
F(z — a) - F(z)
LB }

Again using Lemma 2.5.1, this gives limsup,_,  L(z) < (1 +2¢){c+¢€)/(c—
€), i.e. (2.5.21) follows because € > 0 is arbitrary. o

The above lemma justifies the following definition. Two distribution
functions F and G on IR.; are said to be tail-equivalent if lim, o, G(z)/F(z) =
¢ for some 0 < ¢ < 0o. This will be denoted by G ~* F. It turns out that for
distributions from S§*, condition (2.5.20) can be weakened.

Lemma 2.5.5 Let F,G € £. Suppose there exist c—,cy € (0,00) such that

o]
c- < T <ey (2.5.22)

for allx > 0. Then, F € §* if and only if G € S*.
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Proof Suppose F € S*. Then (2.5.22) implies that G has finite expectation.
Furthermore, for fixed v > 0 and z > 2v, we have

Gz ~y) Vg Gz -y~ Gz -y)~
/0 T owa = / e G()dy+/v Wy,

Recalling that G € £, forv > y > 0,

1< Gle—y) Glz-v
@) = @)

as £ — oo and hence sup,q G(z — v)/G(z) < . Thus, by the dominated
convergence theorem,

Jim [ (g( U5 = [ G,

and so it suffices to show that

z/2
Jim limsup / (5 - )y)G(y)dy 0. (2.5.23)
Using (2.5.22) we have
z/2 73, G(z z/2 F(ﬂ:
[ e < [ - ) Fy)dy.

This gives (2.5.23) because, by (2.5.16) and the dominated convergence
theorem,

lim sup / r/zz(x———) F(y)dy

TC F( )
z/2 — )=
=li£s;p( fo F(;f( )y) (y) dy - / %x)y) F(y)dy)
=pu- /0 F(y)dy. o

It can be proved that for a distribution function F' with hazard rate function
mp(zx), we have F € L if limg_,oo mp(z) = 0. A certain conversion of this
statement is given in the following lemma.

Lemma 2.5.8 For each F € L there exists a distribution G € £L with F ~* G
such that its hazard function Mg(z) = — log G(x) and its hazard rate function
mg(z) = dMg(z)/dz have the following properties: Mg(z) is continuous
and almost everywhere differentiable with the ezception of points in IN, and
limg 00 mg(x) = 0.
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Proof We define G by the following hazard function Mg via the formula
G(z) = e Me(@), Let the function Mg be continuous such that Mg(n) =
Mg(n) for all n € IN, and Mg piecewise linear in [n,n + 1], for all n € IN.
Then Mg is differentiable with the exception of points from IN, where we put
mg(n) = 0. Otherwise mg(z) = Mp(n +1) — Mp(n) for z € (n,n +1). To
see that lim,_,o mg{z) = 0 it suffices to observe that

F(n) ) =

Jim (Mp(n +1) - Mp(n)) = lim log (F(n +1)

k3

because F' € £. Moreover, F ~t G since
IMp(z) — Mg(z)| < Mp(lz) +1) - Mp(lz]) =0
as r — oo, which immediately yields

F
zl_iy;% = 11m exp(—Mp{z) + Mg(z))=1. o

Remark A consequence of Lemmas 2.5.4, 2.5.5 and 2.5.6 is that to check
subexponentiality for F € L it suffices to verify this for G, which is tail-
equivalent to F' and for which lim;.,. mg(z) = 0. Moreover, if G* belongs to
S, then F* belongs to S, too. The proof is left to the reader.

We use the idea from the above remark in the proof of the following theorem.
Theorem 2.5.6 If F€ S*, then F€ S and F* € S.
Proof We show first that F € L. For fixed v > 0 and « > 2v, we have
PFe-y)5 "Fla-y)& P Fe-y)5
——ZF(y)dy = ——F(y)dy + / ————F(y)d
| FtFww = [T lFwas [ T

w{Fo(0) + FE=Dpayz) - o))

F(z)

I\

because

\

"Fz-y)% v =
/0 F) F(y)dy > /0 F(y)dy,

“?Fl@-y)= F(z-v) [*?
/0 Fa) F(y)dy 2> —'F-(?)-—/v F(y)dy.

Hence

Fa-v) _ (1 [**Fe-y)z : -
1< 5= < 5 [T S R ay - Pl - P
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Since (2.5.16) holds, the right-hand side tends to 1 as £ — oo. This proves that
F € L. Therefore, in view of Lemmas 2.5.4, 2.5.5 and 2.5.6, we can assume
without loss of generality that F' has density f and hazard rate function
mp(x) with lim, 0 mp(z) = lim, o f(z)/F(2) = 0. Consequently, for some
zg > 0, we have mp(x) < 1 for all £ > xy, that is,

f(z) < F(z) (2.5.24)
for £ > z4. Note that
Fz-9gva, =0 [ Flz—9) F -y
/ ) = T F(y)dy = 2/0 ) F(y)dy+/v S TH F(y)dy

for fixed v > 0 and all z > 2v. Thus, by the same argument as used in the
proof of Lemma 2.5.5, we have

U F(z-y) 5

lim & — ' F(y)dy = 0.
Jmlimsup | gy W=
This and (2.5.24) give
N = _F'(z y)
lim 1 2.5.2
L lim sup | @) ——fly)ydy=0. (2.5.25)

Using (2.5.5) and integration by parts, we have

Foz) * Pz —y)
o - h @

F(z—y) F(z —v)F(v) — F(z)
1+2/0 o eV R +

F(x)
== F(z - y)
+ f W

¥) e =9 4p(y)

U

for z > 2v. Hence (2.5.17) and (2.5.25) give limsup,_,  F**(z)/F(z) < 2,
from which we conclude that F € S because the reverse inequality always
holds. It remains to show that I® € S. Clearly,

- 1 a0 t _ _
Fr@ =2 [ [ Fe-wFwaya.
K Je 0
On the other hand, by (2.5.16), for each £ > 0 there exists zo > 0 such that

2p(1 - e)F(t) < /0 t F(t -y F(y)dy <2u(l +)F(t), t>zo.
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Integrating these inequalities over (z,00) and dividing by F*(z) we find that
2(1 —¢€) < (F*)*%(z)/F5(z) < 2(1 +¢€) for ¢ > xo. Thus, F* € S since ¢ is
arbitrary. O

Corollary 2.5.1 Assume that the hazard rate function mp(z) of F exists and
< oc. If imsup,_,, zmpr(z) < 0o, then F € S and F* € S.

Proof Clearly limg oo mp(z) = 0, which implies lim,_,o(MFp(z) — Mp(z —
y)) =0 for all y € R. Hence F € L. Using (2.5.18), for 2 > 2v we have

Fa-y)p o, [P FE=sp
/O—F() (v)dy = 2/0 AL

<2/ F(x ”) Fly)dy +2F(I/2)/ Fly)dy. (25.26)

We next show that

, F(z/2) ) ¢ .
li 2.5.27
meP Fy < (2520
because then, by (2.5.26) and F € £,
. [FFE-y)+
len;o . Fa@) ——ZF(y)dy < 2u.

Since the reverse inequality is always satisfied, we have F € §*. This yields
F € S and F* € S by Theorem 2.5.6. To prove (2.5.27) note that by the
assumption of the corollary, there exist ¢ and zo such that zmp(r) < ¢ for
z > x¢ and hence

z

lim sup m(y)dy

z-r00 Jzs2

fim sup(MFp(z) — Mp(z/2))

IA

T
climsup/ %=c10g2<oo. o
x

300 /2 Y

In the case that limsup, ., xmp(z) = oo, one can use the following
criterion for F € §*.

Theorem 2.5.7 Assume that the hazard rate function mp(z) of F exists and
is ultimately decreasing to 0. If f° exp(zmr(2))F(z)dz < oo then F € S*.

Proof Since exp(zmp(z)) > 1, the integrability condition implies that 4 < oc.
Suppose mp(z) is decreasing on [v,00) for some v > 0 and define

i, _ J mp(v) ifzel0v),
m'(z) = { mi(:v) if z € [, 0).
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Let F'(a:) = exp(-— fox m'(t) dt). It is straightforward to check that ¢ <
F(z)/F'(z) < ¢y for all z > 0 and for some c_,cy > 0. Furthermore, it is
not difficult to show that a distribution function with hazard rate function
tending to 0 belongs to £. Consequently, Lemma 2.5.5 implies that F € S* if
and only if F' € S*. Moreover, the function exp(zmp(x))F(z) is integrable if
and only if the function exp(zm/(x))F'(z) is integrable as well. Thus we can
assume without loss of generality that mg(z) is decreasing on [0, 0c). Since

z 'F z—1y)— z/2
B Dpg)ay=2 [ explMr(a) - Me(z -1) - Mr(y)) dy
F(z) 0
for all z > 0, it suffices to show that
z/2
Jim exp(Mp(z) — Mp(z —y) — Mr(y))dy = p. (2.5.28)
0

The monotonicity of mp(z) implies that

1 < exp(ymr(z)) < exp(Mr(z) — Mr(z — y)) < exp(ymr(z/2))
for 0 <y < /2. This gives

/2 __ z/2
/o Fly)dy < /0 exp(Mp(z) - Mp(z - y) - Mr(y)) dy

x/2
< / exp(yme(z/2) — Mr(y)) dy,
0

where the lower bound and the upper bound tend to p as £ — oo. For the
upper bound, note that exp(ymg(z/2) — Mr(y)) < exp(ymr(y) — Mr(y)) for
0 <y < z/2, and that mpr(z/2) = 0 as £ — oo. Now apply the dominated
convergence theorem to prove (2.5.28). a

Examples 1. For the Weibull distribution F = W(r,c) with0<r <1l,¢>0
we have F(z) = exp(—cz") and mp(z) = crz" 1. Hence limg 00 Ty (:5_)_ =00
and Corollary 2.5.1 cannot be applied. But, the function exp(zmp(z))F(z) =
exp(c(r — 1)z") is integrable and so F' = W(r,c) € S* by Theorem 2.5.7.
2. Consider the standard lognormal distribution F = LN(0, 1). Let ®(z) be the
standard normal distribution function with density denoted by ¢(z). Then, F
has the tail and hazard rate functions

¢(log 7)
z(1 — ®(logz))

Furthermore, ¢(z) ~ (1 — ®(z)) as £ = oo. This follows from the fact that

e-22/2 1 1 ® i 1
enizz (27r)1/2/, e (1+y_2) W

F(z)=1-(logz), mp(s) =
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1 R 3
> 1—‘1’(1)>a1:)1—/2‘/z e (1 y4)dy
e /2 1 1
&z 2)
Thus, we have e?F () F(z) ~ z(1 — ®(logz)) as £ — oo. For z — oo, the

function
z¢(log )

z(1 - ®(logz)) ~ log s

is integrable, because ¢(logz) = 27~1/2z~(08=)/2 and [ gl-(loe=)/2dz <
00. Hence the standard lognormal distribution LN(0,1) belongs to $* and
therefore ' and F® are subexponential. The case of a general lognormal
distribution can be proved analogously.

To show that the integrated tail distribution of Pareto-type distributions is
subexponential, we need the following result, known as Karamata’s theorem.
We state this theorem without proof, for which we refer to Feller (1971).

Theorem 2.5.8 If Ly(z) is a slowly varying function and locally bounded in
[zo,00) for some xg > 0, then for a > 1

Q0
/ y oLy (y)dy = z7 % Ly(x), (2.5.29)
x

where La(z) is also e slowly varying function of r at co and moreover
im0 L1(x)/La(x) = @ — 1. If Ly(y)/y is integrable, then the result also
holds for a = 1.

As proved in Section 2.5.2, every Pareto-type distribution F' with exponent
a > 1 is subexponential. We now get that the corresponding integrated tail
d_iftribution F® i3 also subexponential, because Theorem 2.5.8 implies that
F (z) = 279! Ly(x) is Pareto-type too. This yields that many distributions,
like Pareto and loggamma distributions as well as Pareto mixtures of
exponentials studied in the next section, have the desired property that FF € S
and F* € S.

2.5.4 Pareto Mixtures of Exponentials

Heavy-tailed distributions like the lognormal, Pareto or Weibull distributions
lack tractable formulae for their Laplace—Stieltjes transforms. We now discuss
a class of subexponential distributions F, with tail behaviour F(z) ~ cz~¢
as £ — oo, mean 1 and an explicitly given Laplace-Stieltjes transform for
a = 2,3,.... Such distributions can be useful for numerical experiments.
Clearly, to have the mean equal to 1, we must assume that a > 1. For
each o > 1, let F, be the mixture of the family of exponential distributions
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{Exp(6~'),8 > 0} with respect to the mixing distribution Par(a, (@ — 1)/a).
Explicitly, F, has the density function

b -1 a-1\*
falz) = / 8- le ¥ 2q (—) o>+ g9, (2.5.30)
1)/

(e a

The distribution with density f,(z) is called a Pareto mizture of exponentials
and is denoted by PME(a). Basic properties of the distribution PME(a) are
studied in the following theorem.

Theorem 2.5.9 Let F,, be the Pareto mizture PME(c). Then
(a) if & > n the n-th moment u™ of F, is

n
um = M (et
a-—n «

(b) the Laplace-Stieltjes transform lo(s) of F is

. ¢ a—1\% ro/le-1) 4o
= 8T £ 1, =
la(s) = /0 e ¥ fo(z)dz = a ( ” ) /0 ppng dz

Proof (a) By inserting (2.5.30) into (2.1.1) we have

o0
N A ACTE
0
0 00 _ a
/ x"(/ g~le=®" a("‘a 1) 9~ ("‘“)do)dx
0 (a-1)/a
O 00 @ —
/ (/ z9~'e=""'* da) a( ) g=(a+1) g
{a—1}/a VO
n! (a - 1)
o PR
a—-n o
(b) Analogously, we have
oo o _ 2] .
la(s) = / e""(/ 6 let '2g (a—al) g—le+1) d9) dzr
0 (a—1)/a
_ a—l)“/“’ -2 dd
= @ a (a—1)/a 6-1 + s 6=

—1\* af(a~-1) @
4 (L) / ¥ dya
44 ) s+y

where in the last equation we used the substitution 67! = y. o

i
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Corollary 2.5.2 Forn =2,3,...
- nfn-1\""*
7 _ _qyn—il" - n—i
o = 3D 2 (22) s
1 (P o _n_
+( l)n( ~ ) slog(1+( )

n—1)s

Proof By inspection we can verify that

" = st
= -1 n—i -1 _n—i —1*
srE T YT ()
for all n = 2,3,.... Furthermore,
nf(n-1) i
/ z“’dx=l( n )
0 t\n-1
and /n=1)
n/(n— 1 n
/0 s+zd:c-—log(1+——-—-(n_1)8)‘ a

We now prove that for each @ > 1 the Pareto mixture F, is subexponential.
It turns out that F, is Pareto-type and, consequently, we get that F, € S by
Theorem 2.5.5. The following auxiliary result is useful.

Lemma 2.5.7 For each a > 1, the tail function of F, has the form

. a—1\% az/(o—1)
Fu(z)=a (——) z“’/ v* le v dv.
o 0

Proof By (2.5.30) we have

[+ 4
/00 (/w 8_1e—o—lya (_C_Y_—_l) g—(at1) d0) dy
z {a—1)/a a
o
/00 (/c’o g1e—0""y dy)a (O‘ - 1) g-(o+1) 49
(a—1}/a 2 «
/oo a (__a — 1)0 g—(a+l)g—07"z 49
(a—1)/a @

—1\° az/(a—1)
o (a 1) a:""/ v* e~V du,
a 0

where we used the substitution v = z6~!. O

F, (z)

i




PROBABILITY DISTRIBUTIONS 65

Theorem 2.5.10 Let a > 1. Then F, and the integrated tail distribution F?
are Pareto-type distributions and, consequently, F, and F2 are subezponential.

Proof Note that

_ a paz/(a-1)
L(z) = a (a__l) / v* le vV dv
a 0

is a slowly varying function of z at oo, because it is bounded and non-
decreasing. Hence by Lemma 2.5.7, F, is Pareto-type and, by Theorem 2.5.5,
F, is subexponential. F* € S is obtained in the same way. a

Remark Note that lim; e Fa(z)/(cz™®) = 1 where ¢ = D(a + 1) (232)°.
Indeed, from Lemma 2.5.7 we get

o _ o o] _ o
i Fa@ _ (a 1) / v e~ dy = T(a+ 1) (aTl) ,
0

z—00 & [4]

because [(a) = [;° v®~le™" dv and I'(a + 1) = aT'(a).

Bibliographical Notes. The class of subexponential distributions on R, has
been introduced by Chistyakov (1964) and independently by Chover, Ney and
Wainer (1973). Theorem 2.5.5 is from Feller (1971), Section VIIL.8. References
concerning the evidence of heavy-tailed distributions in practical insurance
are, for example: Andersson (1971), Benckert and Jung (1974), Benckert
and Sternberg (1958), Keller and Kliippelberg (1991), Mandelbrot (1964),
Mikosch (1997), Resnick (1997), Shpilberg (1977). Basic properties of the
class S are reviewed in Athreya and Ney (1972); see also Cline (1987), Cline
and Resnick (1988) and the survey paper by Beirlant and Teugels (1992).
Further criteria for subexponentiality can be found in Teugels (1975) and
Pitman (1980). The properties of &* stated in Section 2.5.3 are due to
Kliippelberg (1988). The class of Pareto mixtures of exponentials was
introduced and studied in Abate, Choudhury and Whitt (1994). Sub-
exponential distributions on the whole real line have been considered in
Griibel (1984); see also Griibel (1983).

2.6 DETECTION OF HEAVY-TAILED DISTRIBUTIONS

2.6.1 Large Claims

It goes without saying that the detection of dangerous claim size distributions
is one of the main worries of the practicing actuary. Most practitioners have
some personal concept of what they would call a large claim. However, a
mathematically sound formulation is not always obvious. We need to introduce
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a bit of notation. Denote by {Ui,1 < i < n} the successive claims in a
portfolio. The total claim amount is then X, = Uy + Uz + ... + U,. Recall
that by U(), ..., Un) we denote the sequence of ordered claims with

i fo = < <...< = x U; .
oin Ui =Uqy) <V .- S U = max Us
Often, a claim is called large when the total claim amount is predominantly
determined by it. This rather vague formulation can be interpreted in a variety
of ways. Let us give a number of possible examples.

e One sometimes hears that a claim within a portfolio is large if a value of
that size is only experienced every so many years. It needs no explanation
that this kind of description can hardly be forged into a workable definition.

e Another interpretation could be that the ratio of U,y and X, is too large.

This could be phrased as the condition that Ugny /X, s Z, where the
distribution of Z has most mass near one. If there are no excessive claims
then we expect U, to play an increasingly lesser role in the total Xn.

e More generally, a claim is called large if it consumes more than a fair
portion p of the total claim amount. This means that we call Uy, large if
m > min {k: Uy > pXn}.

e When the practitioner tries to estimate the mean and/or variance of the
claim size distribution, he will use resampling techniques to obtain a
reliable estimate. However it happens that the successive sample values
are not averaging out to a limiting value. One possible and theoretically
understandable reason is that the mean and/or the variance of the claim
size distribution do not exist because there is too much mass in the tail. A
possible parametrized distribution causing this type of phenomenon is any
Pareto-type distribution with small exponent a.

Let us now turn to a number of definitions of large claims that are
mathematically sound. However, due to a variety of reasons, such definitions
are hard to verify statistically.

e The total claim amount is large because the largest claim is so. Math-
ematically this can be interpreted as

P(X,>z)~P (U(,,) >z, T — 00, (2.6.1)

As has been explained in Section 2.5.2, this concept leads naturally to the
notion of subexponentiality. The class S is known to contain a wide set of
possible candidates. However, the statistical verification of the statement
F = Fy € S is far from trivial. Let us try to explain why. We learned
from Theorem 2.5.3 that F € S if and only if (2.6.1) holds for n = 2. The
practitioner can use the sample values {U;.1 < 7 < n} to check whether or
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not the limit of the expression (1 — F*2(z)) /(1 — (F(z))?) tends to the
numerical value 1 as z — oo. So, we need to replace F' by its empirical
analogue, the empiricel distribution F,,, defined by

Fo(z) =n"'max {i: Uy < o} (2.6.2)

for all z € R. So, for each z, the value nF,(z) equals the number of sample
values on or to the left of the point x. Put in a different fashion we have

{Fa(z) = kn—l} = {U(k) <z<L U(k+1)} . (2.6.3)

If we replace F by F, in the definition of subexponentiality then we still
need to take x very large. The only way is to replace the variable z by a large
order statistic, like the maximum. Hence we need to verify whether or not
(1= F32(Umy)) / (1 = (Fa(Ugny))?) is in any way close to 1. Without any
further information on F, this is a hard problem for which no satisfactory
solution exists. As a consequence, most actuaries that want to model claim
sizes in a specific portfolio will select their favourite and duly parametrized
member from S.

¢ In view of Theorem 2.5.1, our definition of heavy-tailed distributions can
be coined in the requirement that ap = 0, i.e.

tim sup —1280 = F(@) _

z—00 x

0.

If we want to verify this hypothesis, we consider its empirical analogue.
Assume that we take an order statistic with a large index, n - k, say, where
n is large and k is such that k/n — 0. Then we need to verify whether or
not

—log (1= Fa(Un-))) _

lim su = limsup
n—+oop U(n—k) n—00 U("—k)

=0. (2.6.4)

However, this condition is statistically unverifiable because of the limes
superior in (2.6.4).
e A sufficient condition for a heavy-tailed distribution can be given in terms
of the mean residual hazard function up(x) = pr, defined in (2.4.9), i.e.
®1-F(y)
= - x) = ——=<dy. 2.6.5
pr@)=EU-2|U>0= [ “pla. @6
Indeed, it is not difficult to show that if ur(z) = oc as z — o0, then
ar = 0. To verify statistically whether the distribution F' is heavy-tailed
or not we suggest looking at the empirical analogue to the mean residual
hazard function, i.e. for a similar choice of £ and n as above,

% 1-F,
tn (Uen-0) = -

— = dy.
Unry 1 = FrlUin-r))
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Use equation (2.6.3) to rewrite this in the form

n n-1 Uia)
i Uw) = 5 Y [ (- Fa)ay
i=n—k U(‘)
1 n—1
= 1 (n — i) (U4r) — Ugy) -

i=n—k

I
E]

Rewriting the last sum we arrive at the empirical meen residual hazard
function
1/ « 1 <
pnUn-1)) = ;( Y. Us- kU(n—k)) =z 2 Uy -Ua-b)-
j=n—k+1 j=n—k41

A possible interpretation of the latter quantity is the average overshoot of
the k — 1 largest overshoots over the level U(,,_x). Again it is statistically
not obvious how to verify a condition that essentially says that the quantity
tn(Un—k)) has to go to oo.

We deduce from the above explanations that it seems an ill-posed problem
to verify statistically whether or not a distribution is heavy-tailed. Assume,
however, that we are willing to sacrifice the rigidity of a formal definition.
What we want to check is whether or not a claim size distribution has to
have a heavier tail than some standard reference distribution. In statistics
one usually compares distributions to a normal reference. Looking at our
definition of heavy-tailed distribution it seems far more realistic to compare a
distribution with an exponential reference. A distribution F with a lighter tail
than an exponential, i.e. an F that satisfies the inequality 1 — F(z) < ce™%*
for all ¢ > 0 and for some constants a, ¢ > 0, will automatically have a strictly
positive value of ap. A distribution that satisfies the opposite inequality for
all a > 0 will have ay = 0.

We now give two methods that allow us to compare a sample with that
from a standard distribution, in particular the exponential distribution. One
method is the Q-Q plot or the Quantile-Quantile plot; the other refers to the
mean residual hazard.

2.6.2 Quantile Plots

The general philosophy of quantile plots relies on the observation that linearity
in a graph cannot only be easily checked by eye but can be quantified by
a correlation coefficient. To explain the essentials of the method, we start
by considering the (standard) exponential distribution G with the tail of
the latter given by G(z) = exp(—=z) for z > 0. We want to know whether
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a sampled claim size distribution F' is of the same basic form as G, save
perhaps for a scale factor. More specifically, we want to know whether
F(z) = exp(—Az) for some A > 0 is an acceptable model for F. The answer
has to rely on the data Uy = u;,Us = ua,...,Un = 4, which we have at our
disposal. The parameter A just adds some flexibility to our procedure.

For an increasing and right-continuous function F(z), we define the
generalized inverse function F~1(y) by

F~l(y) =inf{z: F(z)>y}. (2.6.6)

If F is a distribution function, then function Qp defined by Qr(y) = F~(y)
is called the guantile function of F. Simultaneously, we construct the empirical
version of the quantile function by considering the generalized inverse of the
empirical distribution as defined in (2.6.2). More specifically, @, (y) = Qr, (%),
so that for the ordered sample U3y < Ug) < ... < Uiy we have

{@n¥) =Uy} ={k~n~! <y <kn"'}.

For the standard exponential distribution G the quantile function has a
simple form Qg(y) = —log(l —y) if 0 < y < 1. If we want to compare
the sample values with those of a standard exponential then it suffices to
compare the two quantile functions. To do exactly that, we plot the two
functions Qg and @, in an orthogonal coordinate system. If our data are
coming from a (not necessarily standard) exponential distribution, then we
expect the resulting graph to show a straight line pattern since the quantile
function of the exponential distribution with parameter A is given by Qr(y) =
—A"'log(1 — y). The slope of the line would be given by A~?, offering us a
possible estimate for this unknown parameter. If the data are coming from
a distribution with a heavier tail than the exponential, then we expect the
graph to increase faster than a straight line; if the tail is less heavy, then
the increase will be slower. The resulting quantile plot immediately tells us
whether or not our data are coming from a distribution which is close to an
exponential.

From the definition of the empirical quantile function @,(y) it follows that
the quantile plot will be a nondecreasing left-continuous step function; its only
points of increase are situated at the values {k/n,1 < k < n} which form a
lattice on the positive horizontal axis. It therefore would suffice to just plot the
graph at the points y € {k/n,1 < k < n}. However, there is a slight problem
at the right extreme of the picture since for k = n we have Qg (k/n) = co. For
this reason one often applies a continuity correction by graphing the scatter
plot at the points {k/(n+1),1 < k < n}. We will stick to this practice in our
examples at the end of this section.

Apart from the visual conclusion obtained from the Q-Q plot we can
also derive quantitative information from the graph. If the exponential dis-
tribution seems acceptable then we can fit a straight line through the
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scatter plot by using a traditional least-squares algorithm. The slope At
of the straight line should be chosen to minimize the sum of squares
Yier Uy + A tog (1 —k/(n + 1))) This yields the classical formula for

the least-squares statistic A
n n )
=Y UwQelk/(n+1)/ 3 (Qetk/(n+ 1)) .
k=1 k=1

The fit itself can then be quantified by looking at the practical value of the
empirical correlation coefficient r(uy,. .., u,) based on the experimental data
u1,Us,...,u,. Note that 7(u;,...,uy) is given by the formula

Yorer (uy — B)(Qe(35y) — Q6)
\/E _1(Qa(327) — Q) Timy (ugsy —a)e

where & = n~! Z:=1 ug =n"1t3Y g, u(x) and

Go=15 au(y) =L S )

As is known, |r{uy,...,up)}| < 1, while r(u;,...,u,) = £1 if and only if the
points (1,u),..., (n,u,) lie on a straight line.

In actuarial practice it often happens that data are truncated on the left,
on the right or even on both sides. For example a reinsurance company will
often not know the values of the claims that have been covered by the first
line insurance under a retention. Suppose that the claim U is exponentially
distributed with parameter A. Then, for @ > 0, the truncated exponential
distribution Fig 4) is of the form

P(U > I) e—,\(z:-a)
PU > a) ’

The corresponding quantile function is given by

_F[o,a](w) PU>z|U>a)= r>a.

1
Qo,0)(¥) =a—xlog(1—y), O<y<1.

If data come from a truncated exponential distribution, then the intercept
of the Q-Q plot at the origin y = 0 will give an estimate of the parameter
a. If data are not well represented by an exponential distribution, then of
course we can suggest other candidates. Among the most popular candidates
in an actuarial context are the normal and lognormal distributions, the Pareto
distribution and, to a lesser extent, the Weibull distribution. We shortly deal
with all four cases separately.
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e The normal gquantile plot. Recall that we denote the standard normal
distribution function by

4
®(z) = \/%/ e v’/ dy.
~00

Let ®~(y) be the corresponding quantile function. A standard normal
quantile plot will graph the points

{(@ Hk/(n+1)),Uy), 1<k <n}. (2.6.7)

Note that the general normal distribution N (u, 5?) has the quantile function
Qy) = u+ o® 1 (y). We leave it to the reader to show this as an exercise.
Thus, if there results a straight line pattern in the plot (2.6.7), then the
slope of the line will provide an estimate for the parameter ¢ while the
intercept at 0 will estimate the parameter p.

o The lognormal quantile plot. This is easily defined since U will be lognormal
distributed if and only if log U is normal distributed. Hence the scatter plot
will be given by {(®~'(k/(n + 1)),logU)), 1 < k < n}. The lognormal
distribution frequently shows up when dealing with car claim data, as will
be illustrated later.

e The Pareto quantile plot is an important actuarial tool. Recall that for a
claim U with Pareto distribution Par(a, ¢} we have P(U < z) = 1—(z/c)~®
for z > ¢, so that log Q(y) = log ¢ — a~!log (1 — y), which resembles the
truncated exponential distribution. The Pareto quantile plot is obtained by
plotting the graph of the points {(— log(1—-k/(n+1)),logU)), 1 < k < n}.
If the data come from a Pareto distribution, then the above graph will have
a linear shape with intersect log ¢ and slope a~!. Note that the Pareto
quantile plot is also useful when we have a Pareto-type distribution, i.e. a
distribution with tail of the form P(U > ) ~ z~*L(x), where L is slowly
varying at 0o. The plot will then show a linear trend for the data points to
the right of the plot. The Pareto distribution is popular among actuaries
when modelling fire claim data or other data with very heavy tails.

o The Weibull quantile plot. Recall that in this case F(z) = exp(—cz"). The
quantile function is obviously Q(y) = (—¢c*log(1 - y))l’/ Tfor0<y< 1.
If we take the logarithm of this expression once more, then we find that
log Q(y) = —r~!log c+r~ ! log(— log(1 - y)), which automatically leads to
the Weibull quantile plot {(log(—log(1 —k/(n+1))),logUw)), 1 <k < n}.
Under the Weibull model we expect a straight line behaviour where the slope
estimates the parameter r—'. Further the intercept estimates the quantity
—rtlog c.

Figure 2.6.1 gives these four Q-Q plots for 227 industrial accident data
collected in Belgium over the year 1992. The claim sizes have been given
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in multiples of 1000 BEF with a prior deductible of 23.000 BEF. Because we
use real data, there is no reason to believe that one of our four distributions
gives a perfect fit over the entire range of the data. By comparing a slate
of possible candidates, we will, however, get a better feeling for the overall
structure of the portfolio. For example, the exponential distribution seems to
do well for the smaller claims but not for the largest values in the portfolio. For
the not very small claims, the Weibull distribution fits much better. Both the
lognormal and the Pareto distributions seem to overestimate the importance
of the larger claims in the portfolio since both show a concave bending away
from a straight line fit.

exponential Q-Q plot Pareto Q-Q plot
20000 - - 10 /e
15000 -
)
8 =
s 10000 - N
T 0
2
5000 -
0
exponential quantiles exponential quantiles

Figure 2.6.2 Q-Q plots

Figure 2.6.2 shows two plots of 105 Norwegian industrial fire claim data (in
1000 Kroner). They have been collected in a combined portfolio over the year
1971 but only the values above 500 Kronen have been reported. The straight
line fits are obtained by a classical linear regression procedure. We clearly
see that the Pareto distribution fits very well with a correlation coefficient
of 0.9917, whereas the exponential distribution provides a very poor fit even
when the correlation coefficient equals 0.8445. From the slope of the straight
line in the Pareto-plot we can infer that the value of o should be about 1.25.
It has often been reported that industrial fire claim data are well modelled by
a Pareto distribution with an a-value close to 1. There is no need to stress
again that taking insurance or reinsurance on industrial fire portfolios is a
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very delicate undertaking.

Figure 2.6.3 shows a lognormal Q-Q plot for motor insurance claim data.
The data result from a random selection of 1250 out of a large portfolio
that resulted from a combination of car claim portfolios of six leading car
insurance companies for 1989. Out of the 1250, 14 values had to be discarded
because of incompleteness of the data. The resulting plot generally shows
that a lognormal distribution seems like a good choice. A straight line fit
can be made by an obvious linear regression. Note that in the middle of the
log(claim) values we see a rather long flat stretch. This value corresponds to
an upper limit that is often applied when an older car is classified as total
loss. One of the six companies applied a slightly higher value than the others;
as a result there is a second smaller flat stretch to the right of the first. The
straight line fit deteriorates at both ends of the picture. On the left there is
an obvious truncation for the claim sizes. On the right, however, the values
seem to increase faster than we expect under a lognormal assumption. This
indicates that the upper part of the claim values might be better modelled by a
distribution that has an even heavier tail than the lognormal distribution. For
example, a Pareto distribution could be more appropriate. A closer look at the
data shows that the upper right tail of the picture is crucially determined not
only by the usual amounts for material damage but by legal and administrative
settlements. The latter costs are constant for the major and central part of
the claim portfolio. Leaving out the settlements costs reveals an even better
fit by a lognormal distribution.

2.6.3 Mean Residual Hazard Function

Another global method to discover heavy-tailed distributions relies on the
mean residual hazard function up(z) considered in (2.6.5). It is often an
instructive exercise to evaluate explicitly or asymptotically the form of
the function up(z).  we start again with the exponential distribution,
then obviously up(z) = A~!. Conversely, if ur(x) is constant, then F is
exponential. We leave it to the reader to show this as an exercise.

In order to see whether the claim distribution F is comparable to an
exponential, we use the empirical analogue iy (Un—g)) to pr(z) which has
been introduced in Section 2.6.1. When the distribution F of U has a heavier
tail than the exponential distribution, then the empirical mean residual
hazard function {pn(Un—k)), 0 < k <n} will consistently stay above the
analogous function for the exponential. In particular, when the empirical
mean residual hazard function tends to 0o as n — oo, then this is the case
of a heavy-tailed distribution as indicated in Section 2.6.1. For example, the
mean residual hazard function of the Pareto distribution is typical. Then
BPar(a,c)(Z) = [ (c/y)*H (¢/z) D dy = z/a, which increases linearly.

If the tail of the distribution F is lighter than that of any exponential,
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Figure 2.6.3 Lognormal Q-Q plot

then the mean residual hazard function pr(z) will typically decrease. For a
concrete example let us take U to be uniformly distributed on (a,b). Then,
fora<z<b,

_[fe-w/-a , (-2
“U(a,b)(z) - - (b—.’L‘)/(b—-a) dy - 2

is linearly decreasing over the interval (0,b). When plotting the empirical
mean residual hazard function we can hope to recognize the shape of one of the
standard pictures. In Figure 2.6.4 a number of mean residual hazard functions
are depicted in the same coordinates. The heavy-tailed distributions like the
Pareto distribution, the lognormal distribution and the Weibull distribution
with r < 1 show a clear upward trend. Light-tailed distributions such as
the uniform distribution show a decreasing profile, while the exponential
distribution and the Weibull distribution with 0 < r < 1 are intermediate

examples.
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Figure 2.6.4 Mean residual hazard functions

2.6.4 Extreme Value Statistics

In this section we collect a few results concerning extreme value statistics.
Extreme value theory is a vast subject in probability and statistics. As we only
want to highlight the role of extremal claims in insurance mathematics, we will
not prove a number of the following results. However, we provide the necessary
intuitive background to make the results as natural as possible. Assume that
{th,Us,...,U,} is a set of independent and identically distributed claims
all with claim size distribution F. If we order the claim sizes, then the
maximum U,y = max{Uy,Us,...,Un} gives the largest claim in the sample.
If the underlying distribution F' is not concentrated on a bounded set, then
the maximum U,y will ultimately tend to co as n — oco. Hence, we can
hope to find norming and centring constants that provide an asymptotic
approximation to the distribution of U(,). To be more precise we look for

constants a, > 0 and b, € R for which o '({Un) — ba) % Y where
Y is assumed to be nondegenerate. The answer to this limiting problem
is that the distribution of Y, up to some scaling and shifting parameter,
belongs to a one-parameter family of distributions G., = EV(%), the extreme
value distributions introduced in Section 2.2.2. Recall that G., is given by
G (z)=PY <Lz)= exp(—(1+fyz);1/7) for all z € R. For v = 0 we interpret
the exponent as e~%, which gives the Gumbel distribution Go(z) = exp{—e™*).
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A necessary and sufficient condition on F to end up with a specific extremal
distribution G, is that F € C,, a condition that is expressed in terms of the
inverse quantile function Ir : [1,00) = IRy of F. This function is defined by
Ip(z) = F7'(1 — 27 !), where F~! denotes the generalized inverse function
introduced in (2.6.6). Then F € C, if and only if

. Ip(zt) —Ip(2) _ [t
zl_l_)l’f;o—c—m-)———— -—/; ’UJ'Y ldw, (268)

for some (ultimately) positive and measurable function ¢p(z) and all £ > 1.
The function cr(z) is called the auziliary function of F. In the next theorem
we show how the above condition comes into the picture. To simplify the proof
we additionally assume that F is absolutely continuous.

Theorem 2.6.1 Assume that Uy, Us,... is a sequence of independent and
identically distributed random variables with absolutely continuous distribution
F satisfying (2.6.8). Then (cp(n))~ (Uny — Ir(n)) LAY asn—o 00, where Y
has distribution G, = EV(y).

Proof Let h(z) be any real-valued, continuous and bounded function on R.
Since {U(n) < z} is equivalent to (), <;<,{Ui < z} we find that P(U(,,) < z) =
F™(z) by independence. Introduce the suggested centring and the norming as
well as the substitution F{r) = 1 — (w/n) to find the expression

[ Eare

-0

n / ” h(z—;:b'-'-)F”“(m) dF(z)

—00

= /onh(ﬂ‘%”;ﬂ‘-) (1 - %—)n_ldw.

From condition (2.6.8) we see that we should take b, = Ir(n) and a, = cr(n).
The bounded convergence theorem implies that the limit of the last expression,
as n — 00, exists and equals

lim Eh(-—————U‘"’ _UF(")) =/O°°h(/1w_lv'7’l dv)e‘“‘dw.

n—oo cr(n)

1

Eh(a,' (Uny — br))

I

By the Helly-Bray theorem (see (2.1.12)) the latter is equivalent to

. Uy — Ur(n)
“1_1{1;0P( cr(n) = a:)

-1

= / I(/ v“"’ldvgx) e ¥dw=PY <z
0 1
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as can be easily recovered. a

We have to stress the fact that the converse of Theorem 2.6.1 is also valid
but its proof is outside the scope of this book.

For actuarial applications the most interesting case is that where v > 0.
Then, condition (2.6.8) takes the form

- v
lim Irp(zt) — Ip(z) _t 1

BT o) 7 (269)

which can be transformed into the equivalent condition Ir(z) ~ zYL(x),
where L(x) is slowly varying at oo. Hence, for v > 0 we fall back on the class
of Pareto-type distributions, introduced in Section 2.5.2. The fact that this
condition is sufficient is easily proved by taking cg(z) = vz L{x).

Bibliographical Notes. For the limit theory of extremes and other order
statistics references abound. We refer to Bingham, Goldie and Teugels (1987),
De Haan (1970) and Resnick (1987). Most of the properties about regularly
varying functions that have been referred to can be found in these books
and their references. The approach in Section 2.6.1 is from Beirlant and
Teugels (1996), streamlining previous fundamental results in extreme value
theory by Fisher-Tippett and Gnedenko. Further statistical techniques for
analysing heavy-tailed distributions can be found, for instance, in Adler,
Feldman and Taqqu (1997), Embrechts, Kliippelberg and Mikosch (1997), and
Reiss and Thomas (1997). Empirical processes and their use in goodness-of-fit
statistics are dealt with in d’Agostino and Stephens (1986) and in Shorack and
Wellner (1986). Benktander and Segerdahl (1960) seems to be the first paper
which applies mean excess plots to actuarial data. The first paper which uses
quantile plots in this context is Benckert and Jung (1974).
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CHAPTER 3

Premiums and Ordering of
Risks

3.1 PREMIUM CALCULATION PRINCIPLES

In this section we study on rules how to fix an adequate price, called a
premium, for a family of risks X to be insured. The investigation of such rules
is an essential element of actuarial science. Clearly, premiums cannot be too
low because this would result in unacceptably large losses for the insurer. On
the other hand, premiums cannot be too high either because of competition
between insurers. Consider a certain family of risks X. A premsum calculation
principle is a rule that determines the premium as a functional, assigning a
value II{ Fx) € RU{zo00} to the risk distribution Fx. Following our notational
convention we usually write II(X) instead of II(Fx). Typically, the premium
H(X) depends on certain characteristics of Fx like the expectation E X or the
variance Var X. For easy application, a premium calculation principle should
require as little as possible information on the distribution of the risk X. For
example the simplest premium principle is the (pure) net premium principle
(X) = EX. The difference II(X) — EX is called the safety loading. The
safety loading should be positive unless the distribution of X is concentrated
at a single point. Otherwise, in the long run, ruin occurs with probability 1
even in the case of very large (though finite) initial reserves.

Recall that, throughout this book, a risk is modelled as a nonnegative
random variable. However, sometimes it is convenient to define the value I1(X)
also for real-valued (not necessarily nonnegative) random variables X.

3.1.1 Desired Properties of “Good” Premiums

Before we survey some of the most common principles of premium calcula-
tions, we discuss the general properties which one associates with the idea of a
“good” premium principle. Usually, the premium II(X) is finite; a risk X (or
its distribution Fx ) is then called insurable. Let X,Y, Z be arbitrary risks for
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which the premiums below are well-defined and finite. We have the following
list of desirable properties:

no unjustified safety loading if, for all constants a > 0, II{a) = a,
proportionality if, for all constants a 2 0, II(aX) = all(X),

subadditivity if TI(X +Y) < II(X) + II(Y"),

additivity if (X +Y) = I(X) + [I(Y),

consistency if, for all a > 0, II(X + a) = II(X) + a,

preservation of stochastic order if X < Y implies II(X) < II(Y),
compatibility under mizing if, for all p € [0,1] and for all Z, II(X) = II(Y")
implies I(pFx + (1 — p)Fz) = O(pFy + (1 — p)Fz).

Note that an additive premium calculation principle with no unjustified safety
loading is also consistent. Typically, additivity is required for independent
risks. The subadditivity of a premium principle implies that policyholders
cannot gain advantage from splitting a risk into pieces. We also remark that
in general II(X + Y') depends on the joint distribution of X and Y.

3.1.2 Basic Premium Principles
One of the simplest premium calculation principles is the

o expected value principle. For some a > 0
IX)=(1+adEX, (3.1.1)
provided that E X < co. For a = 0 we get the net premium principle.

The expected value principle looks fair but it does not take into account the
variability of the underlying risk X, and this may be dangerous to the insurer.
In an attempt to overcome this disadvantage, one introduces principles where
the safety loading II(X) — E X depends on the variability of X. For some
constant a > 0 one has the

e variance principle

I(X)=EX +aVar X, (3.1.2)
o standard deviation principle
IX)=EX+avVar X, (3.1.3)

o modified variance principle

_ [ EX+aVarX/EX fEX >0,
1(X) _{ 0 {EX 20 (3.1.4)

o exponential principle
M(X)=a'logEe*X. (3.1.5)
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Note that the variance principle is additive for uncorrelated risks, whereas it
is subadditive if X and Y are negatively correlated. The standard deviation
principle and the modified variance principle are proportional. They are also
subadditive provided that Cov(X,Y) < 0. The proof of these properties is
left to the reader. Unfortunately, the disadvantage of the premium calculation
principles given by (3.1.2)—(3.1.4) is that they are not monotone with respect
to stochastic ordering.

We will study the exponential principle in Section 3.2.4. We will show
that it can be characterized by rather natural conditions. Notice, however,
that the exponential principle is not suitable for heavy-tailed risks. In the
present section we first prove the monotonicity of the exponential principle
with respect to the parameter ¢ > 0. In connection with this, we need the
following classical Lyapunov inequality.

Lemma 3.1.1 For all 0 < v < w and a nonnegative random varieble X,
(EXY)YY < (EXv)YVv. (3.1.6)
The inequality (3.1.6) is strict unless X is concentrated at a single point.

Proof Take the convex function h(z) = z*/* (z > 0) and apply Jensen’s
inequality to Y = X*. This gives EX¥ = EA(Y) > h(EY) = (EX*)*/*. O

Theorem 3.1.1 Consider a risk X with Ee®X < 0o for some ag > 0. Then
(a) Oo(X) = a 'logEe*® is e strictly increasing function of a € (0,aq)
provided that Fx is not concentrated on a single point,
(b)
lim a llogEe** = EX, (3.1.7)
a~0+

(c) if Ee®X < oo for alla >0,
lim a 'logEe*® =rp =sup{z: P(X < 1)< 1}. (3.1.8)
a—o0

Proof Assume that Fx is not concentrated at a single point. From Lyapunov’s
inequality (3.1.6) we have (Ee”x)l/v < (Ee"’x)”w for 0 < v < w < ao.
i.e. I, (X) is strictly increasing on (0, ao). Using log(1 + 2} = z +o(z), x — 0,
we get a~!logEe*X = a1 (Ee®® - 1 + o(Ee*X — 1)), which proves (3.1.7)
since lim,—,04 ™! (Ee®* — 1) = E X. To prove (3.1.8) notice first that since
X < rr we have a~! log Ee** < a™!logexp(arg) = rg. To prove the reverse
inequality, let 0 < & < rp. From X’ < X, where X' = 0if X < 4 and
X' =8if X > 6, we have Ee®X > F(8) + (1 - F(5))e® > (1 — F(8))e.
Hence I, (X) > ¢ ' (log(1 — F(d)) +ad) and consequently lim,,oc 1o (X) > 6,
which completes the proof because 0 < § < rr is arbitrary. ]

A further modification of the net premium principle is the
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o risk-adjusted principle
o0
n(x) = / (1= Fx())?dz (3.1.9)
0

for some p > 1. Assume that Fx has a density. Then, the premium given
by (3.1.9) can be interpreted as the net premium of another risk Y with tail
function Fy (z) = (1 — Fx(x))!/? and with the proportionally lower hazard
rate function my(t) = d/dt log Fy(t) = p~'mx(t). Thus, Y can be seen as
the risk corresponding to X after deflating the hazard rate function of X
by the constant factor p~!. This is consistent with the practice of adding a
safety margin to the mortality rates in life insurance. It is easily seen that the
risk-adjusted principle has a nonnegative safety loading, but no unjustified
safety loading. Moreover, this premium principle is proportional, consistent,
subadditive and monotone with respect to stochastic ordering of risks. The
formal proof of these properties is left to the reader.

3.1.3 Quantile Function: Two More Premium Principles

Before introducing another premium principle, we first study the concept of
the quantile function defined in Section 2.6.2.

Lemma 3.1.2 Let F(x) be an increasing and right-continuous function. The
generalized inverse function F~(y) has the following properties:

(a) F~(y) is increasing,

(b) y < F(z) if and only if F~(y) < z.

Proof Part (a) is an immediate consequence of the definition. To show part
(b) observe that, by (2.6.6), y < F(z) yields F~!(y) < z. Now assume that
F~1(y) < z. Then, because of the monotonicity of F, there exists a sequence
{zn} such that z, | = and F(x,) > y for all n. This gives F(x) > y because
F is right-continuous. a

Theorem 3.1.2 Let F be a distribution function. If the random variable
Z : Q = [0,1] is uniformly distributed on [0,1], then the random variable
F~1(Z) has distribution function F.

Proof Observe that the mapping F~! : R — R is measurable since it is
increasing. Thus F~!(Z) is a random variable and, because of Lemma 3.1.2,

P(F(2)<z)=P(Z<F(z)) =Flz), z€R. o

Let 0 < € < 1. Using the notion of the quantile function Fx' of a risk X
we define the
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o c-quantile principle
I(X)=Fz'(1-¢), (3.1.10)

i.e. the smallest premium such that the probability of a loss is at most €.

Note that Fg'(1/2) is a median of X. Consider the expected absolute
deviation kx = E|X — Fx'(1/2)|. Then, for arbitrary risks X,Y we have

Ex+y S Kx + Ky (3.1.11)

A modification of the standard deviation principle is the

o absolute deviation principle
I(X)=EX +akyx, (3.1.12)

where a > 0 is some constant. From (3.1.11) and (3.1.12) we see that the
absolute deviation principle is subadditive. Moreover, this premium principle
is proportional and consistent and if a < 1 it is monotone with respect to
stochastic ordering. Note that Theorem 3.1.2 gives EX = [ Fy'(z)dz and

1

1/2
wx= [ (PR -FPE) &+ [ (FRH0) - FR/2) s
0 1/2

Hence, for the absolute deviation principle,

1/2 1
m(Xx) = Fyl(z)(1 —a)dz +[ Fy'(2)(1+a)dz. (3.1.13)
0 1/2

Bibliographical Notes. More details on premium calculation principles,
including a detailed discussion of their properties, can be found, for example,
in Bithimann (1980), Denneberg (1990), Gerber (1979), Goovaerts, De Vylder
and Haezendonck (1982, 1984), Kaas, van Heerwaarden and Goovaerts (1994),
Ramsay (1994), Reich (1986) and Wang (1995, 1996).

3.2 ORDERING OF DISTRIBUTIONS

3.2.1 Concepts of Utility Theory

We begin with some concepts from utility theory. Assume that a utility v(z)
is related to some wealth of z currency units. It is plausible that utility is
growing with wealth and so we suppose that the function v(z) is increasing.
Next, the increments of v(z) for small values of z should exceed those for large
values of z (because giving a bank note to a poor person makes more sense
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than giving it to a millionaire). Therefore we impose the condition that v(z)
is increasing and concave.

Consider two IN-valued random variables X and Y, which can be interpreted
as the risky outcomes of currency units (gain, profit, reward, etc.) under two
different types of decisions. Assume that we are able to compare the expected
utilities Ev(X), Ev(Y) and that

Eu(X) < Ev(Y). (3.2.1)

Then, with respect to expected utility, the decision corresponding to Y is
better than that corresponding to X. A function v : (b,b2) — R which is
increasing and concave on a certain interval (b;,b2) C R is called a utility
function. Possible examples of utility functions are

v(z) =z
. v(a:) = (1 - e %)/a, a>0,
e v(x)=—(a— )+, a € R,

where z; = max{0,z}. If the random variables X, Y describe risks or losses
under two types of decisions, then the reasoning is different. In this case, the
utility of X and Y is given by v(—X) and v(-Y), respectively, and the risk X
is preferred to Y if Ev(—X) > Ev(-Y). With the notation w(z) = —v(-x),
this inequality is equivalent to

Ew(X) < Ew(Y), (3.2.2)

where the function w(ir) is increasing and convex. A function w : (b, b2) = R
which is increasing and convex on (b, b;) is called a loss function. Examples
of useful loss functions are

e w(z)==x,
b UJ(QI) = e, a>0,
e w(z)=(x—a)y, a€R.

In real insurance problems, we often do not know the explicit form of the
underlying utility or loss functions. However, in some cases one can show that
the inequalities (3.2.1) and (3.2.2) hold for all possible utility or loss functions,
respectively. This motivates the following three orderings of distributions. We
precede the formal definitions by some general remarks on orderings.

By an ordering we mean a partial ordering < of a set X which is a binary
relation on X fulfilling

*T=z (reflexivity),
o {r<y,y<=z}impliesz <z (transitivity),
o {r<y,y=<<z}impliesz=1y (antisymmetry).
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(z—a)+ (a—z)+

P

a z a T

Figure 3.2.1 The “angles” (z — e)+ and (o — z)4

In the following we will mainly concentrate on the case where X is the set
of distributions of real-valued random variables. In later chapters we will
also compare distributions of random vectors and of stochastic processes. In
connection with orderings of distributions of real-valued random variables, the
functions z — (z — a)+ and z — (a — )+ depicted in Figure 3.2.1 play a
central role. In Hardy, Littlewood and Pélya (1929) these functions have been
called “angles”. They satisfy the identity

(z—a)y —(a-2)y=z—a. (3.2.3)

Let F' be a distribution on R. Then, for all a € R, integration by parts
gives the following useful identities:

/jc (z —a) dF () /oo F(z) dz, (3.2.4)

/;oo (a — z)+ dF(z) /:a F(z)dzx, (3.2.5)

provided that ff‘; |z} dF(z) < co. For any partial ordering < of distributions

considered in this book, we will write X < Y if Fx < Fy holds for the
corresponding distributions.

Definition 3.2.1 Let X,Y be two real-valued random variables.
(a) We say that X is stochastically dominated by (or stochastically smaller
than) Y and we write X <o Y if for all increasing functions g: R = R

Eg(X) <Eg(Y), (3.2.6)

provided the ezpectations E g(X), Eg(Y) ezist and are finite.

(b) Assume that EX, ,EY, < co. We say that X is smaller than Y in stop-
loss order and we write X <q Y if (3.2.6) holds for all increasing convez
functions g : R — R provided the ezpectations Eg(X),Eg(Y) ezist and are
finite.
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(c) Assume that E(=X)4+,E(=Y); < oo. We say that X is smaller than
Y in increasing-concave order and we write X <y Y if (3.2.6) holds
for all increasing concave functions g : R = IR provided the ezpectations
Eg(X),Eg(Y) ezist and are finite.

Literally speaking, relation (3.2.6) as well as the symbols <g, <q and ey
mean “not larger than”; for simplicity we will say “smaller than”, not
excluding equality. This is in agreement with the notions of an increasing,
decreasing, convex and concave function, introduced in Section 2.4 in the same
weak sense. In other areas of applied probability like reliability or queueing
theory, one usually says increesing-convez order instead of stop-loss order,
writing <icx instead of <. In insurance mathematics, however, the notion of
stop-loss order is quite common due to its connection with reinsurance; see
Section 3.3 and the remark following Theorem 3.2.2.

3.2.2 Stochastic Order

Next we show that the notion of stochastic order given in Definition 3.2.1
is eguivalent to that introduced in Section 2.4. Recall that the symbol
X <Y means that the random variables X and Y are defined on a common
probability space ({2, F,P) and that X(w) < Y(w) for almost all w € 9,
ie. P(X <Y) = 1. For the generalized inverse function F~!(z) see (2.6.6).
Part (b) of the following characterization of stochastic ordering is sometimes
called the coupling theorem for <g. It formalizes the useful fact that stochastic
dominance can always be expressed by comparing realizations of certain
auxiliary random variables with the same distributions, where these random
_variables are defined on a common probability space.

Theorem 3.2.1 The following statements are equivalent:
() X < Y.
(b) There ezist a probability space (V',F',P') and two random variables
XY’ defined on it such that X' <Y', X X andY Y.
(c) Forallz € R,

Fx(z) < Fy(z). (3.2.7)
Proof To show that (c) follows from (a) it suffices to insert the increasing
function g(t) = 8,() in (3.2.6), i.e. g(t) =0fort < z and g(t) =1 for t > z.

Assume now that (c) holds. Consider a random variable Z which is uniformly
distributed on [0, 1] and defined on some probability space (S, F',P’). Put

X' =Fg'(Z) and Y' = F7'(Z). From Theorem 3.1.2, we get that X’ ¢dx
and Y' £ Y. Moreover, from (2.6.6) and (3.2.7) we have

Fx'(Z) = min{t : Fx(t) > Z} < min{t: Fy(t) > Z} = F;(2),
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i.e. X' £ Y’ and statement (b) follows. Finally, from (b) we get that Eg(X) =
Eg(X') < Eg(Y') = Eg(Y) for any increasing function ¢ : R — R,
i.e. X <4 Y holds. ]

The notion of stochastic dominance can be naturally extended to (mul-
tidimensional) distributions of random vectors. Property (¢) of stochastic
ordering given in Theorem 3.2.1 has to be reformulated but the coupling
property (b) essentially remains unchanged. However, the proof becomes much
more complicated; see Section 7.4.1. In the special case that two random
vectors (X3,..., X,) and (Y;,...,Y,) have independent components for which

Xi<q Yiforalli=1,...,n,it is relatively easy to derive a multidimensional
analogue to the coupling property. Indeed, it suffices to consider n independent
random variables Z,,...,Z, on some common probability space (', F',P')

which are uniformly distributed on [0,1). Then, using Theorem 3.1.2, we
get that the random vectors (Xi,...,X,) and (X7,...,X]) have the same
distribution, where X = F)?.-l (Z;) for i = 1,...,n. Analogously, the random
vectors (Y3,...,Yy) and (Y{,...,¥,) have the same distribution, where Y =
F,Til(Z,-) fori=1,...,n. Moreover, X <Y/ foralli=1,...,n.

3.2.3 Stop-Loss Order

Similar to part (c¢) of Theorem 3.2.1, the next characterization of the stop-loss
order holds.

Theorem 3.2.2 The following statements are equivelent:
(a) X Ssl Y.
(b) For all z € R,
E (X bt .'L')+ < E (}’ - x)+ . (328)

Proof To show that (b) follows from (a) it suffices to insert the increasing
and convex function g(t) = ( — z)4 in (3.2.6). Assume now that g: R - R
is increasing and convex. First we consider the case g(—o00) > —oc. Then

r4 z

g*(t) dt = g(—o00) + / (z — ) dg* (1)

—00

o) = g(~00) + /

-0

for all x € R, where g (¢) is the right derivative of g(¢). Thus,

[ e@ars@ = s-o+ [ ([ @-ude®) dpxta

—0C

il

i

s+ [ [ @-vrdFx@ )

by Fubini’s theorem. Hence, (3.2.8) implies (3.2.6) under the additional as-
sumption that g(—oo) > —20. In the general case, take g(t) increasing and
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convex, but g(—oo) = —oo and put gn(t) = max{-n,g(t)} for n € IN. The
functions g,(¢) are increasing and convex with gn(—00) > —oo. Assuming
(3.2.8), the first part of the proof tells us that

/w gn(z) dFx(z) < /oo gn(x) dFY(l'»), né€IN.

The proof is completed using the monotone convergence theorem. 0o

Remark The characterization given in (3.2.8) explains the name of stop-loss
ordering for <g as used in insurance mathematics. For if X is a risk to be
insured with a retention level z, then the net premium E (X — z); is called
the stop-loss premium.

Similarly to part (b) of Theorem 3.2.1, there is also a coupling theorem for
the stop-loss order; see Baccelli and Brémaud (1994). Here, the notion of the
conditional expectation E (Y’ | X') is required. This is a random variable that
can be interpreted as the expectation of Y’ taken with respect to a certain
“random” conditional distribution depending on the actual value of X'.

Theorem 3.2.3 The following statements are eguivalent:
(a) X <sl Y.
(b) There exist a probability space (U, F',P’') and two random variables

X', Y' defined on it such that X’ <E(Y'| XN and X 2 X', Y LY.

The proof that statement (b) follows from (a) is rather difficult and goes
beyond the scope of our book. We therefore omit it and refer the reader to
the bibliographical notes. On the other hand, assuming (b), for all z € R it
follows from Jensen’s inequality for conditional expectations that

E(X-2); < E(EQY'|X)-2)<EE(Y -2); X))
= EY'-z),=E(Y -1),.

Because of Theorem 3.2.2 this gives (a). a

We next derive a sufficient condition for the stop-loss ordering to hold
between two random variables. This so-called cut criterion appears in the
literature under various names and is attributed to numerous authors {e.g. as
Ohlin’s lemma or the Karlin—Novikoff cut criterion).

We begin with a simple auxiliary result.

Lemma 3.2.1 Suppose h : R — R is a measurable function such that
J22 IR()|dt < 0o and [ h(t)dt > 0. If h(t) < 0 for all t < to and h(t) > 0
for allt >ty for some ty € R, then f:o h(t)dt > 0 for all z € R.

Proof Note that the function z — | :° h(t) dt is continuous and increasing on
(—o00, tp), decreasing on (tg,00) and nonnegative at —oc. u



PREMIUMS AND ORDERING OF RISKS 89

The one-cut criterion for the stop-loss ordering of two random variables X
and Y with distributions Fx and Fy is given next.

Theorem 3.2.4 Suppose E|X| < o0, E|Y| < 00 and EX < EY. If, for
some tg € R, Fx(t) < Fy(t) for t < tg and Fx(t) > Fy(t) for t > to then
X <sl Y.

Proof Put h(t) = Fx(t) — Fy(t) =1 - Fy(t) — (1 ~ Fx(t)). Then, A(t) <0
for all t <t and h(t) > O for all ¢ > ¢o. Moreover, integration by parts gives

o0
/ h(t) dt
—0oQ
0o 0 o<
= —/ﬂ Fy(t)dt+/ Fr(t)dt — (—/ Fx(t)dt+/ Fx(t)dt)
—00 0 ~00 0
= EY-EX2>0.
Thus, by Lemma 3.2.1, the proof is finished. o

We continue by studying some basic extremality properties of the stop-loss
order.

Theorem 3.2.5 Let X be an arbitrary random variable with distribution F
and ezpectation 1. Then
Oy <a F. (3.2.9)

Proof Note that d,(t) < F(t) for all t < p and 6,(¢) > F(t) for all t > p
Thus, the assertion follows from Theorem 3.2.4.

Inequality (3.2.9) means that within the class of all distributions with a
fixed expectation the degenerate distribution is minimal with respect to stop-
loss order. Further, we apply Jensen’s inequality to see that

/ " o(z) dF(z) < / ” (@) do, (@) (3.2.10)

-0 —oc

holds for all concave functions v : R — IR. In terms of utility theory, this
means that deterministic wealth maximizes the expected utility in the class of
all random wealths with the same expectation. Next, we look for the minimal
and maximal expected utility Ev(X) within the class of all (nonnegative)
wealths X with fixed first and second moments p = u{!) and u(®, where the
utility function v : R4 — R is assumed to be a 2-concave function. By this
we mean that v(z) is bounded from above and can be represented either as

v(z) = v(+o00) — /00 (t — z)2 dn(t) (3.2.11)
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for all z € Ry = [0,00), or as a monotone limit of such functions. Here
(t—z)2 = ({t — z)+)® and 7(t) is an increasing and right-continuous function
with [~ t2dn(t) < oo. Clearly, 2-concave functions form a subclass of the
class of all concave functions. An example of a 2-concave function is given
by v(z) =1 — e7%%;a > 0. According to (3.2.10), the degenerate distribution
0, maximizes the expected utility E v(X). Moreover, for any given 2-concave
utility function v(x), the distribution Fp, given by

Fa=(1- (2)) S+ & (2> 5#"’/"’

minimizes E v{X) within the class of all distributions of nonnegative random
variables with fixed first and second moments.

Theorem 3.2.6 If v(z) is a 2-concave function and X is a nonnegative
random variable with distribution F' and expectation p, then

00 oo o0
/ v(z) dF () S/ v(z)dF(z) 5/ v(z)dd,(x). (3.2.12)
0 0 0
Proof The upper bound is nothing but (3.2.10). To get the lower bound, it
suffices to prove that fot (t—z)2dF(z) > fot (t—z)?dF(z) for all t > 0 because
fo <] =<} t
/ v(2) dFin(z) = v(-+00) — / ( / (t — 2)%dFn(z) ) dn(t)
0 —oc WO

and
00

( /0 't - 2V°dF (@) dnte)

for functions of the form (3.2.11). Observe that

¢ 207 — 2 /0@y i (2)
o _ Q-2 /) it </,
/0 (¢ - 2) dFn(z) = { 2= 2p+p® ift>u®)pu.

/Ooo v(z) dF(z) = v(+o0) — /

-0

Thus, it suffices to show that

201 — 12/u®) ift < 4@
—z)? < 1A= u?) it <y,
/ (t-a)dF(z) < { t2 = 2p+p® it > @/

Assume first that t > 4®) /u. Then

/ t(t - z)2dF(z) < / oo(t —z)2dF(z) = % = 2tp + p@
1] 0

On the other hand, using the substitution z = ¢™!, it is easily seen that

ft(t —2)’dF(z) =E(t- X)} < (1 - u“’/u""’)
0
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for all ¢ < ¥ /p if and only if E(1 — 2X)2 < 1— p2/u® for all 2 > u/p®.

Since
2

E(l-2X)2 <E(1-2X)2 <E(1-2X)?=1- ;“(7)

for z > 2 = uf ,u(z), the proof is complete. 0

3.2.4 The Zero Utility Principle

In this section we take v : R & R to be a strictly increasing utility function.
Given this utility function, the zero utility principle defines the premium T(X)
of a risk X as the solution to the equation

E (v(II(X) - X)) = v(0). (3.2.13)

This means that the insurer fixes the premium at such a level that, with
respect to the utility function v(z), the utility v(0) of the initial surplus x = 0
is equal to the expected utility of the surplus II(X) — X resulting from insuring
the risk X at the premium II(X). Note that the premium II(X) is the same
for all utility functions av(z) + b, where a > 0 and b € R. The formal proof
of this property is left to the reader.

A premium principle I1 is said to be monotone with respect to an order < in
a certain family of distribution functions if Fx < Fy implies I[I{X) < II(Y).

Theorem 3.2.7 The zero utility principle given by (3.2.13) has nonnegative
safety loading and no unjustified safety loading. Moreover, it is monotone with
respect to stop-loss order <.

Proof From (3.2.13) and from the strict monotonicity of v, we immediately
get II{z) = z, i.e. II has no unjustified safety loading. Moreover, Jensen’s
inequality gives v(0) = E (¢(II(X) — X)) < v(II{X) — EX). Thus, v(0) <
v(TI{(X) — E X), which gives II(X) — EX > 0. To prove that IT is monotone
with respect to stop-loss order, consider two risks X, X' such that X <q X'.
Then, by Definition 3.2.1 of the stop-loss order, Ev(c — X) > Ev(c — X’) for
each increasing concave function v{z) and for all ¢ € R because —v(c — ) is
an increasing and convex function of z. Hence II(X) < II{(X’). a

By way of an exercise, the reader should show that the exponential principle
M, (X) = a~llogEe** solves the equation (3.2.13) for the utility function
v(r) = (1—e %) /a provided that a > 0 is such that Ee*X < oo.
Furthermore, the exponential principle is additive for independent risks.

Under some regularity conditions on the utility function, the exponential
principle is characterized as the only zero utility principle which is additive
for independent risks.
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Theorem 3.2.8 Assume that the utility function v : R — R is twice
continuously differenticble and that

v0)=0, VO)=1, vP0O0)=-a (3.2.14)

for some a > 0. Let I be the zero utility principle defined for nonnegative
random variables by (3.2.13) and assume that

(X +Y) =1(X) + I(Y) (3.2.15)
for all independent and insurable risks X,Y. Then

_JatlogEe** ifa>0,
H(X)_{EX ifa=0.

Before proving Theorem 3.2.8 we show the following auxiliary result. For
arbitrary fixed b > 0 and p € [0,1], we consider a two-point risk X
with distribution pdy + (1 — p)do. Next we consider the premium @y(p) =
I(pds + (1 — p)do) for this risk defined by the zero utility principle (3.2.13),
i.e. wp(p) is the solution to

pr(ps(p) — b) + (1 - plu(ps(p)) = 0. (3.2.16)

Lemma 3.2.2 Under the assumptions of Theorem 3.2.8 the function o :
[0,1] —» R is twice continuously differentiable.

Proof We apply the implicit functions theorem to the bivariate function
F(z,y) = zu(y — b) + (1 — z)v(y). This function is continuous, has continuous
second-order partial derivatives and F(z,y) # 0 for all (z,y) € [0,1] x R.
Thus, the theorem on implicit functions (see Theorems 17.1.1 and 17.4.1 in
Hille (1966)) yields that ¢y (p) is twice continuously differentiable on [0,1]. D

We also need a result from differential equations.
Lemma 3.2.3 Under the assumptions of Theorem 3.2.8, the only solution to
v(t + h) — vV (h)u(t) — v(h)wM(t) — av(h)v(t) = 0 (3.2.17)
isv(t) = (1 —e ®)/a when a >0, and v(t) =t when a = 0.

Proof By inspection, one can see that v(t) = (1 — e %)/a and v(t) = ¢
are solutions to {3.2.17) in the cases that a > 0 and a = 0, respectively. It
remains to show that there are no other solutions to (3.2.17) which satisfy
(3.2.14). Assume first that a > 0. Since v(t) is concave and v(0) = 0, we have
v(2t) < 2u(t) for all t > 0. Thus, for h =1t > 0, (3.2.17) gives

v(2t) — a(v(t))® _ 2v(t) —a(v(t))® _

M) = 2u(t) S 2v(t) =1- gv(t).
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This means that v(f) must be bounded because otherwise we would have
v(1)(t) < 0 for sufficiently large ¢, which is impossible since v(t) is increasing.
Hence lim;_,00 vV (¢) = 0 and lim,_, o v(t + h)/v(t) =1 for all h € R. Now,
dividing both sides of (3.2.17) by v(¢) and letting ¢ = oo, we arrive at the
linear differential equation 1 —v{Y)(h) —av(h) = 0. From the theory of ordinary
linear differential equations (see, for example, Hille (1966)) we know that this
equation has exactly one solution satisfying v(0) = 0. If @ = 0, then (3.2.17)
takes the form

v(t + k) — v (h)e(t) — v(h)vM () =0. (3.2.18)

Assume for the moment that v(t) is bounded. Then, in the same way as before,
we would get that v!U(h) = 1 for all A € R, which leads to a contradiction.
Thus, lim;, v(t) = oc and, consequently, lim; o v(f + h)/u(t) = 1 since
v(h) + v(t) > v(t + h) > v(t). Furthermore, lim¢_, o, v{")(2)/v(t) = 0, since
v{1}(t) is decreasing. Now, dividing both sides of (3.2.18) by v(t) and letting
t — 0o, we see that v(U(h) = 1 for all h € R, i.e. v(h) = h. a

Proof of Theorem 3.2.8. Taking the derivative with respect to p in (3.2.16),
and letting p = 1, we get
(1) = v(b). (3.2.19)
From the assumed additivity property we obtain
II{(pdn + (1 — p)do) * (gé¢ + (1 — g)do))
= M(pdn + (1 — p)do) + IT(gd: + (1 — g)do) = n(pP) + e(q)

for h,t > 0 and 0 < p,q < 1. Therefore, by (3.2.13),
pau(pn(p) + p1(q) — h — £) + p(1 — Q)v(en(p) + ¢e(q) — h)

+ (1 - p)gu(en(p) + wa(g) — t) + (1 — p)(1 — g)u(pn(P) + »e(q) = 0(3.2.20)

is obtained. Differentiating this equation twice, first with respect to p and
then with respect to g, and setting p = ¢ = 1, we get

(@(0) + v (0)pf" (1)) + (M (0)¢s (1) + v @ (0} (1) (1))
+ (—u() + (v ) (1) + (—v(h) — v ()P (1)) + (vt + h)) = 0.
Together with (3.2.14) and (3.2.19) this yields
v(t + k) — v (R)u(t) — v(R)v P (t) — av(h)u(t) = 0 (3.2.21)

for all h,t > 0. To prove that (3.2.21) holds for all k,¢ < 0 we can use similar
arguments. Namely, taking in (3.2.16) the derivative with respect to p and
setting p = 0, we obtain

0V (0) = —v(-b). (3.2.22)
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Differentiating (3.2.20) twice, first with respect to p and then with respect to
g, setting p = ¢ = 0, and using (3.2.14) and (3.2.22), we get (3.2.21) for all
h,t < 0. By Lemma 3.2.3 this finishes the proof. a

Bibliographical Notes. Surveys on various orderings of distributions are
given, for example, in Marshall and Olkin (1979), Mosler and Scarsini (1993),
Shaked and Shanthikumar (1993), Stoyan (1983) and Szekli (1995). For the
proof of the necessity part of Theorem 3.2.3, see, for example, Baccelli and
Brémaud (1994) or Lindvall (1992). Sometimes the implication (a) = (b) of
Theorem 3.2.3 is called Strassen’s theorem. Results like Theorem 3.2.4 can
be traced back to Hardy, Littlewood and Pélya (1929) or Karamata (1932);
see also Ohlin (1969). Some generalizations are given in Karlin and Novi-
koff (1963). An application of Theorem 3.2.4 to optimal reinsurance structures
is considered in Hesselager (1993); see also Section 3.3. Results like those
given in Section 3.2.4 can be found, for example, in Gerber (1979) for the
zero utility principle, and in Kaas, van Heerwaarden and Goovaerts (1994)
for the so-called mean value principle, where further characterizations of the
exponential principle are discussed.

3.3 SOME ASPECTS OF REINSURANCE

If a risk X is too dangerous (for instance if X has large variance), the insurer
may want to transfer part of the risk X to another insurer. This risk transfer
from a first insurer to another insurance company is called reinsurance. The
first insurer that transfers (part of) his risk is called a cedant. Often the
reinsurance company does the same, i.e. it passes part of its own risk to a third
company, and so on. By passing on parts of risks, large risks are split into a
number of smaller portions taken up by different risk carriers. This procedure
of risk exchange makes large claims less dangerous to the individual insurers,
while the total risk remains the same.

A reinsurance contract specifies the part X — h(X) of the claim amount X
which has to be compensated by the reinsurer, after taking off the retained
amount h(X). Here h : Ry — R, the retention function, is assumed to have
the following properties:

e h(z) and x — h(z) are increasing,
e 0 < h(r) < z and in particular h(0) = 0.

It is reasonable fo suppose that both the retention function h(z) and the
compensation function k(z) = ¢ — h(z) are increasing, i.e. with the growing
claim size, both parts contribute more. In practice, retention functions are
often continuous or even locally smooth, but we do not require such properties
in this section. Possible choices of retention functions h(z) are
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e h{x) = az for the proportional contract, where 0 < a <1,
¢ h(z) = min{a,z} for the stop-loss contract, where a > 0.

Consider risks of the form X = Y% U;, where N is an IN-valued random
variable and where the nonnegative random variables U; are interpreted as
local risks. We can model local reinsurance with local retention functions h;(z)
as follows: for the i-th claim of size U; the part U; — h;(U;) is carried by the
reinsurer. The local retention functions h;(z) are assumed to have the same
properties as their global alternatives h(zx). Let v(z) be a utility function.
If II(X) is the premium paid to the reinsurer, the utility of the reinsurer is
o(II(X) — 2?_;1 k:(Us;)), where ki(x) = £ — h;(z) are the corresponding local
compensation functions. If a global contract is used with retention function
h(z) the utility of the reinsurer is v(II(X) — k(X)), where k(z) = = — h(z) is
the corresponding compensation function. The following result suggests that
in some cases a global contract is better for the reinsurer.

Theorem 3.3.1 Let X be an insurable risk of the form X = YN U; and
let v: R — R be an increasing and conceve function. For a local reinsurance
with compensation functions k; (i = 1,2,...), there exists a function k(z) such
that

N
Ek(X)=E (Z ki(U,-))
i=1
and Ev(TI(X) - TN k:(Uy)) < Bo(TI(X) — k(X)).
Proof For each z > 0, define
N

kz) = E (Z E(U) | X = x) (3.3.1)

i=1

By the definition of conditional expectation EA(X) = E (Zﬁ__l k:(U;)). Since
the function v(II{(X) — x) of z is concave, we can apply Jensen's inequality
for conditional expectation to obtain

N N
Eu(H(X) - Z k,-(U,')) =E (E (u(II(X) - Z:k,-(u,f)) [ X))

< Eu(H(X) —E(iki(m) | X)) = Evo(I(X) - k(X)). g
i=1

Remark The following example shows that (3.3.1) does not always give a
compensation function. Take N = 2 and suppose that P(U, = 4) + P(U: =
5) = 1 and P(U; = 5) + P(U; = 7) = 1, where all four probabilities are
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assumed to be strictly positive. If k;(z) = z/2 and kz(z) = z/8, then it is
easily seen that the function k(z) given in (3.3.1) is not increasing.

Under appropriate conditions, however, k(z) defined in (3.3.1) is a
compensation function. To show this, we first extend the notion of stochastic
order as given in Definition 3.2.1. Let X = (X;,...,Xp)and Y = (Y3,...,Yy)}
be random vectors taking values in R". We say that X is stochastically
dominated by (or stochastically smaller than) Y and we write X <, Y if
for each measurable function g : R” — R which is increasing in each of its
arguments,

Eg(X) <Eg(Y), (3.3:2)
provided that the expectations E g(X), Eg(Y) exist and are finite. By X,
we mean a random vector with the same distribution as the conditional
distribution of X = (X1,...,X,) given }in, X; = ¢.

In the next lemma, sometimes called Efron’s theorem, a special class of
functions is considered. A function f : R — R is said to be a Pdlya frequency
function of order 2, or PF, for short, if

fl@i—-n) flz1—y2)
det ( flxa —n) flzz —y2) ) 20 (33.3)

whenever z; < 77 and y; < y». We leave it to the reader to show that the
gamma distribution I'(a, A) with a > 1, the uniform distribution U(a, b}, and
the Weibuli distribution W(r,c) with r > 1 are PF,.

Lemma 3.3.1 Let X;,...,X, be tndependent and nonnegative random
variables with densities fi,. .., fn, respectively. If f; is PFs foralli = 1,...,n,
then X, <gt Xy, for all0 <ty <ts.

The proof of Lemma 3.3.1 goes beyond the scope of the book; we refer
to the bibliographical notes. Sufficient conditions for k(z) in (3.3.1) to
be a compensation function are contained in the following consequence of
Lemma 3.3.1.

Theorem 3.3.2 Let n > 1 be a fized natural number and ky, ..., k, arbitrary
compensation functions. Consider the risk X = Zf__l U;, where N = n is
deterministic, U, ..., U, are independent and each U; is continuous with PF,
density function fy,. Then the function k defined in (3.3.1) is a compensation
function.

Proof By Lemma 3.3.1 we immediately get that k(z) is increasing. However,
z—kz) =E (a: Y k)X = x) -E (Z(U,- ~k(U)) | X = z)
=1 i=1

and also g(u) = ¥ i, (u; — ki(u;)) is increasing in each argument. Hence,
Lemma, 3.3.1 also implies that x — k(z) is increasing. Furthermore, using the
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monotonicity of conditional expectatlon and the fact that &; is a compensation
function, we have 0 S E(LL k(D) | X =) S E(X L, Ui | X =2) ==z
for each z > 0. Thus, 0 < k(z) < z and in particular k(0) = 0. a

For a given risk X, a reinsurance contract with retention function h{x) is
said to be compatible with respect to a premium calculation principle I if

I(X) = M(h(X)) + (X ~ h(X)). (3.3.4)

For example, the proportional contract is compatible with respect to the
expected-value and standard-deviation principles, but not with respect to the
variance and modified variance principles, unless the variance Var X of X
vanishes. The stop-loss contract has the same compatibility properties, with
the exception that in general it is not compatible with respect to the standard-
deviation principle. Further, both the proportional contract and the stop-
loss contract are compatible with respect to the absolute deviation principle
given in (3.1.12). The compatibility of the stop-loss contract (and of other
reinsurance contracts) with respect to the absolute deviation principle follows
from the following property of quantile functions.

Lemma 3.3.2 Let v,w : R — R be two increasing functions. Then, for each
real-valued random variable Z,

Fv"(z)_'_w(z)(z) v(z)(z) ;(‘Z)(z), 0<z<1. (3.3.5)

Proof For any two functions z(t), z'(t), by z o z'(t) denotes the superposition
z(z'(t)). Note that

F,;( 7y =vo F7l. (3.3.6)
Indeed, by Lemma 3.1.2b, for all z € (0,1) and € R

Fop(@) St = Fyapt) 2z P(Z)<t)22
e PZ<vit) >z Fz(v7i () > 2
= FFl2) <o) <= u(Fr(2) <t
which gives (3.3.6). In the same vain we obtain F) ) wz) = VO F;' and
(;:Lw)(z) = (v+w) o F;', yielding

u"(éHw(Z):(v+w)0FZ_1=von'l+won —F(Z)+F(Z) o

We say that two risks X,Y are comonotonic if there exist two increasing
functions v,w : R — R, and a. probability space with a random variable Z

defined on it such that (X,Y) = (v(Z) w(Z)).
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Lemma 3.3.3 Let Il be the absolute deviation principle and let X,Y be
arbitrary comonotonic risks with EX,EY < 0o. Then II(X +Y) = I(X) +
IYy).

Proof Using (3.1.13) and (3.3.5) we have

1/2
nXx+Y)

1
Fxiy(2)(1-a)dz + / Fily(@)(1+a)dz
1/2

1/2
= /0 F"(Z)+w(z)(z)(l—a)dz+/ F;zz)+w(z)(z)(l+a)dz

1/ 2
-/(; (Z) (Z)(l - a) dz + / (Z\ (Z)(l + a) dZ

1/2

+ | w(z)(z)(l—a)dz+/ F"Z)(,, 1+ a)dz
N(X)+1(Y).

Theorem 3.3.3 For each retention function h(z), the corresponding
reinsurance contract is compatible with respect to the absolute deviation
principle.

Proof Since the functions h(z) and k(z) are increasing, the random variables
h(X) and k(X) = X — h(X) are comonotonic. Hence by Lemma 3.3.3 we get
(3.3.4) for the absolute deviation principle. m]

Bibliographical Notes. Lemma 3.3.1 has been derived in Efron (1965).
More recent references to Efron’s theorem are Shanthikumar (1987) and
Daduna and Szekli (1996). Further effects on premium calculation of
splitting a risk into two or more components have been studied for
instance in Hiirlimann (1994a,b), Mack (1997) and Michaud (1994); see also
Hiirlimann (1995). The compatibility of reinsurance contracts with respect to
the absolute deviation principle has been investigated in Denneberg (1990).
For a discussion of reinsurance premium calculation without arbitrage, see
Albrecht (1992) and Venter (1991).
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CHAPTER 4

Distributions of Aggregate
Claim Amount

4.1 INDIVIDUAL AND COLLECTIVE MODEL

In this chapter we study different concepts related to aggregate claim amounts.
As in this chapter we assume that the time horizon is fixed we do not include
the time parameter. Traditionally, computing or approximating (graduating)
the distribution function of the aggregate claim amount has been one of
the central points in insurance mathematics. More recently, in the era of
computers, approximation methods often lost their practical value. On the
other hand, numerical methods like recursions or numerical inversion of
Fourier transforms are becoming more important and produce excellent results
for the case of a finite range of values. Nevertheless, bounds and asymptotic
techniques, like the study of the tail behaviour of the distribution of the
aggregate claim amount are still of interest. In order to investigate the
distribution of the aggregate claim amount it is customary to consider one
of the following two models.

Individual Model Consider a portfolio consisting of n policies with
individual risks Uy,...,U, over a given time period {one year, say). We
assume that the nonnegative random variables Uy, ...,U, are independent,
but not necessarily identically distributed. Let the distribution Fy, of U; be
the mixture Fy, = (1 — 8;)dp + 6;Fy,, where 0 < 6; < 1 and where Fy; is
the distribution of a (strictly) positive random variable V;, i = 1,...,n. In
actuarial applications, the probabilities §; are small and can be interpreted
as the probability that the i-th policy produces a positive claim V;. The
aggregate claim amount in this model, which we call the individuel model,
is Xind = ¥ U; with distribution Fy, % ... * Fy,. A portfolio is called
homogeneous if Fy, = ... = Fy,.

Collective Model We suppose that a portfolio consists of a number of

anonymous policies which we do not observe separately. The total number
N of claims occurring in a given period is random. Further, the claim sizes
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U; are (strictly) positive and are assumed to form a sequence U;,Us, ... of
independent and identically distributed random variables. We also assume
that the sequence Uj,Us,... of individual claim sizes is independent of
the claim number N. Typically, N has a Poisson, binomial or negative
binomial distribution, but other choices are possible. This model is called
the collectzve model, and the aggregate claim amount is the random variable
Xeol = Z‘_ U;. Here and throughout the whole book we use the convention
that 21—1 U; =0.

The idea is to approximate the individual model by a suitably chosen
collective model if the size n of the portfolio is large. This is done because the
collective model is often mathematically easier to handle. In this connection,
a crucial problem is how to specify the parameters of the collective model to
have a good approximation. In Section 4.6 we study such approximations by
collective models, in particular by Poisson compounds.

Bibliographical Notes. For a more extensive discussion of the practical
background of the individual and the collective model investigated in in-
surance mathematics we refer, for instance, to Albrecht (1981), Beard,
Pentikdinen and Pesonen (1984), Bohman and Esscher (1963), Bowers,
Gerber, Hickman, Jones and Nesbitt (1986), Biihlmann (1970), Daykin,
Pentikdinen and Pesonen (1994), Gerber (1979), Goovaerts, Kaas, van
Heerwaarden and Bauwelinckx (1990), Heilmann (1988), Mack (1997), Panjer
and Willmot (1992), Straub (1988) and Sundt (1993).

4.2 COMPOUND DISTRIBUTIONS

4.2.1 Definition and Elementary Properties

Suppose that we want to evaluate the total payment over a period {one year,
month, week etc.) from a portfolio, either using the individual or the collective
model. Let N be a nonnegative integer-valued random variable and Uy, Us, ...
a sequence of nonnegative random variables. Then the random variable

>
{Z»— 1Us g% 10 (4.2.1)

is called compound and describes the aggregate claim amount in the individual
model as well as in the collective model. We assume throughout this chapter
that the random variables N,U;,Us,... are independent. If not stated
otherwise, we also assume that U;j,Us,... are identically distributed. The
latter assumption is sometimes omitted when considering the individual
model. We say that X has a compound distribution determined by the
(compounding) probability function {ps, k € IN} of ¥ and by the distribution
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Fy of U; if the distribution of X is given by

o0

Fx =) nF, (4.2.2)
k=0

where Fj¥ denotes the k-fold convolution of Fys. Note that compound dis-
tributions form a special class of mixtures of distributions as considered in
Section 2.2.4.

We first show how to express the Laplace-Stieltjes transform [x (s) in terms
of the generating function §y(s) and the Laplace-Stieltjes transform i (s).

Theorem 4.2.1 For each 3 > 0,

ix(s) = an(u(s)). (4.2.3)

Proof We apply the law of total probability, using the fact that the random
variables exp{—s Ef=l U;) and N are independent and that e=*U»,e#U2 .
are independent and identically distributed. We get for each s > 0

E exp(—s}l:v: U,-) = f:E (exp(—-si U,-) [ N= k) P(N =k)
=1 k=0 i=1
Y E (exp(—szk: U:)) PV =k) = T E (f[ eV ) P(N = k)
=1

=0 k=0 =l
- k
= Y (EeV)"P(N =k) = gn(Ee™").
k=0
See (2.1.11) for the last but one equality. ]

Remark Similarly, the moment generating function mx(s) of X is well-
defined at least for s < (t and can be expressed as mx (8} = g (y(8)). If the
claim sizes are lattice (e.g. take values in IN), then X is also lattice and we can
determine the generating function of X by §x(s) = gn(gu(s)); -1 <s< 1.
From Theorem 4.2.1 we easily get formulae for the first two moments of X.

Corollary 4.2.1 Assume that the relevant moments exist. Then
EX=ENEU, VarX=VarN(EU)) +ENVarU. (4.2.4)

Proof To use formulae (2.1.7) and (2.1.8) compute the first derivative of ix(s)
at s = 0+ to obtain

EX = —d/ds ix(8)|e=0r = —d% ()i (0+) =ENEU.
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Further, the second derivative at s = 0+ yields

VI 0+) + ¢ P (0+))?
E(N)EU)? +ENVarU.

E(X?) = d?/ds? [x(8)lsmos

i

Thus, Var X = E (X2) — (EX)? = Var N(EU)? + ENVarU . o

Remark Note that the first identity in (4.2.4) is a special case of Wald’s
identity (9.1.33) given in Section 9.1.6. Furthermore, the second identity shows
that the variance of the compound X consists of two components: one is
induced by the variance of the compounding random variable N, the other by
the variance of the summands U;,Us,.. ..

Note also that for each distribution Fy; of a nonnegative random variable U
we have F3¥(z) < Ff(z) for all k € IN, z € R. This entails for the compound
distribution Fy in (4.2.2) that Fx(z) < Y oo PeFf (z) = in(Fy(z)). Thus,

1-Fx(z) _ 1 - 1hn(Fu(2))
1-Fy(z) = 1-Fylz)

(4.2.5)

If the claims U;,Us,... are unbounded but finite, that is Fir(z) < 1 for all
z > 0 and lim; o Fu(z) = 1. then (4.2.5) implies the inequality

. . 1 =Fx(zx)
hﬂ}gf 1= Fo@) >EN, (4.2.6)
since ﬁzs\l()(l—) =EN.

Equation (4.2.6) clearly shows that if the tail of the claim size distribution
Fy converges dangerously slowly to zero, then also the aggregate claim
amount will suffer from a similar drawback. If we require some further
specific properties of the underlying ingredients {p,} and Fy, then the
above inequality will actually turn into an asymptotic equality. To be more
specific, recall Theorem 2.5.4, where it has been shown that if the generating
function gn(s) of the claim number N is analytic at the point s = 1 then
lim, 0 Fx (z)/Fy(z) = EN if the claim size distribution is subexponential.
However, in what follows in this chapter we will mainly be interested in cases
where the claim size distribution is not heavy-tailed. This will then lead to
exponential-type bounds.

In many cases it is rather difficult to determine a compound distribution
analytically, i.e. in terms of a closed formula. Although by Theorem 4.2.1 we
are able to determine transforms of compound distributions, we are unable
to invert them analytically except for a few rather specific cases. However,
as mentioned in Section 4.2.3 below, it is of great importance for actuarial
purposes to know the probability P(X > z) of the compound X exceeding
a given level z. For these reasons, several numerical methods have been
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developed to compute probabilistic characteristics of a compound distribution,
using, for example, recursive algorithms, asymptotic techniques, bounds and
further numerical approximation methods. They will be discussed in the
following sections.

4.2.2 Three Special Cases
In actuarial applications three cases are of special interest:

e Poisson compounds where N has a Poisson distribution; in this case
the distribution of the compound, determined by A = EN and by
the distribution Fp, is called a compound Poisson distribution with
characteristics (X, Fy).

e Pascal (or negative binomial) compounds with compounding distribution
NB(a, p).

o Geometric compounds where N has a geometric distribution; in this case
the distribution of the compound is determined by p = 1 — P(N = 0) and
by the distribution Fiy and is called a compound geometric distribution.

Recall that the binomial, Poisson, negative binomial, normal, Erlang and x2-
distributions are closed under convolutions, as stated in Section 2.2. We now
show that Poisson compounds share this useful property.

Theorem 4.2.2 For somen € IN, let X = Xy + ... + X, be the sum of the
independent Poisson compounds X1, ..., X, with characteristics (A;, F;) (j =
1,...,n). Then X has o compound Poisson distribution with chaeracteristics
(A F) given by

= ) .
A=Y"%  ond F=Z‘;—;—Fj. (4.2.7)
]:

Proof Consider the representation X; = ):;21 Ui; of X; where N; has a
Poisson distribution with parameter A;, and where Uy, Usj,. .. are indepen-
dent and identically distributed with distribution F;. Let U; be a generic
random variable with distribution Fj. Since N; has generating function
gn;(s) = exp(—A;(1 — s)), we get from Theorem 4.2.1 that the Laplace-

Stieltjes transform ix(s) of X is given by

i=1

ix(s) = Hexp(—)\j(l - fuj (8)) = exp(-—/\(l - Z %fuj (s))) .
Jj=1

To complete the proof note that the Laplace-Stieltjes transfom/x\_gf Fis
given by Z;=1 3‘;\’;[(;,. (s) and that, consequently, exp(—A(1 — E;;l Sy, (s)))
is the Laplace-Stieltjes transform of a Poisson compound with characteristics
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(A, F). Now use the one-to-one correspondence between distributions and their
Laplace-Stieltjes transforms. m]

Examples 1. Consider the following special case of a Poisson compound. If
the compounding probability function {p.} is Poisson with parameter A and
if the claim size distribution Fy; is exponential, i.e. Fy = Exp(d) for some
& > 0, then the distribution function Fx of the aggregate claim amount has
the form Fx(z) = Y ov e~ (A" /n!)F™(z), where

i ‘ —-vd, n—1
(z) = (n—l)'/ e Yo" de

for n = 1,2,.... Note that the distribution function Fx (z) has a jump of size
* at the origin and is differentiable in the interval (0, c0) with

o
i 1
Fi(z) =e 3420 3 Wl - 1)z L@, 250,
n=

Using definition (2.2.1) of the modified Bessel function I; (2) we see that
FQ() =e™*02,/35fz [(2V3z8), =>0.  (428)

2. Another example with an explicit expression for the density part F,({1 )(z) is
obtained for Pascal compounds with compounding distribution NB(a, p) and
exponential claim size distribution Fy = Exp{é4). Here the aggregate claim
amount X has distribution function

Fx(z)=3_ (“ T 1) (1-p)°p"F().

n=0
As a special case assume that the parameter a« = m, a strictly positive
integer, and that the claim size distribution is the same as above, i.e. Fyy(z) =
exp(—dz). Then we find that Fx (z) has a jump of size (1 — p)™ at the origin.
For the density part we need a bit more work. Introducing the densities of
Fj" in the above formula we find that

F () = (1 - p)™pdexp(- 5x)z <m+" 1) oD (pbz)*™! (4.2.9)

for all x > 0. Put y = péz. Then the series in (4.2.9), call it R(y), can be
tackled by the use of the confluent hypergeometric function defined in (2.2.3):

d ~/m+n-1N\y" d =mm+1)...(m+n-1)y"
Rly) = HZZ( n )H"d—«yz 1.2-....n ]

n=0 n=0

d
- d_y'M(m)lay)
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We now use that

d

d_yM(m’ Ly)=mM(m+1,2;y), M(m+1,2;y) =e*M(-m +1.2;~y)
to write R(y) = mM(m + 1,2;y) = me¥M(—m + 1,2; —y). The latter factor
M(~m +1,2;-y) is a polynomial. It can be transformed into a generalized
Laguerre polynomial defined in (2.2.6) by

m _ )= L} (=
(m—l)bf( m+1,21y)‘—Lm—1( y)‘

Hence we ultimately find that, for > 0,
F{) (z) = —pd(1 — p)™ exp(~(1 - p)éz) LY (~péz), (4.2.10)

where L) (z) = d/dz L8 (z) denotes the derivative of the Laguerre polynomial
Ln(z) = LY (z). Note that in the last equality we applied a classical identity
(2.2.7) for Laguerre polynomials, in that d/dz L% (z) = -L} _, ().

4.2.3 Some Actuarial Applications

There are a variety of reasons why information on the distribution of the
aggregate claim amount is of prime importance in actuarial practice. Let us
illustrate its use hy three examples.

1. In our first example we consider the risk reserve R(t) of a portiolio at
time ¢ where we assume that the random variable R(t) is given by R(t) =
u + I(t) — X(t). Here u > 0 is the initial reserve, II(¢) is the totality of
premiums collected up to time ¢ and X(¢) is the aggregate claim amount up
to time ¢, i.e. X () = Zf;‘f) U;, where N(t) is the number of claims up to time
t. The random fluctuation in time of the risk reserve process {R(t),t > 0} is
one of the main topies investigated in later chapters of this book. Assume
now that we can derive a transparent upper bound for the tail function
Fxw(z) = P(X(t) > z) of the aggregate claim amount X (t) at time ¢.
So, Fx(1)(z) < 94(¢,z). The actuary wants to safeguard himself against a
deficit at the end of the year, say at time point ¢q. To do this, he allows a very
small probability of at most £ that at tp the risk reserve is negative. More
precisely, he puts g.(¢g,z) = e. Solve this equation for £ = z(to,e). If the
actuary chooses u + H(tg) > z(tp,€), then

P(R(t)) <0) = P(X(to) > u+ (ko)) = Fxt)(u + (to))
.<_ .F-X(to)(x(to’e)) S g+(t0a x(tOJs)) =E.

If we can solve the equation g, (t,z) = ¢ for all z = z(t,€) and arbitrary ¢ > 0,
then u can be chosen by the equality u = (0, ). The premium II(t) that has to
be collected by time ¢ should then satisfy the inequality II(¢) > z(¢,€)—z(0,¢).
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2. In the next example we consider a risk X with distribution Fx and we
assume that X is the aggregate claim amount over a certain period of time.
One of the popular premium principles is the stop-loss principle, already
considered in Chapter 3. We look at a slightly more general situation if we
look at the generalized stop-loss premium I, , (X). This is defined by

I, n(X) = /w(z —a)™dFx(x), a>0, melN. (4.2.11)

In terms of expectations, this reads Il ,»(X) = E ((X — y)+)™. Often one
restricts attention to the special case where m = 1, the usual stop-loss
premium. Note that also the case m = 0 is of particular interest since
Moo(X) = P(X > a) = Fx(a) is the tail function of the aggregate
claim amount X. Instead of (4.2.11) we can use an alternative definition
of the generalized stop-loss premium derived from integration by parts. If
E X™ < 00, then it is easily seen that form = 1,2,...

o0 o o)
Hem(X) = m/ v ' Fx(a+v)dv = m/ v’"“lﬂaw,o(X) dv. (4.2.12)
0 0

Thus, if we know a way to handle the tail function of the aggregate claim
amount X, then a simple additional integration gives us full insight into the
generalized stop-loss premium.

3. Let us turn to reinsurance. One of the most frequently applied reinsurance
treaties is proportional reinsurance; see Section 3.3. On the basis of past
experience, the first insurer wants to buy reinsurance from a reinsurance
company. If the insurer has experienced an aggregate claim amount X in
a certain year, then he might decide to reinsure a proportional part of next
vear’s total claim amount, say Z = aX for 0 < a < 1. It is obvious that

P(Z <z)=P(X <za ') = Fx(ra™).

In particular the (pure) net premium for this reinsurance contract is EZ =
oE X. Now assume that we are able to derive a simple monotone lower
bound for the tail function of X, say P(X > z) = Fx(z) > g_(z). The
first insurer wants to avoid that the price for this reinsurance - his own
premium - will be excessively large if he chooses a too large. One way of
estimating this proportion goes as follows. First determine a value z¢ such
that P(Z > zy) < e for a given ¢. If the insurer takes a to satisfy the inequality
g—(zo/a) < P(Z > z0) < ¢, then by inversion a < zo/g~(e), where g~!(z)
is the generalized inverse function of g_(x).

4.2.4 Ordering of Compounds

In Section 4.2.3 we saw that, for actuarial purposes, it is useful to know lower
and upper bounds for the tail function of a compound. This is closely related
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to the idea of ordering of risks. We now compare compounds with respect to
stochastic and stop-loss orderings. Further bounds for compound distributions
will be studied in Section 4.5.

Lemma 4.2.1 Let Uy, Us,..., U, and U, U3, ... U, be two sequences of
independent and identically distributed random variables.

(8) IfU < U’ then 37 Uj <at 353 U}

(b) If U < U’ then z;-'zl Uj <a Z;;l U;.

The proof is left to the reader.
Theorem 4.2.3 Consider two compounds X =Y. U; and X' = Zf__l Uj.

(@) If N <ge N' and U <q U’ then X <q X'.
(b) If N <4 N oand U < U' then X <ql X'

Proof Define a, = EA(}3]_,U;) forn = 0,1,.... If b : Ry = Ry
is increasing then the sequence {a,} is increasing. To prove (a) we take
h(z) = I(z > b) for some fixed but arbitrary b. Then by Lemma 4.2.1a
we have a, = ER(Y., U;) SER(T), Uf) = ay,. Thus,

Eh(in) anan < ana,, < Zp’ a;, = Eh(gU;) .

=1

To show (b), take now h(z) = (z — b); for some fixed but arbitrary b. This
function is increasing and convex. With a,, as before and Lemma 4.2.1b

an =Eh(gvj) gEh(gu;) =d,.

We show that {a,} is a convex sequence that is an + @Gpi2 > 2a,41 for all
n=0,1,.... For n fixed, define the function k(z) = Eh(z -, Uj + ). Since
k is convex we have k(z + y) + k(0) > k(z) + k(y) for z,y > 0 This gives
Ek(Uny1+Uny2) +5(0) > Ek(Un+1)+E k(Unyz), from which the convexity
of {a,} follows. Now

Eh(i Uj) anan < Zp"a,n < Zp’ a, = Eh(ZU]) O

j=1

4.2.5 The Larger Claims in the Portfolio

In this section we collect a few results in connection with the larger claims that
are part of the aggregate claim amount. Recall that for the claims Uy, ...,Us
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the largest claim is denoted by U,y = max{Ui,...,Uy,}. The second largest
claim is U, and in general the k-th largest cla.lm is Utn—g+1)- Consider now
a random number N of claims Uy, ...,Un, where U, Us, ... are independent
and identically distributed and independent of N. Fix the integer k and ask
for the distribution of the k-th largest claim. We put Uny_g41) = 0if N < k.

Theorem 4.2.4 The distribution of the k-th largest claim is given by

PUin-ern 22) = oy [, 48 (Fol)(1 = Fulw)*™" aFu(e).
(4.2.13)

Proof Fix the integer k = 1,2.... One possibility is that not even & claims
have occurred yet and then N < k. This event happens with probability
PN <k—-1)=1-r;, where ry = py + pry1 +... and pr = P(V = k).
Hence P(Un—k41) < 2) =1 =76 + 3oty PUn_k11) < 2 | N = n)pp by
the law of total probability. The conditional probability equals

PUprsyy <7) = 2 / "1 = Fo))* " F3* () dFu(y).

(n—K)M(k—-1)Jo
Indeed, any of the n claims can play the role of the requested order statistic
U(n—k+1)- Assume the latter takes a value in an interval [y,y + dy) which
happens with probability dFy(y). The remaining n — 1 claims can be
binomially distributed into n — k smaller than U,,_s4; and k — 1 larger than
Un—k+1- The probability to have a claim smaller than the one in [y,y + dy)
equals Fy(y), while the claim will be larger with probability 1 — Fy;(y). The
remaining sum can be written in a simplified version thanks to the expression

[o o]
~(k n! -
N =3 T
n=k

which can be derived from the definition of the generating function in
Section 2.1.5 whenever |s| < 1. We therefore obtain the expression

P(Un-rs) S2) =1-mt o 11). / on (Fy@)(1 = Fo@)*~" dFy(y).

Changing to complementary events gives the statement of the theorem. O

Note in particular that the distribution of the largest claim in a portfolio
has the rather transparent tail function P(U(ny > 1) = 1 — gn(Fy(x)), a
formula that caused excitement in actuarial circles when it was discovered.

Another consequence of Theorem 4.2.4 is that we can obtain formulae for
the moments of the k-th largest order statistics. Namely, using (4.2.13) we
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find that

lo o}
E (Un-kry)” = —/; z"dP(U(N_g+1) > T)

= (—,;_1—1), /0 5% (Fu()(1 - Fu()*~! dFu(y).

It is obvious that the explicit evaluation of the above integrals in closed form is
often impossible. Even in the simplest cases the resulting integrals can seldom
be expressed by simple functions.

Example Let the claim number N be Poisson distributed with mean A
while the claim size distribution Fy is exponential with mean §~!. Then
gn(z) = e 202 and §¥(2) = Ake=*(1-2), Further, Fy(y) = 1 — e™%.
Changing e~ = r we derive that

,\k 1
E (Un—k+n)" = m/ﬁ e (- logz)*z* ' dz

which cannot be further simplified.
Similarly, the case of a Pareto distribution Fyy does not simplify. In the
latter case we assume that Fyy(z) = 1—z7* for z > 1. As before we have now

n AF b e kel
E (U(N—k+l)) — _(k_—l)‘/o‘ e~ A pk—1-(n/a) 4o
which only exists when n < ak. Note that the existence not only depends on
n but also on the relative position k of the order statistic Uiy _x11)-

To show the difference between the two situations above and their influence
on the aggregate claim amount we consider the mean E Uy of the largest
claim on the total portfolio. For a proper and simple comparison we take
A =100 and § = a—1 = 1, i.e. the means of the claim size distributions
coincide. In Table 4.2.1 we compare the mean aggregate claim amount EX =
ENEU = 100 with the percentage that the largest claims are expected to
contribute to this mean. We use the abbreviations

100*

%= -1

1
/ e 100z (_ log x)nzlc—l dz
0

100 [t ooz k-3/2
b = m[) e x dz

corresponding to the exponential, respectively the Pareto, case. To have an
even better comparison we also consider the cumulative values aj = 3>, a;
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and b}, = 3., b; of the percentages that the largest claims contribute within
the aggregate claim amount. For example, the largest claim in the Pareto case
can be expected to be more than three times larger than in the exponential
case. Furthermore, the eleven highest claims in the Pareto case take on the
average 2/3 of the total, while this is only 1/3 in the exponential case.

27} a;; bk b;c
5.18 5.18 17.72 17.72
418 9.36 8.86 26.58
3.68 13.06 6.65 33.23
3.35 16.40 5.54 38.77
3.10 19.50 4.85 43.62
2.90 2239 4.36 47.98
273 25.13 4.00 51.98
2.58 27.72 3.71 55.69
2.46 30.18 3.48 58.17
2.35 32.53 3.20 62.46
2.25 34.78 3.12 65.58
2.16 36.94 2.98 68.56

ML D®©®-1ow kWi

Table 4.2.1 Comparison of the largest claims

Bibliographical Notes. The material presented in Section 4.2 is standard.
For another version of (4.2.10) see Panjer and Willmot (1981). Ordering of
compounds as in Theorem 4.2.3 is considered, for instance, in Borovkov (1976),
Goovaerts, De Vylder and Haezendonck (1982,1984), Kaas, van Heerwaarden
and Goovaerts (1994), Jean-Marie and Liu (1992) and Rolski (1976). Stop-
loss ordering for portfolios of dependent risks are studied in Dhaene and
Goovaerts (1996,1997) and Miiller (1997).

4.3 CLAIM NUMBER DISTRIBUTIONS

As before, let N denote the number of claims incurred by the insurance
company in a given time period. In Section 4.2 we saw that the probability
function {pi} of N is an important element of compound distributions. In this
section we collect some popular examples of claim number distributions and
their properties. The reason to use these particular examples has often been
based on actuarial intuition. More sound arguments will come from our study
in later chapters in connection with models for the time-dependent behaviour
of portfolios.
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4.3.1 Classical Examples; Panjer’s Recurrence Relation

There are at least three particular cases that are immediately applicable in
insurance. The Poisson distribution Poi(}A) is by far the most famous example
of a claim number distribution. Recall that then py = e~ *X*/k! for k € IN,
where A = E N is the mean number of claims. Moreover, Var N = A so that
the index of dispersion Iy = Var N/E N equals 1.

In the next two examples we show an overdispersed distribution (index
of dispersion greater than 1) and an underdispersed distribution (index of
dispersion less than 1).

The negative binomial or Pascal distribution NB(a, p) is another favoured
claim number distribution. Recall that then

k-1
P = (a+k )(l—p)" E, kelN,

where a > 0 and p € (0,1). Now, EN = ap/(1 —p) and Var N = ap/(1-p)>.
Notice that Iy = p~! > 1. The overdispersion of the Pascal distribution is
one reason for its popularity as an actuarial model.

The binomial distribution Bin(n,p) is an underdispersed distribution.
Assume that an insurance policy covers the total breakdown of a vital
component in a computer system. At the beginning of the year the portfolio
covers n identically manufactured and newly installed components in a
computer park. The probability that an arbitrary but fixed component will
fail before time ¢ is given by a distribution function G(¢). The probability py.
that the number N of breakdowns up to time t is equal to k is given by

pr = (:)p"(l -p)"k,  0<k<n,

where p = G(t). For such a binomial model the mean number of claims equals
E N = np, while Var N = np(1—p). The index of dispersion is now Iy = 1—p,
which is less than 1. The latter result is intuitive since the larger the value of
t, the smaller is 1 — p =1 — G(t), and hence the smaller the dispersion.

We can check that the probability functions {pi} of the Poisson, negative
binomial and binomial distribution all fulfil Panjer’s recurrence relation

D = (a+ %) Pr—1: k=1,2,..., (4.3.1)

where @ < 1 and b € R are some constants. The following result shows that
there are no other distributions which satisfy (4.3.1).

Theorem 4.3.1 Suppose that the probability function {pr} of the IN-valued
random variable N satisfies (4.3.1). Then {px} is the probability function of



112 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

a binomial, Poisson or negative binomial distribution. More specifically:

(a) Ifa=0, thenb= A >0, and N has the Poisson distribution Poi(}).

(b) If0<a< 1, thena+b>0, and N has the negative binomial distribution
NB(a,p) withp=a enda=1+bp~!.

(¢) Ifa <0, then b = —a(n + 1) for some n € IN, and N has the binomial
distribution Bin(n,p) withp=a(a—1)"" endn = -1 - ba"1.

Proof First take the case a = 0. Then b > 0 is needed. Inserting the left-hand
side of (4.3.1) repeatedly into its right-hand side, we see that p; = po(b*/k!)
and hence, since Y ;o ,pr = 1, we deduce that po = e~®. Thus, {pi} is
the probability function of the Poisson distribution Poi(b). Assume now that
a # 0. Then by repeated application of the recursion (4.3.1) we find that

e =po(A+k—1){A+k-2).. (A+1)A kelN,

k'’
where A = ba~! + 1. Since J_pogclc+1)...(c+k —1)zF/kt = (1 - 2)~° for
|z] < 1 and all ¢ € R, we see that formally

p,c:(A+:—l)a"(1—a)A, kelN.

Note that for 0 < a < 1 the expression on the right is positive for all k € IN if
and only if A > 0 or equivalently & > —a. This is the case if and only if we are
in the negative binomial situation. For @ < 0 the probabilities in (4.3.1) are
nonnegative only if b = —a(n + 1) for some n € IN. This means that —A € IN,
which leads to the binomial case. o

It is rather obvious that (4.3.1) can be weakened so that many other specific
distributions appear as candidates. For example, if we start recursion (4.3.1)
only at k = 2 rather than at k = 1 then pg appears as a free parameter while
the other terms are given by a shifted version of the distributions appearing
in Theorem 4.3.1. However, there are a few new solutions as well.

4.3.2 Discrete Compound Poisson Distributions

Assume that claims occur in bulk, where the number of bulks N* occurring in
a given period of time follows a Poisson distribution with parameter A. Each
bulk consists of a random number of claims so that the total number of claims
is of the form N = E,_l Z;, where Z; denotes the number of claims in the
i-th bulk. Assume that {Z;, i = 1,2,...} is a sequence of independent random
variables with values in {1,2,...} a.nd with common probability function
{pZ, k > 1}. If the claim numbers Zy,Z,,... are independent of the bulk

number N’ then jn(s) = (=A(1 — iz(s))). From Corollary 4.2.1 we have
EN = )AEZ and Var N = AE (Z?). The total number of claims N henceforth
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follows a (discrete) compound Poisson distribution. The probability function
{px} of N is given by

= AT zyen :
pe=3Y e (%), keN, (4.3.2)

neo n:

where {(p%);", k = 1,2,...} is the n-fold convolution of {pf}. Needless to
say that the explicit evaluation of the probabilities pi in (4.3.2) is mostly
impossible because of the complicated nature of the convolutions. However
there exists a simple recursive procedure for these probabilities shown in
Section 4.4.2.

In a few special cases it is possible to determine the probabilities py directly.
Consider the following example. Assume that Z is governed by the truncated
geometric distribution TG(p), i.e. Iz{(s) = (1 — p)e~*(1 — pe™*)~! with
0 < p < 1. The Laplace transform of N is then

A1 - p)e")’

In(s) =e™> exp( 1—pe—s

The probabilities p; can be evaluated in terms of the generalized Laguerre
polynomials L} _, (z) using formula (2.2.8). Note that

9 ge2)/e=1) = _g(1 — z)~2e(z)/ (1)

dz
and gy (s) = e~ 2e(=*)/(2-1) where = —A(1 — p)/p and z = ps. This yields

e if k=0,
p=P(N=k)= {e_,\ Agl_,l?ph-l L, (_xgxp-g)) ifE> 1. (4.3.3)

The distribution given in (4.3.3) is called the Pdlya-Aeppli distribution.

4.3.3 Mixed Poisson Distributions

Imagine a situation where the counting variable N consists of two or more
different subvariables that individually follow a Poisson distribution but with
a different parameter value. In motor insurance, for example, one might like
to make a difference between male and female car owners; or the insurer may
use layers in the age structure of his insured drivers. In general one assumes
that the claims come from a heterogeneous group of policyholders; each one
of them produces claims according to a Poisson distribution Poi()), where
the intensity of claims A varies from one policy to another according to an
intensity distribution.

In mathematical terms this means that the parameter A for a subvariable
should be considered as the outcome of a random variable A in the sense that
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P(N = k| A = X) = e *A/k! for each k € IN. The random variable A itself

is called the mizing or structure variable. Its distribution is called the mizring

or structure distribution and denoted by F; F()) = P(A < ). Furthermore,

we say that N has a mized Poisson distribution with mixing distribution F'
We get for the (unconditional) probability function {px} of NV

o0 N /\Ic
pk=/ e -k—'dF(z\), kelN,
0 !

which gives In(s) = f0°° exp(—A(1 — e~*)) dF(A). The latter relation immedi-
ately vields EN = f0°° AdF(A} = EA and similarly Var N = EA + VarA.
This expression for the variance Var N shows that among all mixed Poisson
distributions with fixed expectation, the Poisson distribution has the smallest
variance. Also note that the index of dispersion is easily found to be equal to
In =14 (VarA/EA) = 1+ Ix which is minimal for the Poisson distribution.
In other words, a mixed Poisson distribution is overdispersed provided that
the mixing distribution F is not degenerate. The latter property has been
at the origin of the success of mixed Poisson distributions in actuarial data
fitting.

Let us give an example which shows the flexibility of the mixed Poisson
model. Further examples are discussed in the bibliographical notes at the end
of this section. Assume that A has the gamma distribution I'(e, ¢). By a simple
calculation we obtain

me () () ()

We immediately recognize the negative binomial distribution NB(a,1/(1+¢))
which appeared in Section 4.3.1.

Bibliographical Notes. Since Panjer (1981), a variety of generalizations of
the recursion (4.3.1) have appeared in the actuarial literature. Occasionally,
one considers a somewhat larger class of claim number distributions assuming
that (4.3.1) merely holds for ¥ = r,r + 1,..., where + > 1 is an
arbitrary fixed natural number; see, for example, Sundt and Jewell (1981)
and Willmot (1988). Note that the logarithmic distribution belongs to
that class with » = 2. For more general recursions and related results,
see Sundt (1992). Because of their importance in forthcoming evaluations
of compound distributions we have treated some of these claim number
distributions here, leaving further examples to the exercises. We also remark
that Sichel (1971) introduced a distribution that can be obtained as a mixed
Poisson distribution with mixing distribution F' being a generalized inverse
Gaussian distribution. This means that the density f(z) of F' has the form

_dFQ) et A+ ¢?
N === 2Ko(cja) P (_20,_)\) :
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where the three parameters a,b and ¢ are nonnegative. The function Kj
is the modified Bessel function of the third kind. The case where b =
—1/2 is particularly interesting since then the general inverse Gaussian
distribution simplifies to the classical inverse Gaussian distribution. The
resulting mixed distribution is called the Sichel distribution or Poisson-
inverse GGauss distribution. Willmot (1987) illustrates the usefulness of the
Poisson-inverse Gauss distribution as an alternative to the negative binomial
distribution. In particular the distribution has been fitted to automobile
frequency data. Ruohonen (1988) advocates the Delaporte distribution which
had been introduced in Delaporte (1960) for claim number data involving car
insurance. This distribution is obtained as a mixed Poisson distribution with
a shifted gamma mixing distribution whose density f(z) has the form

FO) = g O

More recently the Delaporte distribution has been considered by Willmot
and Sundt (1989) and Schréter (1990). The probability function {px} of
this distribution can be given in terms of degenerate hypergeometric func-
tions. A comprehensive survey on mixed Poisson distributions is given in
Grandell (1997).

—¢)* lexp(—(A—e)b), A>ec.

4.4 RECURSIVE COMPUTATION METHODS

We now discuss recursive methods to compute the distribution of the
aggregate claim amount for individual and collective risk models. We first
assume that the individual claim amounts are discrete random variables,
say random integer multiples of some monetary unit. Note that continuous
individual claim amounts can also be analysed by these methods provided that
the claim amounts are previously given under discretization. An alternative
approach to computing the distribution function of a continuous compound
uses the integral equations stated in Section 4.4.3.

4.4.1 The Individual Model: De Pril’s Algorithm

Consider the following individual model which describes a portfolio of n
independent insurance policies. Suppose that each policy has an individual
claim amount which is a random integer multiple of some monetary unit.
Furthermore, suppose that the portfolio can be divided into a number of
classes by gathering all policies with the same claim probability and the same
conditional claim amount distribution. Let n;; be the number of policies with
claim probability ; < 1 and with conditional claim amount probabilities

pg'), .,p) | i.e. the individual claim amount distribution F}; for each policy
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of this class is given by the mixture Fy; = (1 — 8;)d0 + 0; Zk 1 pg)dk The
generating function g(s) of the aggregate claim amount X ind in this model is

§(s) = HH(l-e +0]Zp(') k) (4.4.1)

i=1 j=1

where a is the number of possible conditional claim amount distributions and
b is the number of different claim probabilities. Using (4.4.1) we can calculate
the probabilities pr = P(X'"? = k) recursively for k = 0,1,...,m, where
m=Y i, Z;=1 nijm; is the maximal aggregate claim amount.

Theorem 4.4.1 The probability function {px} of X" can be computed by

a b
po=][JIC -89, == Z:Enqv.,(k) (4.4.2)

i=1 j=1 l—-l ji=1
fork=1,...,m, where
vij(k) = D (Ipe_y — vij(k — 1)) (4.4.3)

for k=1,...,m and vij(k) = 0 otherwise.

Proof Letting s = 0 in (4.4.1) leads to the first formula. In order to prove the
second, take the derivative on both sides of (4.4.1). This gives

. dlo, 9, () k-1
) = s T8I )3 S gy T -
i=1 j=1 1-9 +9 Zk""l Sk

P @)(s)
ZZ ‘Jl_J.gg +89fg;58) Zznu i(8)

I

i=1 j=1 i=1 j=1

where a

Viils) = _Pidi (8)3(s) 4

ii(8) T=8,+0,5:(3) (4.4.4)
and §i(s) = Y p, pf,:) k. Taking the derivative of order k ~ 1 and inserting
8=0 yxelds
_ 1 d ' 5 (k1)
Dx = (8)]s=0 = ' ZZ x]" (S)Is_o = k Zznuvq (k),
i=1 j=1 i=1 j=1

where v;;(k) = ((k - 1)!)'1V,-g-k_l)(8)ls=o. Furthermore, (4.4.3) is obtained
by differentiating the following expression k& — 1 times, which is equivalent to
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(4.4.4): Vii(s) = 8;(1 — 8;)2 (6 (5)d(s) — 9:(s)Vi;(s)) and letting s = 0. By
differentiation,

(k-1) b; = k-1 o+ ~(k—1-1)
Vi D@e=o = 77250 10 )@ 9)g* 0

— PV (8)e=0)

= 1_ (i( I )" 27 (k= 1) pey

1=1
-1
k-1 N (k=1
-5 (47 1) v o)
=1
k=1
= (k-1y (kp“’po + 300 (tpk—s - vi5(k = 1))
l=1
= -y Z 2 (Ipay — vij(k = 1))
% =1
This completes the proof. |

In the special case of an individual model which describes a portfolio of
independent life insurance policies, i.e. pg‘) = 1, we get the following result.

Corollary 4.4.1 If pgi) =1 foralli=1,...,a, then the probability function
{pe} of X" can be computed by (4.4.2) where

03 ) = T2 ipai = viglk = ). (445)
2

Notice that the result of Corollary 4.4.1 is an efficient reformulation of
another recursive scheme which is usually called De Pril’s algorithm.

Corollary 4.4.2 If p(') =1forali=1,...,a, then the probability function
{px} of X'nd satisfies the recursion formula

min{a,k} [k/i]

1
= = ADk—li 5 4.4.6
Pr =7 ; ; CiaPr—Li ( )

where |z] = max{n € N:n < z} and

b ]
[
Cit = (—I)H-l'i E nij (i—:l'a—) . (447)
i=1 4
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Proof Define py for k =0,1...,m by fo = pp and
min{a,k} [k/i]

| -
P = Z > capr-us (4.4.8)
=1 =1
for k > 1. Inserting (4.4.7) into (4.4.8) gives
mm{a k} b
E > it (k) (4.4.9)
i=1 j=1

where #;;(k) = " (1)1 (8;/(1 - 6;)) Pei for k = 1,2,...,m and
;;(k) = 0 otherwise. Furthermore, utilizing

0, Lk/3) g NI
vij(k) = -7 (zpk_f—zZ( 1)t ”“( JB,-) ﬁk—i—(l-—l)i)

1
=2
L(k=1)/i] !
b (5 ; 141 ( 2 ) =
= -~ E , -1 —ili
1- 9]' (‘lpk ' =1 ( ) 1- 0j P ! )
= b (iPr—i — Dij(k — 1)), (4.4.10)
1-6;

and comparing (4.4.2)-(4.4.3) with (4.4.9)-(4.4.10), we see that py =px. O

In practical applications, the coefficients ¢; defined in (4.4.7) will be close
to zero for all [ large enough, since the claim probabilities §; will be small.
This means that the recursion formula (4.4.6) can be used in an approximate
way by truncating the inner summation. If the coefficients ¢y are neglected
for { > r the following r-th order epproximation py , to pi is obtained:

min{a.k} min{r,|k/i]}
Por = H H(l -0 ) u Pkr = E E Z CitPk—li,r - (4'4‘11)

i=1j=1 i=1 =1

4.4.2 The Collective Model: Panjer’s Algorithm

In this section we consider a compound X = Z,_l U; satisfying the following
assumptions. Let the claim sizes U;,Us,... be (discrete) independent and
identically distributed random variables ta.king their values on a lattice. We
also assume that the sequence Uy, U, ... of claim sizes is independent of the
claim number N. Without further loss of generality we can and will assume
that P(U; € IN) = 1. We denote the probability function of Ui,Us, ...
by {gx,k € IN}. Besides this we suppose that the probability function
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{pk, k € IN} of the number of claims N satisfies Panjer’s recurrence relation
(4.3.1). Theorem 4.3.1 shows that (4.3.1) is exactly fulfilled for the three
most important parametric families of distributions B(n, p), Poi()), NB(r, p}.
Furthermore, it is not difficult to show that for the logarithmic distribution
Log(p), the recursion formula (4.3.1) holds for £ = 2,3,.. ..

We need the following auxiliary result.

Lemma 4.4.1 For any j,k € N andn=1,2,.

E(U | \iU,- =j) = % (4.4.12)
i=1
and . qkq"f(""l)
P(Ui=k ’ ZU,- =j)= -—é:{— (4.4.13)
i= J

where {g;"} denotes the n-fold convolution of {q:}
Proof Since U;,Us, ... are identically distributed, we have for X =Y, U;

nE(U [ X =j)=) BU|X=)=BX|X=j)=j.

k=1
This yields (4.4.12). Moreover, because Uy, Us, ... are independent, we have

PU=kUp+...+Upn=37-k)
PU +...4+ U, =3

PUi=kPUs+...+Un=j—k) _ qmq,"}c Y

= P( 'l+,,,-§-Un=j) q] . [}

PUi=k|Ui+..+Un=j)=

In the following theorem we state a recursive method which is called
Pan]er s algorithm and which can be used to calculate the probabilities
p =P(X =k) of the compound X = E ; Ui provided that (4.3.1) holds.

Theorem 4.4.2 Assume that (4.3.1) is fulfilled. Then

X _ gN(QO)a ) fOTj =0, 4.4.14
i { (1-ago)* i, (a+bkj ) aeply, forj=12,... (44.14)
Proof For j =0 we have p§ = po + p1go + p2(@)* + ... = §n(qo). Let j > 1

and note that then q*° = 0. Thus, using (4.3.1) and (4. 4 12) we get

o0 o0
X = pog®+ Y pagi” z ( )pn-lq,
n=1
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= T (er (%30 =1) e
n=1 i=1
o

= Z(a-{-bz (Ul:klg(’rizj))?n—xq;".

Because of (4.4.13), this yields

X L oy bk “(n=1)
pf = Y Y (e+b7) gty pna

n==1 k=0

oC
(a + b= ) 9k Z q;('; Y pai

=1

k k
(a + b;) q;.pJ = aqop] + Z (a +b= ) %Pr k- O
0 k=1

i
™M

.
(=]

J
k=

Example We show how to compute the stop-loss transformIl, = E (X —n)
for n = 0,1,... by means of Theorem 4.4.2. Note that

E(X -n)y = Z (m—n)ypX = ZFm),
m=n+1 m=n
which gives E(X —n)y = Yo_ _ F(m) — F(n — 1), where F(m) =
E;’im_,_lpf Hence,lIp = EX and I, =, +F(n—-1)-1forn=1,2,...,

where F(n — 1) Zg—o p; and the p;‘ can be calculated recursively by
(4.4.14).

4.4.3 A Continuous Version of Panjer’s Algorithm

Panjer’s algorithm stated in Theorem 4.4.2 has the disadvantage that the
individual claim sizes need to take their values on a lattice. In order to
overcome this drawback we derive an integral equation for the distribution
Fx of the aggregate claim amount. It holds for an arbitrary (not necessarily
discrete) distribution Fy of individual claim sizes provided that the com-
pounding probability function {pi} satisfies Panjer’s recursion (4.3.1).

Theorem 4.4.3 If the compounding probability function {p:} is governed
by the recursion (4.3.1) with parameters a end b and Fy(0) = 0, then the
compound distribution Fx =3 1o, ka{," satisfies the integral equation

T—v
dF“(;’)dF ), z>0.

(4.4.15)

Fx(z) = po + aFy *Fx(z)+b/ /
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If Fy(0) = a > 0, then Fx(0) = ((1-a)/(1 - aa))("”)“-l, where this
ezpression is interpreted as e~ ifa =0

Proof Assume first that Fy(0) = 0. Since F{°(z) = do(x), using (4.3.1) we
can write successively

Fx(z) =po + an+1FU(n+1)(z) =pot Z(

n=0

b "
— l)pnFU(n+1)($)

and equivalently Fx (z) = pp + aFy * Fx(z) + bG(z), where

20

G(z) = ’:: IF'("“)( z).

n=0
In order to prove (4.4.15) we still have to derive an alternative expression
for the function G(z). Note that for independent and identically distributed
random variables Uy, Us, . . . with distribution Fy, the following identities hold:

(n+1)/ / i (y)dF (v)

Uy

= (n+1)E [U1+...Un+1

s U+ ... Upa S:E}

n+1 U:
= E|l——: <
i; [Ul U Uy +...Upsa _33]

_ U +...Unp _ pe(n+1)

= E[U1+...Un+l,U1+-..Un+lsz —FL] (x).

Thus, [yv [y  (v+y) tdFg*(y) dFy(v) = Fo"*(z)/(n + 1) and conse-
quently

o) = an/ /1' v dFy, (y dFy(v) = / /x “de(y)dF()

n=0

This proves equation {4.4.15). Now it remains to show the result on the atom
at the origin. If the distribution Fy; has an atom a € (0,1) at the origin, then
also Fx has an atom at the origin with size g(a) = Y-, Pna”™. Following the
same kind of argument as before we see that g{a) = pp+aag(a)+b fo g(u) du.
Rewriting this equatlon in the form of a differential equation for the auxiliary
function z(a) = f;° g(-v) dv gives z(1)(a)(1 — aa) = bz{a) + po. This yields
z(a) = c(l — aa)™%" — b~!py for some constant c. Note, however, that
gla) = z(a). If we put a = 0 then we have g(0) = po. Hence g(a) =
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((1-a)/( - aaz))‘"'“’)"‘-l when a # 0 and g(a) = e{®>~1® when a = 0. This
finishes the proof of the theorem. a

We now additionally assume that the distribution Fy; of the individual claim
sizes is absolutely continuous and that the density fi-(z) of Fy is bounded.
Then the aggregate claim distribution Fx can be decomposed in a discrete
part which is the atom at the origin, and in an absolutely continuous part,
that is Fx(B) = poao(B) + fg Fx(z)dz for all Borel sets B € B(R), where
fx(z) = Yoo, pufi¥(z) and f¥(z) is the density of F¥. In order to derive
an integral equation for fx(z), we need the following representation formula
for the function:

gi(2) = [0 vfu) i@ - y) dy. (4.4.16)
Lemma 4.4.2 Forz >0,k =1,2,.
_ u(k‘f‘l) ’
gk () = i 1fU (z). (4.4.17)

Proof We show (4.4.17) by induction with respect to k. Note that

2f2() - au(e) = [ “(@ — ) o) fule - v)dy = g1 (a)

where the substitution z = = — y is used. Thus, (4.4.17) holds for £ = 1.
Suppose now that (4.4.17) has been proved forn =1,...,k — 1. Then

£ 5% (@) - gul(z) = /(z—y)fu(y) foH(z - y)dy
= & /0 fo@)geor( — ) dy

k /o " o) [0 T @S @ -y - 2)dzdy
_ & /0 2ful2) /Oz-zfu(y)f&(k_”(x—z—y)dydz
ef "2 fu() ik (e - 2) dz = ka(a).

It

This shows that (4.4.17) holds for n = k, too. ]

Theorem 4.4.4 If {pi} is governed by recursion (4.3.1) with parameters a, b
and pg, and Fy is absolutely continuous with bounded density f(z), then the
density fx(x) of the absolutely continuous part of the compound distribution
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Fx = Y oo peFiF satisfies

. 1 /® N

fx(@) -~ /0 (az + b)) fuW)fx(z —y)dy =p fulz), =>0. (44.18)

Moreover, the function fx(z) is the only solution to (4.4.18) in the set of all
integrable functions on (0, 00).

Proof Using (4.3.1) and (4.4.17) we can write for z > 0
1 [ : —~
: [ @t mowixie -y = I NCRP O ALY

= Y m(ot o) %@ = Em 4 @) = fx(@) - pfula).-
k=1

This shows that fx () solves (4.4.18). Since fg*(z) > 0 and I ke dz =1
for each k > 1, the function fx (z) is integrable. It remains to show that fx(z)
is the only integrable function solving (4.4.18). For an arbitrary integrable
function g : (0,00) —+ IR we define the mapping g — Ag by

(Ag)(z / (ax+ by fu(y)glz —y)dy, =z>0.
Then using (4.3.1) and (4.4.17) we have
P(ASF) (@) = prra S+ () (4.4.19)
forall z >0 and k = 1,2,.... Note that g(z) = fx(z) fulfils
9(z) = (Ag)(x) + prfu(=). (4.4.20)

Now let g(x) be any integrable function which fulfils (4.4.20). By induction,
(4.4.19) implies that (A"g) (z) = g(z) — Y, Pufi(z) for all n = 1,2,...
and for each integrable solution g(z) to (4.4.20). However, it is not difficult to
show that limpo (A"g) (z) = 0 for > 0 and for each integrable function
g:(0,00) = R. Hence, g(z) = 337, pefi*(z) = fx(2). o

Example Consider the compound X = 2,_., U;, where N has the negative
binomial distribution NB(2,p) with EN = 100 and U; is Exp(d)-distributed.
Then, using {4.2.10) the distribution of X can be computed analytically:

Fx(z) =e P11 - (1-p)? +p*(1-p)éz), =2>0.

In Table 4.4.1 the tail function F(z) = P(X > z) of this “exact” distribution
of X is compared with Panjer’s approximation from Theorem 4.4.2, where
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we put § = 1. Here the exponentially distributed claim amount U has
been transformed into a discrete random variable according to the rule
Un = h|U/h}, where |z] = max{n € IN : n < z}. In the fourth column
of Table 4.4.1, an alternative approximation to F(z) is stated which uses
the continuous version of Panjer’s algorithm given in Theorem 4.4.4. We first
computed fx(kh), 1 < k < 1000, from (4.4.18) using the trapezoxd method to

perform the integration. Then we used the approximation f( k—1)h fx(x)dr =

hfx(kh) and Fx(kh) & Fx((k — 1)h) = hfx (kh).
T exact discrete Panjer continuous Panjer
h=0.01 h=0.01
0.2 0.999 457 6849  0.999 467 0538 0.999 087 9445
0.4 0.999 285 7597 0.999 297 1743 0.998 915 6727
0.6 0.999 099 8702 0.999 113 4705 0.998 729 4395
0.8 0.998 900 1291 0.998 916 0536 0.998 529 3566
1.0 0.998 686 6458 0.998 705 0343 0.998 315 5350
2.0 0.997 416 9623  0.997 449 7336 0.997 044 1967
4.0 0993909 1415 0.993 980 7697 0.993 533 2344
6.0 0989196 0212 0.989 319 4873 0.988 817 1510
8.0 0.983 3754927 0.983 563 2134 0.982 993 7890
10.0 0.976 539 7011  0.976 803 5345 0.976 155 2479

Table 4.4.1 Panjer’s algorithm for a negative binomial compound

Bibliographical Notes. The recursive computation method considered in
Theorem 4.4.1 has been given in Dhaene and Vandebroek (1995) extending
the algorithm established in Waldmann (1994) for the individual life insurance
model {see Corollary 4.4.1). Another recursive procedure for computing the
probability function of the aggregate claim amount in the individual model
with arbitrary positive claim amounts has been derived in De Pril (1989).
The recursion formula (4.4.6) is due to De Pril (1986). The efficiency of these
algorithms as well as recursive procedures for approximate computation of the
Dk, as in (4.4.11), are discussed, for example, in De Pril (1988), Dhaene and De
Pril (1994), Dhaene and Vandebroek (1995), Kuon, Reich and Reimers (1987),
Waldmann (1994,1995). The recursion formula (4.4.14) is due to Panjer (1980,
1981); see also Adelson (1966). Recursions for the evaluation of further related
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compound distributions are developed, for example, in Schroter (1990) and
Willmot and Sundt (1989}, where a kind of twofold Panjer-type algorithm is
considered. The application of Panjer’s algorithm for computing the stop-loss
transform I, = E(X — n); is considered in Gerber {(1982). For reviews
see Dhaene, Willmot and Sundt (1996), Dickson (1995) and Panjer and
Wang (1993).

4.5 LUNDBERG BOUNDS

In this section we investigate the asymptotic behaviour of the tail Fx(z) =
P(X > z) of the compound X = Eﬁ_.l U; when x becomes large. As usual,
we assume that the random variables N, Uj, Us, ... are independent and that
Ui, Us,... are identically distributed with distribution Fy;. In addition, we
will assume in this section that Fy has a light tail; the subexponential case
has already been mentioned at the end of Section 4.2.1.

4.5.1 Geometric Compounds

First we consider the case where N has a geometric distribution with
parameter p € (0,1). Then the compound geometric distribution Fx is given
by

Fx(z) =Y _(1-p)p*Fi(2)- (45.1)
k=0

Writing the first summand in (4.5.1) separately, we get
Fx =(1-p)do +pFy*Fx (4.5.2)

which is called a defective renewal equation or a transient renewal equation.
Such equations are analysed in Section 6.1.4, where in Lemma 6.1.2 it is shown
that the (bounded) solution Fx to (4.5.2) is uniquely determined. Moreover,
replacing the distribution Fx on the right-hand side of (4.5.2) by the term
(1 — p)do + pFy * Fx and iterating this procedure, we obtain

Fx{(z) = lim F,(z), z>0, (4.5.3)

n—=00

where F,, is defined by the recursion
Fp = (1 - p)fo + pFy * Fay (4.5.4)

for all n > 1 and Fp is an arbitrary (initial) distribution on R.
Assume additionally that the distribution Fy is such that

my(y) =p~ (4.5.5)
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has a solution v > 0, which is usually called the adjustment coefficient If no
explicit solution to (4.5.5) is available, then it is not difficult to solve (4.5.5)
numerically. A statistical method for estimating v from empirical data will be
discussed in Section 4.5.3 below.

|
¥
I
I
1
vy s
Figure 4.5.1 Moment generating function

If we say that (4.5.3) has a solution v > 0, then we tacitly assume
that my(s) < oo for all 3 < +. The existence of a positive solution v to
(4.5.5) is guaranteed if the abscissa of convergence of Fy; is positive, that is
ay = limsup,_, . -z~ 'log Fy(z) > 0, and if 7hy(ay) = oo, as is usually the
case. The uniqueness of such a solution 4 > 0 to (4.5.5) can be seen from
Figure 4.5.1.

We get the following lower and upper Lundberg-type bounds for the tail of
the compound distribution Fx. Let zo = sup{z : Fyy(z) < 1}.

Theorem 4.5.1 If X is ¢ geometric compound with characteristics (p, Fy)
such that (4.5.5) admits a positive solution vy, then

a-e " < Fy(z)<are ", >0, (4.5.6)
where
e Fy(x) e Fy(x)
- = inf —m————, 2y = SUp —g———"—. (4.5.7
z€[0,20) fz e dFy(y) * ze[ogo) f:o evdFy(y) ( )

Proof To get the upper bound in (4.5.6), we aim to find an initial distribution
Fp such that the corresponding distribution F; defined in (4.5.4) for n = 1
satisfies

F(z) > Fo(z), z>0. (4.5.8)
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Then Fy « Fi(z) > Fy * Fy(z) for £ > 0 and, by induction, Fy,4y(x) > Fu(z)
for all £ > 0 and n € IN. In view of (4.5.3), this means that

Fx(z) < Fo(z), z2>0. (4.5.9)

Let Fo(z) = 1 —ae™® = (1 — a)dp(z) + aG(x), where a € (0,1] is some
constant and G(z) = 1 — exp(—~z). Inserting this into (4.5.4) we get

F1 (l‘)

i

1=p+5((1 - Fole)+a [ Gle - 1) aFoe)

4
1-p+p(Rule) - a [ eV arw),
0
for all x > 0. Since we want to arrive at (4.5.8) we look for a such that
z
1 —p+p(FU(:c) - a/ e V=—y) dFu(y)) >1—-ae ™", z>0. (4.5.10)
0

This inequality can be simplified to a{l — p f; e dFy(y)) > pe’*Fy(z),
which is trivial for £ > 2. Using

&0

o <] T
1=p [ ewarue)=p [ eMaRG)+p [ eV aFuly)
0 0 T
we notice that (4.3.10) is equivalent to ap f:c e dFy(y) > peFy(z).
Hence, setting a, = suUp,¢(pz0) €"* Fu(@)([f;° " dFy(y))™" we get (4.5.8)
and consequently (4.5.9}. From this the upper bound in (4.5.6) follows. The
lower bound in (4.5.6) can be similarly derived. O

Corollary 4.5.1 Suppoese that Fy is exponential with parameter 6. Then
v =61 - p), @~ = ay = p and, consequently,

Fxlz) =pe~1-P¥z >0, (4.5.11)

Proof Note that Fy(z) = 1 — exp(—4z) implies that the solution ¥ > 0 to
(4.5.5) satisfies the equation pé(d — )~} = 1. Thus, v = §(1 — p). Moreover,
by inspection we get e?* Fy (z)(/, :o edFy(y)) ' =pforz >0. o

A generalization of formula (4.5.11) is given in Lemma 8.3.2 below, for the
case that Fi; is a phase-type distribution.

Remark For the constants a— and a appearing in Theorem 4.5.1, we
obviously have a. < a4. Moreover, since fx°° eWdFy(y) > e"*Fy(x), we
conclude that a, < 1. Furthermore, note that

[ evdFu(y)

x
" BV | U>z =/ e"VdFy.(y),
o Fy () (e | ) A U,z (y)
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where the residual hazard distribution Fy, at  was defined in (2.4.8). If Fy is
'DHR, then by Theorem 2.4.2, the value of E (¢"V~%) | U > z) is increasing
in z. Analogously, for Fy bemg IHR the above is decreasing in x. Hence
ay = 1/y(y) = p for Fy being DHR (by our definition it cannot have an
atom at zero) and, if Fy is IHR, a3 = limzme0 € Fy(z)(f° e dFy(y))~".

4.5.2 More General Compound Distributions

Generalizing the previous results, we now only assume the existence of a
constant 8 € (0,1) such that the distribution of IV is stochastically smaller
than the (1 — pg)-modification of the truncated geometric distribution TG(#).
More precisely,

{pe} <st {Pk} = Podo + (1 — po)TG(8), (4.5.12)

which is equivalent to 7j41 < (1 — po)? for all j € IN, where r; = E‘,f’:j Dk.
Note that the inequality (4.5.12) holds provided that

riq1 < 0r;, i>1, (4.5.13)
because r; =1 —pg = Y o, p} and because (4.5.13) yields

o0 o0
rin SO =Y (1-6)8Fr = Y (1-po)(1- )6+ (4.5.14)
k=j k=j+1

for all j > 1. However, in general, (4.5.13) does not follow from (4.5.12).
Theorem 4.5.2 If (4.5.12) holds for some 8 < 1, then

Fx(z) < 1 ;ma+e"" , z>0, {4.3.15)

where v > 0 fulfils 1 = hy(y) and ay is defined by (4.5.7).
Proof Since for z > 0, the tail Fx(z) can be represented by

oo k-1
FX (z) = Zp" Z (Féj(x) _ F['}(j"'l)(z))

k=0  j=0
= 3 3 n(R@-E).
J=0 k=j+1
we get from (4.5.14)
Fx) < 5B Y (1-08* (R - FV0)
3=0 k=j+1

- I‘T”“@ - 2(1 A

k=0
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Applying Theorem 4.5.1 to the right-hand side, we get (4.5.15). ]

The logconcave probability functions {p; } form a subclass of IHRy and lead
to further improvements.

Corollary 4.5.2 If {pi} is logconcave with pg + p; < 1, then

Al (1 —po)® -
K _ e
Fx(z) 1 . aje %, z2>0, (4.5.16)

where ay is defined as in (4.5.7) and v > 0 is the solution to the equation
R 1-po
m = ———, 4.5.17
o) = o (4.5.17)
Proof In view of Theorem 4.5.2 it suffices to show that (4.5.13) holds with
6 =(1-po—p1)(1 —po)~}. Clearly we have ror;' = (1 — po — p1)(1 — po) 2.
Note that the ratio r;;1/r; is decreasing because, by assumption, the ratio
Pj+1/p; is decreasing and that
Tj+1 1- 1
ri - 1+ Pj+1 + Pj+2 Dj+1 + Pj+3 Pj+2 Pj+1 +

Pi  Pi+v1 Pj  Pj+2Pj+1 Py
Hence (4.5.13) holds and consequently (4.5.12) holds as well. The statement
then follows from Theorem 4.5.2. m]

Note that, unless the counting variable NV is geometrically distributed, the
exponent v in the bounds (4.5.15) and (4.5.16) is not optimal. This can be
seen from the following example. Consider the tail F(x) of the compound
X = Zf;l U;, where N has the negative binomial distribution NB(2,p) and
U is Exp(d)-distributed. If ¥ > 0 is computed from (4.5.17), then

_2(1-p)?s
=—5
However, the advantage of bounds like (4.5.15) and (4.5.16} is their simplicity

and wide applicability. Moreover, in many cases these bounds seem to be
satisfactory.

< {(1-p)s.

4.5.3 Estimation of the Adjustment Coefficient
Let us have a closer look at a slight generalization of equation (4.5.5),
my(s) =c>1, (4.5.18)

which appears over and over again in risk theory. Assume that we have a
sample Uy, Us, ..., U, of n independent claim sizes with common distribution
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Fy. How do we get an estimate for the unknown solution v+ > 0 to
(4.5.18) based on this sample? A rather natural procedure is to replace the
moment generating function riy(s) by its empirical analogue, the empirical
moment generating function i, (s), which is obtained as the moment
generating function of the empirical distribution Fy,. The latter has been
defined in Section 2.6.1 by F,(z) = n~! max {i : Uy < z}. Hence riF,(s) =
fo°° e**dF,(z) = n~' Y1, e®Vi. It seems natural to define an estimator ¥,
for ¢ by the equation

NS -
mr, () = n Ze" =c. (4.5.19)
i=1
We show that this procedure can indeed be followed. The proof is based on

the following consistency property.

Lemma 4.5.1 Assume that ay > 0 and thy(ay) = 0o. Then for any closed
interval I C (—oo,ay) and any k € IN

lim sup | (s) — iy (s)| = 0. (4.5.20)
sel

n—+od

The proof of Lemma 4.5.1 is left to the reader. Note that (4.5.20) implies that
4n — v with probability 1.

Theorem 4.5.3 If 2 lies inside the region of convergence of the moment
generating function 1y (s), then

. h(27) = (g (DR _ fo _ Vare®V
Vi -1 SN(o, P ) =n(o, W) .

Proof We start from the two equations (4.5.18) and (4.5.19) and write

1< <
—p—e = — E FnUs _ o7Us yU; ~U
0 [ C= l'1((8 e )—(e —Ee ))

We now represent the difference eVt —e?Y" as an integral of the form [ : e*dz
and apply the mean value theorem to get

el _ o7l — oOn iU (¥ — s,

where O, ; lies in the interval determined by ¥, and 7. Thus, we get
equivalently

n n
Y eSmili(q, - Ui + Y (e -EeY) =0.

i=1 i=1
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Solving for the difference 4, — v we get the fundamental equation

n-1 /2 e'yb. Ee'l

\/ﬁ('?n -7 = ~lzz ( PCAT z ) - (4-5*21)
In the numerator we can immediately apply the central limit theorem since
that quantity converges in distribution to a normal distribution with variance
equal to that of 'V, i.e. Vare"V = iy (2y) — (7ai:(7))?. The application of the
central limit theorem is, however, only possible if the value 2+ lies in the region
of convergence of 1hy:(s). By Lemma 4.5.1 we have 4, — v and consequently
©,.i = 7. Thus, the denominator in (4.5.21) converges by the law of large
numbers and the bounds on O, ; to the quantity E (e"VU) = m}})m, which
always exists, since within the region of convergence the moment generating
function 7y (s) is infinitely often differentiable. The above, together with a
Slutsky argument in (2.1.14), gives the desired result. O

The variance of the limiting normal distribution in Theorem 4.5.3 depends
both on the unknown value of ¥ and on the moment generating function rhy (s)
that is usually unknown as well. In practice one will, of course, use the result
in an empirical form where the unknown quantity + is replaced by the sample
variable 4,, while fhy (s) is similarly replaced by mif, (3).

Bibliographical Notes. The results of this section are essentially due to
Wilimot (1994,1997a,1997b) and Willmot and Lin (1994,1997a); see also
Willmot and Lin (1997b). The idea of the actual proof of Theorem 4.5.1 is
from Bergmann and Stoyan (1976). An algorithm for the numerical solution of
(4.5.5) can be found in Hipp and Michel (1990). Other bounds for compounds,
asymptotically better than those given in this section, can be found in
Runnenburg and Goovaerts (1985); see also Kalashnikov (1997). For the
case of Pascal compounds, we refer to an application of renewal theory.
Theorem 4.5.3 is due to Csorgd and Teugels (1990).

4.6 APPROXIMATION BY COMPOUND
DISTRIBUTIONS

Consider the aggregate claim amount X" = "% | U; in the individual model,
where we assume that the random variables Uy, ..., U, are independent, but
not necessarily identically distributed. As in Section 4.1, let the distribution
Fy, of U; be the mixture Fy, = (1 — 8;)80 + 0;Fy,, where 0 < 8; <1 and Fy;
is the distribution of some (strictly) positive random variable V;. Remember
that in actuarial applications the weight 6; is small for each ¢ and can be
interpreted as the probability that the i-th risk produces a positive claim.
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If we want to compute the percentile premiums for the risk X®4, one has to
know the distribution of X*4, Without the help of computers, this is a difficult
task, especially for large portfolios. However, in some concrete situations the
computation of the distribution of the aggregate claim amount in collective
models is much easier. This is particularly true when N follows a Poisson,
binomial or negative binomial distribution. Hence, a lot of effort has gone into
finding the best possible fit of the individual model by a collective model. In
Section 4.4.2, we explained the reason why the compounds appearing in such
collective models are computationally tractable. Let us start from a collective
model with the aggregate claim amount X = "~ U! but where U}, U3, . ..
are independent and identically distributed. We have to evaluate the quality
of the approximation between X®9 and X°°. Possible choices to define a
distance between these two quantities are, for example, the supremum distance

dsp (X, X°%) = sup |P(X™ < z) - P(X*' < 2)] , (4.6.1)
20

the stop-loss distance

dsp (X", X°) = sup [E (Xind _g), —E(X* - )4 | (4.6.2)
z2>0

or the total variation distance

dry(X™d, X%y = sup |[P(X'™ e B) - P(X* € B)|. (4.6.3)
BeB(R)

Clearly, dsp (X, X°) < dry (X4, X001).

The Compound Poisson Approximation The idea is to approximate
each random variable U; by a Poisson compound Y; with characteristics
(0:;, Fy,). Note that EU; = EY;. Taking Yj,...,Y, independent,
Theorem 4.2.2 implies that Y = ¥; + ... + Y, is a Poisson compound with
characteristics (), F) given by

A=> 6, F=) %Fvi : (4.6.4)
s=1 i=1

The Compound Binomial Approximation Here, the compound is
binomial with N Bin(n, p)-distributed, where p = A/n, U] has the distribution
F, and A, F are as in the compound Poisson approximation.

The Compound Negative Binomial Approximation Now N is taken
to be NB(n, p/(1 + p))-distributed, where p = A/n, U/ has the distribution F,
and A, F are as in the compound Poisson approximation.
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We leave it to the reader to check that in all the cases considered above
E X" = E X! and Var X' < Var X°!. Furthermore, the variances of the
aggregate claim amounts in the approximating collective models are in the
following ascending order: binomial model, Poisson model, negative binomial
model.

4.6.1 The Total Variation Distance
Let F and G be two arbitrary distributions on R and let
div(F,G) = sup |F(B)-G(B)|. (4.6.5)
BeB(R)

Note that the mapping (F,G) = drv(F,G) is a metric, i.e. drv(F,G) =0 if
and only if F = G, dyv(F,G) = dyv(G, F) and dyv(F;, F2) < dyv(Fy, F3) +
dyv(F3, F3) for arbitrary distributions Fy, F3, F3 on R.

Lemma 4.6.1 An eguivalent form of (4.6.5) is

drv(F,G) = BESggR)(F(B) - G(B)).

Proaf The assertion follows directly from
F(B) - G(B) < |F(B) — G(B)| = max{F(B) — G(B), F(B°) - G(B“)},

where B°¢ denotes the complement of the set B. m}

Lemma 4.6.2 Let F = Y00 pidi and G = Y 2,0 be two discrete
distributions. Then drv(F,G) = 2-1 Z:O lp: — gil-

Proof Let C = {i : p; > ¢;}. Then F(C) — G(C) > F(B) — G(B) for all
B € B(R). Therefore we have

> lpi - @il Stpi—a)+ Y (g —pn)

i=0 ieC neCe
F(C) — G(C) + G(C*) - F(C°)
2(F(C) - G(0O)) 2 AF(B) - G(B))

for all B € B(R). This completes the proof in view of Lemma 4.6.1. m]

Il

Let X and Y denote random variables with distributions F and G,
respectively; then we also write drv(X,Y) instead of drv(F,G).

Lemma 4.6.3 Let Xq,..., X, and Y1,...,Y, be two sequences of independent
random variables. Then

drv (L X 3 %) < 3 dv (X ). (466)
=1

i=1 j=1
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Proof By F; and G; we denote the distributions of X; and Yj, respectively;
1 € i < n. First we show that (4.6.6) holds for n = 2. Namely,

drv(X: + X2, Y1+ Y3)
00 oC
= sup| / F\(B - 2)F(dz) — / G:(B -a:)Gz(da:)|
B /-0 —o0

= sgpl /_ Z Fi(B - 2)Fy(dz) - /_ z G1(B - z)Fy(dz)
+ / " G\(B - £)Fy(dz) - /_ Gi(B - z)Gz(dx)'
= sw| [ AE-oR) - [ 6E-R@)
+ / ” Fy(B - £)G, (dz) — /_ Go(B - 7)G, (d:c)l
= sup| / " (Fi(B = 2) - G1(B - 2)) Fa(dz)
B Y_oc

+ / (BB - 1) - Ga(B - 2))Ga (da:)l
< S‘IIBPIFl(B) - G1(B)| +5‘;P|F2(B) - G2(B)}.

The general case follows by induction, replacing 73 by F; # ... % F,, and G
by G2 * ... * G, in the above. [}

4.6.2 The Compound Poisson Approximation

We next investigate the distance between the distribution of the risk
X = Y i, Ui in the individual model and the distribution of the Poisson
compound ¥ = YT Y; with the characteristics (), F) given in (4.6.4),
where the Y1,...,Y, are independent Poisson compounds with characteristics
(91, FV; ), ooy (On, Fv") respectively.

Theorem 4.6.1 The following upper bound holds:

n

drv(X,Y) < > 67 (4.6.7)

=1
Proof We first compare the distributions of U; and Y;. For each B € B(R),

P(U; € B) - P(Y; € B)
= (1—6;)(B) + 6:Fy;(B)
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— (e7%60(B) + 8ie™" Fy (B) + Z e-"' (Fv)*(B))
k—2
< (1-6:)60(B) + 6, Fy,(B) — e~%60(B) — 8:e™% Fy;(B).

Thus, using 1 — §; < e~% we obtain
P(U; € B) - P(Y; € B) < 0;Fy,(B)(1 —e~%) < 0?Fy,(B) < 6°.

Lemmas 4.6.1 and 4.6.3 now imply drv(X,Y) < 30 drv(Ui, Vi) < X0, 62
This proves the theorem. O

4.6.3 Homogeneous Portfolio

Theorem 4.6.1 tells us that the compound Poisson approximation is good if
the probability 8; that the 4-th policy produces a positive claim is small for
alli = 1,...,n, in comparison to the number n of policies. If it is possible
to group the I'lSkS Uy,...,U, into almost identically distributed compound
risks 370 Ui, 302, 1 L -+ 2i=n,+1 Ui then still another bound for the
appm\umatlon error dry (X Y) can be given. This grouping procedure
is sometimes called a homogenization of the portfolio. For homogeneous
portfolios we get a better bound than in (4.6.7) if 31, 6; > 1. Since in
practice we deal with large portfolios, this condition seems to be realistic.

Theorem 4.6.2 For a homogeneous portfolio, i.e. Fy, =...= Fy, = F,
n o2
drv(x,y) < 2=l (46.8)
iz i

In the proof of Theorem 4.6.2 we use the following auxiliary results. Let
I,.... I, be independent Bernoulli 0-1-variables with P(l; = 1) = 6.
Furthermore, take N Poisson distributed with parameter A=3Y1,6; and
independent of Ij,...,I,. Define N = Yo, L with pf = P(N' = k) and

probability genera.tmg functlon g (8) = ;= (1—0;+8:s). Then the following
is true.
Lemma 4.6.4 I[f Fy, =... = Fy, = F, then

Fy, *...+ Fy, = Z pLF*, (4.6.9)

Proof We show that the Laplace-Stieltjes transforms of the distributions on
both sides of (4.6.9) coincide. Indeed, for the transform [y, +..+v. (8) we have

iU;+...+U.. (8) = Hiui (3) = H((l -8+ 0.-/0 e " dF(.’L'))
i=1 =1
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= Sa([ ear@)’

j=0

where the last expression is the Laplace-Stieltjes transform of }:;.'___1 p;F*".
This proves the lemma. )

Lemma 4.6.5 If Fy, =...= Fy, = F, then

drv(X,Y) < drv(N',N). (4.6.10)
Proof Let C = {i € {1,...,n}: p} > p;}, where p; = P(N = i). Then from
Lemma 4.6.4 we get that, for each B € B(R),

P(XeB)-P(YeB) = Z piF*(B) - z p:F*(B).
=0
Thus,
P(X€B)-P(Y €B) < Z(p' pi)F™(B) <) _(Fi - pi)

ieC
P(N’ €C)-P(N €C)<Ldrv(N',N),

where the last inequality follows from Lemma 4.6.1. Taking the supremum
over all B € B(R) and using Lemma 4.6.1 again, we get (4.6.10). O

Proof of Theorem 4.6.2. In view of Lemma 4.6.5 it suffices to show that

2
drv(N',N) < ZE‘-Z— (4.6.11)
i=1

Let B C IN be an arbitrary set of natural numbers. Furthermore, let
Cr ={0,1,...,k — 1} and define

1
9(k) = - (B(N € BNCy) - P(N € BYP(N € Cy)) (4.6.12)
for k=1,2,...; weset g(0) = 0. Since (k + 1)pr+1 = Apk, we have

Ag(k + 1) — kg(k)

?»1; (P(N € BN Cry1) - P(N € B)P(N € Cra1))
- l (P(N € BNCi)—P(N € B)P(N € Cy))

= — (P(N € BN {k}) - P(N € B)P(N =k))
= Jk(B) P(N € B). (4.6.13)
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Consequently,

P(N'e€B)-P(N€B) = E (65(B)-P(N € B))
= E (Ag(N'+1)— N'g(N")) .

With the notation N =1, + ... + I,_; + Iiy; + ... + I, this yields

P(N'eB)-P(NeB)= Xn:E (8:g(N' +1) — Lig(N"))

i=1

D E((1-6)0:g(ND + 1) + 67g(ND +2) — 8,9(ND + 1))
t=1
Y 6FE (g(NW +2) — g(N® +1)).

i=1

From the last equation, we see that for (4.6.11) it suffices to show that
g(k + 1) — g(k) < A7! holds for all kK = 1,2,.... Since from (4.6.13) we

get
Ag(k + 1) = g(k)) = 6 (B) — P(N € B) + (k — Ng(k),

it suffices to show that
(k — M)g{k}) < P(N € B}, k=12,.... (4.6.14)
First consider the case & > A. Then

P(N € BNCy) - P(N € B)P(N € Cy)
< P(N € B)P(N ¢ Cx) = P(N € B)P(N > k)

. = X P(N € B)
= P(N € B) px ;mklgkpk—m—.

Together with the definition (4.6.12) of g(k), this results in (4.6.14) for k > .
On the other hand, if k¥ < A, then (4.6.12) yields

*k;pkk (P(N € B)P(N € Cx) — P(N € BNCy))

< iZfP(N € B)P(N € Cy)
kpy

(k — Ag(k)

and thus (4.6.14) for k < X because (A — k)P(N < k — 1) < kpx. mi
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4.6.4 Higher-Order Approximations

We show how the compound Poisson approximation discussed in Sections 4.6.2
and 4.6.3 can still be refined further. A numerical example will be given in
Section 4.7.

For notational ease, we first consider the special case of a portfolio consisting
of a single policy (n = 1). Then the distribution F of the claim amount X
can be given in the form F = (1 — 8)§p + 8Fy, where 0 < § < 1 and Fy is
the distribution of some positive random variable V. For the characteristic
function p(s) of X we have

@(8) =1+8{@v(s) —1). (4.6.13)
If 8¢y (s) — 1} < 1, then we can rewrite (4.6.15) in the following way:

#(a) = exp(log(1 + 8(v (3) ~ 1)) = exp(Z 0 gt o () - 1%).

(4.6.16)
Thus, for 8|¢v (s) — 1} < 1, we can approximate ¢(8) b

Pr(8) = exp (Z (= 1) 0"((,0 (s)-1) ) r>1. (4.6.17)

k.—

We prove that ,(s) is the characteristic function of a certain signed measure
H, on R, ie. $.(s) = [ei**dH.(t). It turns out that H, is a good
approximation to F if r is large enough. Here and in the following, under
the notion of a (finite) signed measure M we understand a o-additive set
function M : B(R) — R for which [M(B)| < oo for all Borel sets B € B(R).
An application of the one-to-one correspondence between distributions and
their characteristic functions to (4.6.17) shows that H; is the compound
Poisson distribution with characteristics (@, Fy). This fact provides a first-
order approximation to F. Analogously, H, is called the r-th order Kornya
approzimation to F'. We show that H, is of the compound-Poisson type with
certain characteristics (A, G,), where A, > 0 and G, is a signed measure.

Theorem 4.8.3 For each r > 1, p.(3) is the characteristic function of the

signed measure
o0

- N i
Hy=e™) ?!t(;,J : (4.6.18)
=0
here, A, = Y 1_, 6% [k, while G, is a signed measure on R with G,.(B) = 0
for all B € B({—oc,0]) which solves the equation

Z = 1) 9"(F 80)™* = Ar(Gr — &) (4.6.19)

k=1
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Before proving Theorem 4.6.3 we state some elementary but useful properties
of signed measures. Let My, M5 : B(R) - R be two signed measures. The
convolution M; * My of M; and M; is the signed measure given by

My + My(B) = / / 18z +y)dMi(2)dMs(y), B € B(R).

The n-fold convolution M*® of a signed measure M is defined recursively by
M*® = g5, and M** = M*(*~DeM n > 1. It is easily seen that the ezponential
set function exp(M) of a signed measure M, i.e. exp(M) = Y 5o (kD)1 M*¥,
is a well-defined (finite) signed measure. We leave it to the reader to prove
this. It is also well known that each signed measure M can be represented as
the difference M = M, — M_ of two (nonnegative) measures M, M_, called
the Hahn-Jordan decomposition of M. The total variation of M is given by
HM|l = M4 (R) + M_(R). We will need the following auxiliary result.

Lemma 4.6.6 Let M, M;, My be arbitrary signed measures on R. Then
(a) exp(Par(s)) is the characteristic function of exp(M),

(b) exp(M; + M) = exp(M;) * exp(Mz),

(c) || My * Ma|| < [[M]} || A2l

(d) [lexp(M) — Gof| < Ml —1.

The proof of Lemma 4.6.6 is left to the reader.

Proof of Theorem 4.6.3. Consider the signed measure

H,:exp(z( D+ 0"(F 50)*"). (4.6.20)

k....
Then, by Lemma 4.6.6a, ($.(s) is the characteristic function of H,. Note that
1 . " 6%
> i~y on = -3 &

k=1 k=1
and Yp_, (~1)*F1(0*% k) (Fy — &)**(B) = 0 for all B € B((—00,0)). Thus,
there exists a signed measure G, on R satisfying (4.6.19) and such that

G,(B) = 0 for all B € B((—00,0]). Now, by Lemma 4.6.6b, (4.6.19) and
(4.6.20) give H, = exp(A+Gr — Apbp) = e"‘" EJ-O()\J /NG,

For the more general case of the individual model describing a portfolio
of n policies, we can approximate the distribution F' of the aggregate claim
amount X" = Y% U; in a completely analogous manner. Defining

H, = exp(zz = 1) 9"(Fv 60)"") (4.6.21)

i=1 k=1

we can derive the following error bound.
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Theorem 4.6.4 Fori =1,...,n, let §; < },& = r—_lﬁ(20,~)"+1(1 - 26;)7%,
and £ = Yo, &. Then drv(F,H;) < ef —1.
Proof Note that, by (4.6.16), we have the following representation of F:
1 .
_exp(zz( ) 0!:(1;1‘/I 5 ) k)
i=1 k=1

Thus, using Lemma 4.6.6,

drv(FHy) = ||F - H,l
n o
= "exp(zz (—1’:""‘1 0 (Fy, — 50)":)
=1 k=1 ot
~exp(}° ) Lok (p, - 5|
i=1 k=1
= |F+ (6g—exp(k§;1 ‘;( D" gt (R, — 5)*))|
< 1FU6-exp( 3 3 EL ok — 50|
k=r+1 =1
= e 2 3-SR -0 -4
k_r+1 =1
< exp(" Z E( 0’° (Fy, — 60)* )—1‘
k=r+1 i
Since “Z;":H_l S (~DFFETOR(Fy, — 80)*%]| < & the proof of the
statement is complete. O

Similarly to the case n = 1 considered in Theorem 4.6.3, the Kornya
approximation H,. defined in (4.6.21) can be represented as a signed measure of
the compound-Poisson type with some characteristics (A, G,). For example,

=+ E), n=3 (%)
=1 i=1
and

Gr= 1 i((ei +O)Fy, - SOF7),

n

Gs = /\%Z((Gi +6? +63)Fy, - (07’2 +‘9?)F€Z~2 + ? ‘?-3)-

i=1
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Inserting these formulae into (4.6.18) and applying the Fourier transform
method (see Section 4.7) to the signed measure H,. of the compound-Poisson
type, reliable approximations can be obtained. For a practical illustration, see
Figure 4.7.2.

Bibliographical Notes. The compound Poisson approximations given in
Theorems 4.6.1 and 4.6.2 have been derived in Barbour and Hall (1984).
More error bounds can be found in Gerber (1984). For example, it is
shown that for the compound Poisson approximation to the individual
model dgi (X4, X°!) < Y7 | 8?uy,. Further, in the individual model with
deterministic claim sizes V;, dg (X'™"d, X°l) < 2=t §2uy, . The total
variation distance between Bin(n,p) and the distribution of Z?=1 I;, where
L,..., I, are independent Bernoulli random variables with P(; = 1) = 6;
and p =} ., 0; is given in Theorem 9.E in Barbour, Holst and Janson (1992).
Bounds with respect to the metric dgp are studied in Hipp (1985) and
Kuon, Radke and Reich (1991). Further bounds are given in de Pril and
Dhaene (1992), where the individual risk model is approximated by compound
Poisson models with more general characteristics than those given in (4.6.4);
see also Barbour, Chen and Loh (1992) and Dhaene and Sundt (1997). Higher-
order approximations to the compound-Poisson type have been introduced
in Kornya (1983) and Hipp (1986); see also Dufresne (1996) and Hipp and
Michel (1990).

4.7 INVERTING THE FOURIER TRANSFORM

Besides the algorithms presented in Section 4.4, we can use a formula for
inverting the Fourier transform when calculating the probability function of
a discrete random variable. In particular, this inversion formula can be used
to calculate the probability function of the compound Zf___l U when the
claim sizes Uy, Us,... are lattice. In comparison to Panjer’s algorithm, this
method has the advantage that no special assumptions on the distribution of
N are needed. Recall that the characteristic function of an IN-valued random
variable with probability function {pi} is given by the Fourier transform

o0
p(s) =) e*p, s€eR. (4.7.1)
k=0
It is useful to introduce the Fourier transform in a more general situation.

For some fixed n € IN, consider a sequence pg,pi,...,Pn—1 Of arbitrary real
numbers. The Fourier transform 3a)(s) of {po,..-,Pn—1} is defined by

n—1
Ppmy(s) =Y €, seR. (4.7.2)
k=0



142 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

Clearly, if {po,..-,Pn—1} is a probability function, then @,)(s} is the
characteristic function of {py, p1,...,Pn-1}. We now show that the row vector
P = (Po,Pi,---,Pn—1) can be calculated from limited information on the
Fourier transform {(,)(s). Assume that the values ¢, (s;) of $(n) are given at
the points 8; = 2rj/n for j = 0,1,...,n— 1. Write these values of the Fourier
transform Q(n,)(s) as a row vector @ = (P(n)(30),-- -, P(n)(8n-1)). Then

¢ =Fp', (4.7.3)

where F is the n X n matrix given by

1 1 1

1 ei21r/n . ei21|'(n—1)/n
F= (eiajk)j,k= poet=1 ei.;jo eis.,-l eisj(;l—l)

i ei21r(n.—1)/n ] ] ei2n(n;l)2/n

and 7 is the transpose of z. Note that the rows of F form orthogonal vectors
because

n—1 n—1 elts;—sedn _ )
Zei“jkeis[k - Z eilsi—se)k _ PIOET Y =0 forj#¢,
k=0 k=0 n for j =¢.

Therefore the inverse matrix F~! of F is given by

F'= (le"”‘j) .
n §.k=0,...,n~1

Thus, from (4.7.3) weget p' = F ', ie. foral k=0,...,n—1

1 n-—1 A "
Pe = Zcp(,,) (sj)eok . (4.7.4)
Jj=0

Note that computing p directly from ¢ requires n? operations. However,
if n = 2™ for some nonnegative integer m, then there exist algorithms with
complexity of order nlog, n. For this reason, the corresponding procedure
for computing po,p1,...,pn—1 on the basis of (4.7.4) is called the fast
Fourier transform (FFT) or the inverse fast Fourier transform (IFFT).
These procedures are available in many software packets like MAPLE,
MATHEMATICA or MATLAB.
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Amount at risk
8; 1 2 3 4 5 6

002 3 1 - 1 2 -
0.03 - 2 3 - 2
004 - 4 - - 1 -
005 - 3 1 1 - 1
006 - - 3 - - 1

Table 4.7.1 A sample portfolic of 29 policies

Tk k Tk k Tk
1.00000 7 0.19154 14 0.01866
0.67176 8 0.15469 15 0.01246
0.65166 9 0.11344 16 0.00807
0.53802 10 0.08019 17 0.00529
0.43065 11 0.05778 18 0.00336
0.35297 12 0.04053 19 0.00211
0.28675 13 0.02674 20 0.00133

DU N = O

Table 4.7.2 The distribution of aggregate claims

Suppose now that we know the Fourier transform ¢(s) = 3 po,€**pi of
an infinite, summable sequence po,py,... (that is Y yoq |Pr| < 00). Then it
is possible to obtain an approximation to the first n terms po,...,pn—1 of
the sequence py,p1,... by sampling the Fourier transform (s} at the points
8;j = 2mj/n, j = 0,1,...,n — 1. Since for each k = 1,2,... the function
{ei**, s > 0} has the period 27, we obtain

e cc n-—1 n—1
B(si) =D peeE =3 prgne ) = N preteit,
k=0 £=0 k=0 k=0

where py, = 3 g0 Pe+nt for k= 0,1,...,n— 1. The values o, p1, - - ., Pn—1 can
be calculated from {%(s;),j = 0,1,...,n — 1} by the same argument which
led to (4.7.4), i.e.

I =S
o= dlsj)e ™", (4.7.5)
-

Note that p; approximates py, for each k = 0,...,n — 1, since by the assumed
summability of po,p1, .. ., the error pp —pr, = Z?’;l Dr+ne becomes arbitrarily
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Figure 4.7.1 Approximation by compound distributions

small if n tends to infinity. When bounds on the tail of {pi} are available, we
can even estimate the error p; ~— p.

We turn to the compound X = E p=1 Uk, where Uy, Uy, . .. are independent
and identically distributed IN-valued random variables. Assume that the
generating function gnx of N and the values {¥y(s;),7 = 0,1,...,n — 1}
of the characteristic function @y (t) are known. Then the values {@x(s;), j =
0,1,...,n—1} of the characteristic function ¢ x (s) can be computed from the
formula ¢x(s) = gn(Pu(s)), (8 € R), which can be derived as in the proof
of Theorem 4.2.1. Thus, the probability function {pi} of X can be calculated
or, at least, approximated in the way given above.

Example Consider the following portfolio of 29 life insurance policies which
is defined in Table 4.7.1 following a proposal in Gerber (1979). For this reason
we will call it Gerber’s portfolio. The characteristic function of the individual
risk of each policy has the form @g(s) = (1 — 0) + Oke'#**, k = 1,2,...,29,
where 0, is the probability of death and u; is the amount of risk for
the k-th policy. From Table 4.7.1 we see that the aggregate claim amount
Xind = 572 Uy takes values in the set {0,...,96}. Let {ps, k =0,1,...,96}
denote its probabxhztéy function. The correspondmg characteristic funcnon is
given by @(s) = [[,Z, ¥x(s). The computation of the ry = pr + pry1 + .
k=0,1,..., uses the Fourier transform method and is shown in Table 4.7.2.
Other possibilities to compute the r, are provided by approximations
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Figure 4.7.2 Higher-order Kornya approximation, A\; = 1.09, A; = 1.11325,
Az = 1.113976

by Poisson, negative binomial and binomial compounds or by higher-order
(Kornya) approximations, as proposed in Section 4.6. In Figures 4.7.1
and 4.7.2 we present the relative errors of these approximations with respect to
the r; as computed by the Fourier transform method. For Gerber's portfolio,
the relative errors of second-order and third-order Kornya approximations are
practically negligible.

Bibliographical Notes. The computation of the probability function of
a discrete compound by inverting the Fourier transform is reviewed in
Buchwalder, Chevallier and Kliippelberg (1993), Embrechts and Kliippel-
berg (1994) and Kaas (1987). There are other numerical methods to compute
compound distributions where the claim sizes are of lattice type; see, for
example, the algorithms considered in Sections 4.4.1 and 4.4.2. If one wants
to use these methods in the case of general claim sizes, one first has to
approximate the claim sizes by lattice alternatives. Hipp and Michel (1990)
discuss such discretization techniques as well as the error caused by them.
Using a linear upper bound for the concentration function of a distribution
function, they derive a linear bound for the discretization error when a
compound with characteristics ({pi},F) is replaced by a compound with
characteristics ({px}, Fy) and where F}, is a discrete distribution defined by
Fi(z) = F(h(i+1)) for hi < z < h(i+1); h > 0. Second-order approximations
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are derived in Embrechts, Griibel and Pitts (1994). In den Iseger, Smith and
Dekker (1997) an approximation method is proposed which is based on cubic
splines. Panjer and Lutek (1983) examine various discretization methods of
the claim size in order to calculate stop-loss premiums recursively; see also
Kaas (1987). Bithimann (1984) compares the efficiency of Panjer’s algorithm
versus the Fourier transform method.
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CHAPTER 5
Risk Processes

5.1 TIME-DEPENDENT RISK MODELS

In the preceding chapter we considered a risk X, which was an aggregate
claim over a single period. For simplicity we thought of the period being one
year, but other lengths of time would have been possible. Now we consider
the reserve at the end of a number of such periods of equal length. Hence,
we suppose that a sequence X, Xo. ... of risks is given which are assumed to
be independent and identically distributed, where X, is the aggregate claim
over the n-th period (n — 1, n]. Moreover, we assume that X, takes values in
IN and that the common probability function is {pt} = {P(Xn, = k)}. Apart
from the sequence X, X,,... we take into account that constant premiums
are collected during each period. For simplicity we take the premium equal
to 1. Finally, suppose that the initial reserve is equal to ¥ € IN. Then, the
reserve R, after the n-th period is

n
Ro=u+n-3Y X;. (5.1.1)
=1

The sequence {Ry, n € IN} describes the evolution of the reserve checked at
the end of each period. We will call this process the discrete-time risk reserve
process. Stochastic processes of this type in discrete and continuous time are
one of the main subjects of interest in this book. In particular, we search for
the probability that the risk reserve process {R,} ever falls below a certain
critical level.

5.1.1 The Ruin Problem

Obviously, if pp + p1 < 1, then the risk reserve R, can be negative for some
n € IN. This event {R; < 0} U {R; < 0} U ... is called the (technical) ruin
of the portfolio. Some knowledge of the probability that ruin occurs can be
helpful for determining the solvency of a portfolio.

Formally, the probability of ruin is defined in the following way. Consider
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the epoch 74(u) = min{n > 1: R, < 0} when the risk reserve process
becomes negative for the first time and where we put 79(u) = oo if R, 2 0
for all n € IN. Thus, 74(u) is an extended random variable and it is called the
time of ruin (or ruin time). Furthermore,

P(u) =P{R: <0}u{R: < 0}u.. ) = P(74(u) < 00)

is called the (infinite-horizon) ruin probability for the initial reserve u € IN.
If ¥(u) is seen as a function of the variable u, then ¥(u) is called the ruin
function. Another characteristic is the so-called finite-horizon ruin probability
¥(u;n) = P(r4(u) < n) which is the probability that ruin occurs not later
than after the n-th period, n € IN. Unfortunately, in many cases it is difficult
to express the finite-horizon ruin probabilities ¥(u;n) in a closed form. The
infinite-horizon ruin probabilities y(u) are mathematically simpler. As will be
seen in later sections of the book, bounds and approximations to t(u) are
often available, even for more general risk models.

Instead of the risk reserve process, it is sometimes preferable to consider
the claim surplus process {S,} defined by

Sa=d Xi—n, nelN. (5.1.2)

i=]
Then,
Y(u) = P({S1 > v} U{S: >u}uU...) = P(max{S;,Ss,...} >u). (5.1.3)

With the notation Y; = X; — 1, we have

Sa=3_ Y, (5.1.4)

where the ¥1,Y3, . .. are independent and identically distributed. Note that the
random variables Y7,Y53, ... do not need to have the special form Y; = X; — 1.
We can consider a more general sequence Y;,Y5,... of independent and
identically distributed random variables. In particular, the aggregate claims
X1, Xa,... can have a continuous distribution and the premiums collected
during each period can be random, modelled as a sequence X1, X3,... of
nonnegative independent and identically distributed random variables. Then,
Y, = X5, — X,. A discrete-time stochastic process {S,,n € IN} defined by the
sums S, = Z:‘zl Y; of arbitrary independent and identically distributed (not
necessarily integer-valued) random variables Y1, Ys, . . . is called a random walk.
Random walks will be considered in more detail in Section 6.3. Furthermore,
as before, for each u > 0, we can consider the ruin time 74(u) = min{n >
1: S, > u} and the ruin function ¥(u) defined by ¥(u) = P(r4(u) < 00).
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In a random walk setting, the ruin probability ¥(u) is the probability that
the random walk {S,} (strictly) exceeds the level u. The finite-horizon ruin
probability ¥(u; n) = P(74(u) < n) is defined similarly.

From the strong law of large numbers we have that S,,/n — EY . This tells
us that S, — oo provided that EY > 0. Thus, in this case (5.1.3) implies
that ¥(u) = 1 for each u € IN. It can be shown that this result extends to
the case where EY = 0, but the proof given in Section 6.1 requires more
advanced tools. However, if EY < 0, then S,, = —o0, i.e. the maximum
max{Sy, Sz,...} is finite with probability 1 and therefore y(u) < 1 for all
u € IN.

5.1.2 Computation of the Ruin Function

In this section we consider the random walk {S,} with generic increment
Y = X - 1. We assume EY < 0. Note that for the maximum M =
max{0, 51, S2,...} of {Sn} we have ¥(uv) = P(M > u). Furthermore,
M = max{0,Y;,Y1 + S$;,¥; + Sz,...} where §; = Y2, §; = Y2 + Ys3,..
ie.

2 (M+Y),. (5.1.5)
Thus, with the notations gp(s) = Es™,jx(s) = Es*, and p = EX we get
the following result.

Theorem 5.1.1 (a) The generating function of M is

- _(1-p(1-3) 3
gm(s) = NTOETE s€(=1,1). (5.1.6)

(b) The mazimum M of the random walk {S,} has the same distribution as
the geometric compound Zf;l U; specified by p=P(N > 1) and P(U = k) =
P(X >k)/EX, ke N.

Proof (a) From (5.1.5) we have
Gm(s) = = EsM+X-1)4+
= E[ (M+f‘ Do M+ X-120+E[sMXDe M4 X —1=-1]
= ;ZskP(M-f-X =k)+P(M+ X =0)

k=1
= s 'gm(8)gx(8) + (1 —sHP(M + X =0),
Le. (s — l)P(M +X=0)

o (5.1.7)

gm(s) =
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Since limgy; Gar(s) = 1 and limgyy Q_‘,})(s) = E X, L'Hospital’s rule gives
1=PM+X =0)/(1 - p). Thus, (5.1.6) follows from (5.1.7). To prove
part (b), observe that the generating function gy (s) of U is given by

1 1-—gx(s)

du(s) = EX 1-3 (5.1.8)

Hence, from (5.1.6) we get

_(-pQ-9  Q-pQ-s _ 1-p
gx(s)—s  (s-Dpguls) +(1-3) 1-pdu(s)

gnm(8)
Let M = TN | U.. Note that E (s™ | N = n) = (§u(s))". Then

dy(s) = Es¥= iE(sM [N =n)P(N =n)

n=0
= Y (@)™ (1 - p)o” = §u(s)-
n=0

This completes the proof because of the one-to-one correspondence between
distributions on IN and their generating functions. O

5.1.3 A Dual Queueing Model

The intrinsic goal of mathematical modelling is to capture the most important
facts of a real problem into a stochastic framework. For this reason,
mathematical models are rather universal. It may happen that one and the
same model can describe different situations which seemingly do not have too
much in common. A nice example where this is clearly visible stems from
queueing theory.

It turns out that the simple risk model considered above can be used to
analyse a problem of data transmission in a computer network. Suppose that
at each time n € IN a random number of data packets arrives at a node
of the network; in each time-slot [n,n + 1) one packet can be transmitted
provided that at the beginning of this slot at least one packet is waiting. Let
X, be the number of packets arriving at n — 1. As before, we assume that
the IN-valued random variables X;, X;,... are independent and identically
distributed with common probability function {pi}. Suppose that just before
time n = 0 there are Ly packets waiting for transmission. We may assume
that Lg is random, but independent of the X, X,,.... After one unit of time
the number of packets decreases by 1. But at the same time X; new packets
arrive and so (Lg + X — 1) packets are waiting just before the beginning of
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the next slot. In general, the number L,, of packets just before the beginning
of the (n + 1)-th slot fulfils the recurrence relation

Lo = (Lno1 + X — Dy, (5.1.9)

where L, is called the queue length at time n. We leave it to the reader to
show that the solution to (5.1.9) is

L, =max{0,Y,, Yo 1+ Yn,....Le+ Y1 + ...+ Y3}, (5.1.10)

where Y; = X; — 1.
An important auxiliary result is the following duality property expressing a
certain invariance property under inversion of time.

Lemma 5.1.1 Let Y3, Y5, ... be independent and identically distributed. Then,
Yo, Yac1 + Y, .. . Yi+ ...+ YY) 2 (W, Y14 Ys,... . Yi +... 4+ Y3,) for all
n=12,....

Proof Since the random variables Y7, Y, ... are independent and identically
distributed, the random vectors (v3,Ys,...,Y,) and (¥,,Y,_1,...,Y]) have

the same distribution for every n = 1,2,.... Thus, the random vectors
Y,i+Ye,... 9 +...+Y,) and (Yo, Yo + Yooq,...,. Yo + ... + Y1) are
identically distributed. This completes the proof. m]

Now we are ready to state a relationship between the queueing model of
data transmission and the risk model considered above. It says that the limit
distribution of the queue lengths L, can be expressed by the ruin function
¥(u). For simplicity, we assume that Lg = 0.

Theorem 5.1.2 Let Ly =0, p=E X < 1 and ¥(u) = P(M > u). Then,
lim P(L, <u)=1-—19(u), ueIN. (5.1.11)

n—occ
Proof Using Lemma 5.1.1, we get from (5.1.10) that
P(L,>u) = Pmax{0.Y,, Y1 +Y,,....Y7+...+Y,} >u)
= P(max{0,Y;,Y1+Y2,....Yi +...+Y,} > u).

Since max{0,Y1,Y1 + Y¥2,..., Y1 +... + ¥3} < max{0, V1,1 + Y2,.... "1 +
«v.+Yni1}, the limit lim, o0 P(Ly > u) exists. Thus, monotone convergence
yields (5.1.11). o

5.1.4 A Risk Model in Continuous Time

The risks X;, Xs,... considered in the preceding sections of this chapter
can take the value 0 with a positive probability po. This means that in the
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corresponding period no claim occurs. An equivalent model would be obtained
by recording the (random) indices of the periods where claims occur, together
with the corresponding (strictly positive) aggregate claim amounts. We make
this statement more precise. Consider the 0-1 sequence {I,} = {KX, >
0), n = 1,2,...} and define the positions of ones and the distances between
them in the sequence {I,}: 0o = 0, o, = min{k > on_1 : It = 1} and
Tp = 0p — 0n-1; n > 1. The number of ones in the sequence I),..., I, is
N(n) = Y se, Iox < n). Let Uy, Us,... be a sequence of independent and
identically distributed random variables with distribution being equal to the
conditional distribution of X provided that X > 0. Moreover, let the sequences
{N(n)} and {U,} be independent. Then, for the risk reserve process {Rn}
defined in (5.1.1), we have R, < Rl where R}, = u+n — 10" U;. Note
that an even stronger property holds. Namely, for each n = 1,2,... we have
(Ry,...,Rn) & (R.,...,RL).

We can weaken the assumption that the random variables T and U are
IN-valued assuming only that they are nonnegative. Then, a more general risk
reserve model is defined as follows. We are given

e random epochs g1,0z,... with 0 < 07 < 63 < ... at which the claims occur,
where the random variables ¢,, can be discrete or continuous,

e the corresponding positive (individual or aggregate) claim sizes Uy, Us, ...,

¢ the initial risk reserve u > 0, and

e the premiums which are collected at a constant rate 8 > 0, so that the
premium income is a linear function of time.

Besides the sequence {(T,,U.)} of inter-occurrence times and claim sizes,
there are other but equivalent ways to describe the process of arriving claims.
One such possibility is to consider the sequence {{(on,Un)} of arrival epochs
oy and corresponding claim sizes U,, where o, = Y..._, T;. Sometimes, the
random sequence {0} is called a point process and {(on,U,)} a marked point
process; see Chapter 12. Still another approach is based on the cumulative
arrival process {X(t),t > 0}

0 N(t)
Xt)=) Ullox <t)= > Us, (5.1.12)

k=1 k=1

where X (t) is the aggregate amount of all claims arriving in the interval (0, 1]
and the counting process {N(t),t > 0} is given by

N(t) = i Lo <t). (5.1.13)
k=1
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The risk reserve process {R(t), t > 0} is then given by

N(t)
Rit)=u+8t- Y Ui, (5.1.14)

=1
while the claim surplus process {S(t), t > 0} is

N(t)

S(t)y=Y_ Ui-Bt. (5.1.15)
i=1

The time of ruin 7(u) = min{t : R(t) < 0} = min{t : S(t) > u} is the first
epoch when the risk reserve process becomes negative or, equivalently, when
the claim surplus process crosses the level u. We will mainly be interested in
the ruin probabilities ¥(u;z) = P(r(u) < z) and ¥(u) = limz o0 ¥(u; ) =
P(r(u) < oc). Here 1(u;z) is called the finite-horizon ruin probability and
¥(u) the infinite-horizon ruin probability. Alternatively, ¥(u) can be called
the probability of ultimate ruin. We will further need the notion of the survival
probability ¥(u) = 1 — ¥(u).

There is a relationship between infinite-horizon ruin probabilities of risk
models in discrete time and in continuous time. To get 7(u) it is sufficient
to check the claim surplus process {S(¢)} at the embedded epochs g (k =
1,2,...); see Figure 5.1.1. Indeed, the largest value M = max,>¢ S(t) of the

S(t)

Figure 5.1.1 Claim surplus process

claim surplus process can be given by M = maxp>o Y p-; (Ur — 8Tk) and
consequently

¥(u) = P(M > u). (5.1.16)
The representation formula (5.1.16) gives us the possibility to interpret the
ruin function ¥ (u) as the tail function of the stationary waiting time in a
single-server system of queueing theory.
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Note, however, that one has to be careful when comparing finite-horizon
ruin probabilities in discrete time with those in continuous time because in
general

0<t<z

P( max S(t) > u) # P(og%xi(m - BTW) > u).
= T k=1

Anyhow, in order to keep the notation simple we will use the same symbol for
the finite-horizon ruin function in the continuous-time risk model as in the
discrete-time risk model, i.e.

Y(u;z) =P(r(u) <z) = P(o[_lglza_g(z S(t) > u).
Apart from the time of ruin 7(u), there are other characteristics related to

the concept of technical ruin. The overshoot above the level u of the random
walk {S,} crossing this level for the first time is defined by

s@ |

¢

Figure 5.1.2 Severity of ruin and surplus prior to ruin

- _JS(r(u)) —u if (u) < o0,
Y¥u) = {oo ;f (1) = oo.

Note that it is possible to express Y *(u) in terms of the risk reserve process:

o= 0

In other words, Y+ (u) can be interpreted as the severity of ruin at time 7(u);
see Figure 5.1.2.
Another quantity of interest is the surplus prior to ruin given by

Xt(u) = {go— S(r(u)-) ig :EZ% i 2,
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Clearly, X*(u) + Y (u) is the size of the claim causing ruin at time 7(u). In
order to determine the joint distribution of X*(u),Y *(u), we will consider
the multivariate ruin function ¥(u, z,y) given by

Y(u,z,y) = P(r(u) <00, X (u) <z,Y*(u) > ), (5.1.17)
where u,z,y > 0 or its dual
o(u,z,¥) = P(r(u) < 00, XF(u) >z, Y (u) > ), (5.1.18)

when the latter is more convenient. Another characteristic related to the
severity of ruin is the time 7'(u) = inf{t : ¢t > 7(u),R(t) > 0} at which
the risk reserve process {R(t)} crosses the level zero from below for the first
time after the ruin epoch 7(u). Then

R@) |

Figure 5.1.3 Time in the red

iy _ J T(w)—7(u) if r(u) < oo,
T(“)‘{o ’ ilf:(u)zoo,

is the time in the red (see Figure 5.1.3), the amount of time the risk reserve
process { R(t)} stays below zero after the ruin time 7(u). It is clear that T'(u)
does not fully describe the severity of ruin, because it does not carry any
information about the behaviour of the risk reserve between 7(u} and 7/(u).
However, for the insurer it makes a difference whether {R(¢)} remains slightly
below zero for a long time, or whether the total mazimal deficit

Z* (u) = max{~R(t) : 7(u) < t}

after 7(u) is large. In the latter case, all successive times in the red are taken
into account. We can finally consider the mazimal deficit

Z (u) = max{~R(t) : 7(u) < t < 7'(u)}
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during the first period in the red, that is between 7(u) and 7'(u).

Bibliographical Notes. Results of the type as in Theorem 5.1.1 can be found
in many places, such as Daley and Rolski (1984), Feller (1968), Gerber (1988)
and Shiu (1989). A recursive method to calculate the finite-horizon ruin
probabilities 1¥(u;n) in the discrete-time risk model has been proposed in
De Vylder and Goovaerts (1988).

5.2 POISSON ARRIVAL PROCESSES

The risk reserve process { R()} in continuous time has been defined by (5.1.14)
in Section 5.1.4. We now consider the special case of the risk model where the
claim sizes {Uy,} are independent and identically distributed and independent
of the sequence {o,} of claim occurrence epochs. Furthermore, we assume
that the sequence {o,} forms a Poisson point process. By this we mean that
the inter-occurrence times T,, = o, — 6, are independent and (identically)
exponentially distributed. These assumptions lead to the classical compound
Poisson model of risk theory. While this model does not really suit the needs of
the actuary, it is a skeleton for more adequate generalizations discussed in later
chapters of the book. Thanks to its nice properties, the classical compound
Poisson model is the most studied model! in the literature.

5.2.1 Homogeneous Poisson Processes

Let {T.} be a sequence of independent random variables with exponential
distribution Exp(A); A > 0. Then, the counting process {N(t)} is called a
homogeneous Poisson process with intensity A. As such, the process is a special
kind of renewal process, a topic discussed in Chapter 6. In the present chapter
we simply omit the adjective “homogeneous”, since we do not yet deal with
other types of claim occurrence processes.

A basic property of Poisson processes is that they have independent and
stationary increments. These notions are defined first.

Definition 5.2.1 A real-valued stochastic process {X(t),t > 0} is said to
have

(a) independent increments if for alln = 1,2,... and 0 <ty < t; < ... < tg,
the random variables X (0), X (t1) — X (o), X (t2) = X (41), ..., X (tn) ~ X (tn-1)
are independent,

(b) stationary increments if for alln =1,2,...,0<ty <t; < ... < t, and
h > 0, the distribution of (X(t; +h)—X(to+h),...,X(tn+h)— X(tn_1 +h))
does not depend on h.

We leave it to the reader to prove that, if a process {X(¢)} has independent
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increments, then {X ()} has stationary increments whenever the distribution
of the univariate random variable X (¢ + h) — X (h) does not depend on A.
We now give some equivalent definitions of a Poisson process.

Theorem 5.2.1 Let {N(t),t > 0} be a counting process. Then the following
statements are equivaelent:

(a) {N(t)} is a Poisson process with intensity \.

(b) Forallt > 0, n = 1,2,... the random variable N(t) has distribution
Poi(At) and, given {N(t) = n}, the random vector (o1,...,0,) has the
same distribution as the order statistics of n independent points uniformly
distributed on {0, t].

(c) {N(t)} has independent increments such that EN(1) = A and for all
t>0,n=12,..., given {N(t) = n}, the random vector (o,,...,0n) has
the same distribution as the order statistics of n independent points uniformly
distributed on [0,t].

(d) {N(t)} has stationary and independent increments and satisfies as h 0,

P(N(h) =0)=1—-Ah+o(h), P(N(R)=1Y=Ah+o(h). (52.1)
(e) {N(t)} has stationary and independent increments and, for each fized
t > 0, the random variable N(t) is Poi(At) distributed.

Proof (a)=(b) Note that (a) implies that o, = Y ., T; is the sum of n

independent random variables with exponential distribution Exp(}}), i.e. op

has distribution Erl(n, A). Thus P(N(t) = 0) = P(0; > t) = e~ ** and
P(N(#W =n) = P(N(t)>n)-P(N({t)2n+1)

Plon <t) - P(0n41 < 1)

t yn,n-1 t yn+l,n
= M—-e"‘"dv—/ AT v e dy
0

d (), (A)" _x
- /0‘ -d_v( n )dv—- nt °

for n > 1, which shows that N () has distribution Poi(At). Furthermore, since
fortg =0<t <... <ty <t < tyy the joint density fo, . onpr(tr, .- stnt1)
of 71,...,0441 is given by

n+1

k=1
the joint conditional density fs,,..0n(t1,.. . tn | N(£) =n)of 01,...,05 given
N(t) = n is then
fa; ..... o-,.(tla---atn|]v(t)=n)
ftoo )\"“"le”’\t"“ dtn+1 n!
Tt t G - n
fO ft; e ‘]‘tn—l ft Antle~Atnia dtn+1 o 'dtl t
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This is the density of the order statistics of n independent random variables
uniformly distributed on [0, t].

(b)=(c) From (b) it clearly follows that EN(1) = A. Furthermore, let
zr € Nandtp =0 < t; < ... < tn. Then (b) implies that for z = z; +.. .+,

P(Q{N(tk) — N(tg-1) = :ck})

= P(’Ql {N(tk) - N(tg1) = zk} ‘ N(t,) = z)P(N(tn) = 7)

('\tn)’e—xt.. z! ﬁ te—tro1 \**
! 11!---$n!k tn

=1

[ Q0 =)™ st
T

!
k=1 k:

and therefore {N(t)} has independent increments.

(c)=>(d) We now assume that, under {N{t, + h) = m}, the random
vector (oy,...,0,) has the same distribution as the order statistics of m
independent points uniformly distributed on [0,t, + h]. Hence, for z; € N,
to=0<H, <...<t,band h>0

P(krj1 {N(ts + b) = N(tao1 + ) = 2} I N(tn+h) = m)

= P(,é, {N(t) = N(te-1) = 3k} | N(ta + ) = m).

Thus the law of total probability yields that {N(¢)} has stationary increments.
Furthermore, the conditional uniformity property of statement (c) implies
that, for 0 < h < 1,

P(N(h)=0) = iP(N(h) =0,N(1) - N(h) = k)
k=0
= ZP(N(I) =k)P(N(1) - N(h) =k | NQ)=k)
k=0
= iP(N(l) = k)(1 - h)k.
k=0
Thus,

(1 - iP(Nu) = k)(1 - h)k)

k=0

1 .
(1= P(N(h) = 0))

> -
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k=1

Recall that (1 — h)* > 1 — kh for all 0 < h < 1, whenever k = 1,2,.... This
means that the functions gp(k) = h~1(1 — (1 — h)*) in the last sum have the
uniform bound g(k) = k. Moreover, this bound is integrable since

o0
S kP(N(1)=k)=EN(1)= A< co.
k=1
By interchanging sum and limit we obtain lims_,o A~"YP(N(R) > 0) = A from
which the first part of (5.2.1) follows. In the same way we get that
lim P(N(h) =1) = lim iP(N(l) = k) k(1 - h)E=1 = A
h—0 h h—0 £~ ’
which is equivalent to the second part of (5.2.1).
(d)=(e) Letn€IN,t>0and p,(t) =P(N(t) =n). Then for h > 0,
po(t+h) =P(N(t) =0,N(t+h) — N(t) = 0) = po(t)(1 — Ah +o(h)) (5.2.2)
and fort > h >0,
po(t) = po(t — h)(1 — Ah + o(h)) . (5.2.3)

This implies that py(t) is continuous on (0, 00) and right-continuous at t = 0.
Rearranging terms in (5.2.2) and (5.2.3) we see that

P_L”_";:_P'ﬂ = —Apy(t) + o(1)

for h > —t because po(t — k) = po(t) + o(1). Thus po(t) is differentiable and
fulfils the differential equation

6 (®) = =Apo(t) (5.2.4)
for ¢ > 0. Since py(0) = P(N(0) = 0) = 1, the only solution to (5.2.4) is

po(t) =e™,  t>0. (5.2.5)
In order to show that
n
palt) = Qex, 130 (5.26)

holds for all n € IN, we can proceed as in the proof of (5.2.5). Namely, observe
that (5.2.1) implies that P(N(h) > 1) = o(h) as h | 0. Now use (5.2.5) and
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induction on n to arrive at (5.2.6). The details of this part of the proof are
left to the reader. .
(e)=>(a) Letbp=0<a; <b <...<an < by Then, (e} implies that

n

P(Ql {ar <ok < bk})
n—-1

= P(,D1 {N(ax) — N(bx_1) = 0, N(bt) — N(az) = 1}

N1{N(an) = N(ba-1) = 0, N(bs) — N(an) > 1})

n—1
- e'—A(On-bn—l)(l —_ e-z\(bn—an)) H e—A(ak—bk_l)/\(bk — ak)e—/\(bh—ak)
k=1

n—1
= (e"“‘" _ e—Abn)/\n—l H(bk —ag)
k=1

b bn
// Ate= A dy, .. dy;
ay Gn
b3 bz—zx bn—&’l—...—:t,,_x .
/ f / At MELt A2l dp | day .
a3 az—21 Gpn—F1—...~Fn-1}

Thus, the joint density of 01,02 — 01,...,0n — 0,1 is given by

n
P(n {ox —ok—1 € da:k}) = Me MEtttzd g0 dz,,
k=1

and therefore these random variables are independent and have a distribution
Exp(}A), i.e. {N(t)} is a Poisson process with intensity . o

5.2.2 Compound Poisson Processes

We continue to assume that the inter-occurrence times {7, } are exponentially
distributed with parameter A > 0 or that the counting process {N(t)} is a
Poisson process with intensity A. Let the claim sizes {U,} be independent
and identically distributed with distribution Fy; and let {U,} be independent
of {N(t)}. Then the cumulative arrival process {X(t), ¢ > 0} defined in
(5.1.12) is called a compound Poisson process with characteristics (A, Fy),
i.e. with intensity A and jump size distribution Fyy. This terminology is
motivated by the property that X (¢) has a compound Poisson distribution
with characteristics (A, Fiy). Since X(t) = Eﬁ_(f) U;, it suffices to observe
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that, by the result of Theorem 5.2.1, N(t) is Poisson distributed with
parameter At.
The next result follows from Theorem 5.2.1.
Corollary 5.2.1 Let {X(t)} be a compound Poisson process with
characteristics (), Fy). Then,
(a) the process {X(t)} has stationary and independent increments,
(b) the moment generating function of X (t) is given by
thx(e)(s) = eMPula-1), (5.2.7)

and the mean and variance by
EX(t) = Mpy,  VarX(t) = apld. (5.2.8)

Proof (a) We have to show that, foralln =1,2,... h>0and 0< ¢t <t; <
... < ty, the random variables

N(ti+h) N{tn+h)
2 Uneen 3 U
i1=l'v(t0+h)+l in=N(tn—l+h)+1

are independent and that their distribution does not depend on A. Since the
sequence {U,} consists of independent and identically distributed random
variables which are independent of {T,}, we have

N(t1+h) N(t.+h)
P( Z Uy, <21,..., Z Ui..Szn)
i1=N(to-+h)+1 in=N(tn_14+h)+1

n
= Z H ng’kj (z;)P(N(t1 +h) — N(to + hy=Fk,
k1,... . kn€IN j=1
<oy N(ta +h) = N(ta-y + h) = k»)

forallxy,...,zn > 0. Therefore, it suffices to recall that by Theorem 5.2.1, the
Poisson (counting) process {N(t)} has independent and stationary increments.
(b) The proof of (5.2.7) and (5.2.8) is left to the reader as an exercise. a

Bibliographical Notes. The material covered in Section 5.2 can be found
in a large number of textbooks, such as Billingsley (1995). For a discussion of
Poisson processes in the context of risk theory, see also Schmidt (1996).
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5.3 RUIN PROBABILITIES: THE COMPOUND
POISSON MODEL

In the sequel of this chapter we consider the compound Poisson model. The
risk reserve process {R(t),t > 0} is defined in (5.1.14) and claims occur
according to a compound Poisson process with characteristics (A, Fy). The
most frequently used property of the process { R(t)} is the independence and
stationarity of its increments. Considering {R(t)} from time ¢ onwards is like
restarting a risk reserve process with an identically distributed claim arrival
process but with initial reserve R(¢). In particular, if R(t} = y and ruin has
not yet occurred by time ¢, then the (conditional) ruin probability is ¥(y).
Furthermore, considering { R(t)} from the first claim occurrence epoch o, on
is like starting a risk reserve process with initial reserve R(t + o1 — Uy).
Let {Sp,n > 0} be the random walk given by

Sa=) Y, Yi=Ui-§8T. (5.3.1)

In Theorem 6.3.1 we will show that limsup,,_,, Sn = oo if EY > 0. Thus,
(5.1.16) implies that 3(u) = 1 in this case. Let us therefore assume that
EY < 0, ie. 8 > Apu, where u = py denotes the expected claim size.
Recall that 3 is the premium income in the unit time interval and that Au
is the expected aggregate claim over the unit time interval (see (5.2.8)). The
condition

B3> (5.3.2)

is therefore called the net profit condition. Throughout the rest of this chapter
we will assume (5.3.2). Note that in this case lim,_,o, Sn = —o0c, since from the
strong law of large numbers we have S, /n — EY < 0. Thus, the maximum
of {S,} is finite. Using (5.1.16) we get limy_,o ¥(u} = 0. Moreover, we will
see later in Theorem 5.3.4 that this implies ¢¥(u) < 1 for all u > 0.

5.3.1 An Integro-Differential Equation

In this section we study the survival probability P(u) = 1 — ¥(u). We show
that ¢(u) is differentiable everywhere on R, with the exception of an at
most countably infinite set of points. Furthermore, we prove that ¥(u) fulfils
an integro-differential equation.

Theorem 5.3.1 The survival function ¥(u) is continuous on R, with right
and left derivatives E(,: )(u) and J(_l ) (u), respectively. Moreover

58w = AT - [ B ) dFu) (533
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and
0w =AFw- [ Te-piFw). 634

Proof As mentioned before, considering { R(t)} from the first claim occurrence
epoch o) is like considering a risk reserve process with initial reserve R(t +
o1 —Uh). Thus, conditioning on the first claim occurrence epoch o, we obtain

_ - h putpt
Y(u) = e My(u + 3h) + / / Ylu + Bt —y)dFy(y) e M dt  (5.3.5)
0o Jo

for all h,u > 0. Letting h | 0, (5.3.5) implies that 1(u) is a right-continuous
function. Moreover, rearrange the terms in (5.3.5) to write

P(u+ 8h) — ¥(u)
Bh

1—e M_ 1 fh putst_
v -5 [ [ Bk - at dear.

B

This shows that ¥(u) is differentiable from the right and (5.3.3) follows as
h 1 0. For h < 3 'u, (5.3.5) can be rewritten in the form

— _ k pu—3(h—t) _
Y(u— Bh) = e MP(u) + /0 /0 ¥(u— Blh —t) - y) dFy(y) e ™ dt,

which implies that ¥(u) is also left-continuous and that the left derivative of
¢ (u) exists and fulfils (5.3.4). a

_ An immediate consequence of Theorem 5.3.1 is that the continuous function
¥(u) is differentiable everywhere except for the countable set, where Fy (y) is
not continuous. The importance of this fact is that it implies

/wﬁ“’(v)dwwu), u>0.

In the terminology of measure theory, this means that ¥(u) is absolutely
continuous with respect to the Lebesgue measure.

Note that in general (5.3.3) cannot be solved analytically. However, one can
compute the survival probability ¥ (u) in (5.3.3) numerically.

Example Assume that the claim sizes are exponentially distributed with
parameter §. Then the net profit condition (5.3.2) takes the form 43 > A.
Furthermore, (5.3.3) can be solved analytically. The survival function ¥(u) is
differentiable everywhere and satisfies the integral equation

o = M¥(u) —e® "_; oy . 5.3.6
5% ) = A(w) - e [ )6 o) (536)
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This equation implies that wl)(u) is differentiable and that

587w = AT w +5e [ “Blw)be® dy - 55(w) = (A - 665" (w).
The general solution to this differential equation is

Pu) = ¢y — cpe” 820 (5.3.7)

where ¢;,c2 € R. Since limy,o ¥(u) = 1 it follows that ¢; = 1. Plugging
(5.3.7) into (5.3.6) yields

(68 — ,\)e—(é—»\/ﬁ)u
= ,\(1 — cpe™ MO _ (1 —e%u) 4 cze";"%é(e)‘“/"’ - 1))

from which c; = A(36)! is obtained. Thus,
A
P(u) = B%e-“-*/ﬁ)“. (5.3.8)

5.3.2 An Integral Equation

Equation (5.3.3) is not easily solved because it involves both the derivative and
an integral of ¥(u). It would be more convenient to get rid of the derivative.
Indeed, integrating (5.3.3) we arrive at the following result.

Theorem 5.3.2 The ruin function ¥(u) satisfies the integral equation
o0 — U _
Bor(u) = ,\( / Fy(z)dz + / ¥(u — 2)Fy(z) da:). (5.3.9)
u 0

Proof We integrate (5.3.3) over the interval (0,u]. This gives

1l

L@ -T0) = 3 [ 63w

_ /ouz;(z)dz-/OU[)uE(z—y)dFu(y)dx
- /ouaz)dz-/Ou/yu@y(z—y)dzdf*u(m
= [Wee- [ [ ey

/ Pz de - / ) / T AR () B() d
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u

P(z)(1 = Fy(u —z)) dz

/
/ "B - ) Fu(c) dz,

ie.

2 @) - F(0) = / B(u - 2)Fy(2) de. (5.3.10)
Now, letting u = oo, (5.3.10) implies 3(1 — ¥(0)) = ’\fo Fy(z)dz = .
This follows from (%) — 1 and an application of the dominated convergence
theorem on the right-hand side of (5.3.10). Thus,

— Ap /\u
=1-—, 3.
¥(0) 7 ¥(0) = 7 (5.3.11)
Now, repla.cmg E(u) by 1—4(u), from (5.3.10) and (5.3.11) we have 8¢ (u) =
1= fy' (1 = ¥(u — z))Fy(z) dz, which is equivalent to (5.3.9). o

Note that (5.3.11) shows that the ruin probability #(u) at v = 0 only
depends on the expected claim size u4 and not on the specific form of
the claim size distribution Fyy. We further remark that (5.3.9) is called a
defective renewal equation with respect to the unknown ruin function t(u).
In Section 6.1.4 we will analyse such equations in a more general context.

5.3.3 Laplace Transforms, Pollaczek—Khinchin Formula

In this section we compute the Laplace transforms

Bt = [ vt du, Iy = [ e,

Note that both integrals make sense for all s > 0. Furthermore, we have
- had — 1 A
Ly(s)= / (1 =9(u))e™*du= 3 L(s). (5.3.12)
0

Theorem 5.3.3 The Laplace transforms I:;(s) and L (s) are given by

[—(s) = 8= 5.3.13
ST e L )
and
. 1 B— A
(s) == — N 0. 5.3.14
WO ey a9
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—(1
Proof Let s > 0. Integrating by parts we find that fo°° t;‘)f,_)(u)e”“ du =
—(0) + sIA/J(s). Furthermore,

/ox/ouﬂ?(u - y)dFy(y)e™" du = /om/yw e AR

= [T B dudbuly) = Lgolote).
0 1]

In order to complete the proof we multiply (5.3.3) by e™** and integrate over
(0,00). Then, we see that the Laplace transform L(s) satisfies the equation
B(sL(s) — $(0)) = ALz(s)(1 - ly(s)), which is equivalent to (5.3.13) in view
of (5.3.11). Now, (5.3.14) immediately follows from (5.3.12). m]
Example In the case of exponentially distributed claims (with g = §71),
(5.3.13) gives

f(s) = B =)o __B-XN§ _(B-2O)E+53)

v Bs~A1-6/(6+s)) s(B-A/(6+s) s(B(6+3s)-])

and, by (5.3.12),

Lo(s) = 1 (B=X/8)(0+5) _B(+s)~r=(B-X/8)(5+3)
S ST BG e - FEEDESY
A 1 A 1

5BB+s) —A 8B6-XNB+s
Hence, by comparison with the Laplace-Stieltjes transform of the exponential
distribution we realize that (u) = X(68)1e~(6-*/8)% in accordance with
(5.3.8).
Although equation (5.3.9) is simpler than (5.3.3), it is generally difficult to
solve it in closed form. However, (5.3.9) leads to a formula for 1(u) in the form

of an infinite series of convolutions. In this connection, we need the integrated
tail distribution F§; of Fyy. Remember that Ff; is given by

Fy(z) = ll‘/o Fuly)dy, 2>0. (5.3.15)

The representation formula for ¢(u) derived in the next theorem is called the
Pollaczek-Khinchin formula.

Theorem 5.3.4 For each u >0,

P = (1- %") i(éﬂ-‘f)"(zrg)*"(u). (5.3.16)
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Proof Taking Laplace transforms on both the sides of (5.3.9) gives

2 Al 2 YTIN .

Ly(s) = ?Lp—é(s) + ?L,;,(s) “Lgz(s) -
Thus, Ly(s) = Auﬂ‘liﬁ(s)(l - Auﬁ'lf,F—l.i(s))‘l, ie. Lp(s) is the Laplace
transform of the tail function of a geometric compound with characteristics

(AuB71, FE). Again, the one-to-one correspondence between functions and
their Laplace transforms yields (5.3.16). a

Besides the case of exponentially distributed claim sizes, where (5.3.16)
has been written in closed form (see (5.3.8)), there are other claim size
distributions for which (5.3.16) simplifies. One important class of such claim
size distributions is provided by the phase-type distributions, discussed in
Chapter 8.

The infinite series representation given in (5.3.16) is particularly useful for
theoretical considerations. However, it is also useful for numerical approx-
imations to the ruin probability ¥(u) since (5.3.16) shows that 1 — {u)
is the distribution function of a geometric compound. After discretization
of the distribution Fj;, Panjer's algorithm described in Section 4.4.2 will
yield a numerical approximation to 1(u). A completely different method for
numerical computation of ¥(u) is based on the numerical inversion of the
Laplace transform. This method will be discussed in Section 5.5. Further,
Sections 5.4.1 and 5.4.2 treat useful bounds and approximations to ¥ (u)
derived from (5.3.16), provided that the claim size distribution admits an
adjustment coefficient. Finally, in Section 5.4.3, formula (5.3.16) will be crucial
in deriving interesting asymptotic expressions of 1(u) as 4 — 0o when the
claim size distribution is heavy-tailed.

5.3.4 Severity of Ruin

We now want to analyse further what happens if ruin occurs. Consider the
ruin probabilities @(u,z,y) = P(r(u) < oc, Xy (u) > z,Yi(u) > y) where
X+(u) = R(r(u)-) and Y, (u) = —R(7(u)) is the surplus just before and at
the ruin time 7(u) respectively. Remember that the random variable Y, (u) is
also called severity of ruin.

Since in general we were not able to find an explicit formula for ¥(u) there
is no hope of achieving this goal for p{u,z,y). But it is possible to derive
integro-differential and integral equations for (u, z,y). Moreover, we will be
able to find {z,y) = (0, z,y) explicitly.

We will proceed as in Section 5.3.1. Condition on the first claim occurrence
epoch and on the size of that claim to find that ¢(u,z,y) satisfies

plu.z,y) = e Mop(u+phzy)
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h w43t
s [([7 otws -z aFo)
+X(u+ Bt > )1 - Fylu+pt+ y))) Ae M dt,

for all h,u,z,y > 0. Thus ¢(u, z,y) is right-continuous and differentiable from
the right with respect to u. Furthermore,

ﬁggw(u,x,y)
= /\(v(u, z,y) — /0 p(u—v,z,y)dFy(v) - Wu > 2)Fy(u + y)) :

Analogously, ¢(u,z,y) is left-continuous and differentiable from the left with
respect to u, and satisfies

ﬁ%w(u, T,y) = f\(cp(u,m, y) - /0 T oy —v,z,y) dFy(v)
~1(u > D)Fu((u +9)-)) -

Thus the set of points u where the partial derivative (8/0u)¢(u, z, y) does not
exist is countable and therefore ¢(u,z,y) is absolutely continuous in u.
Proceeding as in Section 5.3.2 we obtain the integral equation

ﬂ(@(u:x) y) - ‘p(o, z, y))
u uty
=2 -v,z,9) Fy(v)dv — T(u > Fy(v)dv). (5.3.17
(/0 o(u = v,2,5) F(v)dv ("”’/m u(v)dv). (5.3.17)

We now let u — oo. Note that [[°(1 — Fy(v))dv = p allows us to
interchange integration and limit on the right-hand side of (5.3.17). Since
0 < ¢y, x,y) < ¥(u) we find that lim,, o ©(u,z,y) = 0 and therefore

0(0,z,y) = % > Fy(v)dv. (5.3.18)

z+y

Note that (5.3.18) is a generalization of (5.3.11). Another proof of (5.3.18)
which is valid for more general risk models will be given in Chapter 12.

In Section 6.3, we will show how (5.3.18) provides another interpretation
to the integrated tail distribution F{; as the ladder height distribution of the
random walk {S,} given in (5.3.1).

Bibliographical Notes. The classical compound Poisson risk model was
introduced by Filip Lundberg (1903) and extensively studied by Harald
Cramér (1930,1955). It is therefore often called the Cramér-Lundberg model.
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In particular, Theorems 5.3.1, 5.3.2 and 5.3.3 go back to these two authors.
From the mathematical point of view, the ruin function ¥(u) of the compound
Poisson model is equivalent to the tail function of the stationary distribution of
virtual waiting time in an M/GI/1 queue. Thus, formula (5.3.16) is equivalent
to the celebrated Pollaczek-Khinchin formula of queueing theory; see, for
example, Asmussen (1987), Baccelli and Brémaud (1994), Franken, Konig,
Arndt and Schmidt (1982) and Prabhu (1965). It also is a special case of a
more general result on the distribution of the maximum of a random walk
with negative drift, see Theorem 6.3.3. Further details on the equivalence
between characteristics of queueing and risk processes can be found, for
example, in the books by Asmussen (1987) and Prabhu (1965). In risk theory,
(5.3.16) is often called Beekman’s formule. The notion of severity of ruin was
introduced in Gerber, Goovaerts and Kaas (1987). Recursive algorithms for
the calculation of the joint and marginal distributions of the surplus just
before ruin and the severity of ruin can be found in Dickson, dos Reis and
Waters (1995). For further results on the distribution of the ruin time, the
surplus just before ruin and the severity of ruin, see Dickson (1992), Dickson
and Waters (1992), Dufresne and Gerber (1988), Frey and Schmidt (1996)
and Gerber and Shiu (1997). The duration of negative surplus and the
maximal deficit during this time have been investigated in Dickson and
dos Reis (1996,1997), dos Reis (1993) and Picard (1994). The compound
Poisson risk model has been extended in several directions. Some of them
will be discussed in later chapters of this book. For some other extensions
we will refer to the literature. Notice that a compound Poisson process has
finitely many jumps in bounded time intervals. Examples of claim arrival
processes with stationary and independent increments and with infinitely
many jumps in bounded intervals have been studied, for instance, in Dickson
and Waters (1993), Dufresne and Gerber (1993) and Dufresne, Gerber and
Shiu (1991). These processes are called gamma processes and belong to the
larger class of Lévy processes. We return to this later in Chapters 12 and 13.

5.4 BOUNDS, ASYMPTOTICS AND
APPROXIMATIONS

We have seen that it is generally difficult to determine the function v(u)
explicitly from formula (5.3.16). Therefore, bounds and approximations to the
ruin probability ¥ (u) are requested. Besides this, knowledge of the asymptotic
behaviour of ¥(u) as u — oo can also be useful in order to get information
about the nature of the underlying risks.
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5.4.1 Lundberg Bounds

Since the claim surplus S(¢) at time ¢ > 0 has a shifted compound Poisson
distribution with characteristics (A, Fyy) and the shift is on —3t, the moment
generating function of S(t) is

s (s) = Ee*S®) = exp (((A(Rw(s) — 1) - Bs)) .

If 7y (so) < oo for some s¢ > 0, then the function #(s) = Mrhy(s) — 1) — 8s
is infinitely often differentiable in the interval (—oo, sg). In particular

92 (s) = an{P (s) = AE (U%V) > 0, (5.4.1)

which shows that @(s) is a convex function. For the first derivative §(})(s) at
s = 0 we have

60 (0) = A’ (0) — 8= Ap - 8 < 0. (5.4.2)
It is easily seen that 8(0) = 0. Moreover, there may exist a second root of
8(s) =0. (5.4.3)

If such a root s # 0 exists, then it is unique and strictly positive. We call this
solution, if it exists, the adjustment coefficient or the Lundberg ezponent and
denote it by 7.

Note that the adjustment coefficient exists in the following situation.

Lemma 5.4.1 Assume that there exists soc € RU {00} such that y(s) < oo
if 8 < 800 and limgy,  1y(s) = oo. Then there exists o unique positive
solution v to the equation (5.4.3).

Proof By the above considerations it is enough to show that 8(s) tends to
infinity as s 1 84,. The case s, < 0o i8 obvious. Thus assume that s, = co.
Choose =’ > 0 such that Fyy(z') < 1. Then

=]
() = [ e dFy(z) 2 e Fula'),
0
which tends faster to infinity than any linear function. |

The existence of the adjustment coefficient is important because it allows
uniform upper and lower exponential bounds for the ruin function ¥(u). Let
To = sup{:c : Fu(z) < 1}.

Theorem 5.4.1 Assume that the adjustment coefficient v > O exists. Then,
a-e ™ < YP(u) < aqpe” (5.4.4)
for all w > 0, where

a_ = in e [ Fuly)dy
T zefowo) [ ewFyly)dy

e [P Fyly)dy
Gy = SUP i .
z€[0,20) fx e’mFU(y) dy
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Proof In view of Theorem 5.3.4, we can apply Theorem 4.5.1 with Fy replaced
by Ff; and p = p = A3~ . This gives (5.4.4) because

oo oa - _
[ eramw = o [T e Pugay = 2R
0 wu Jo Sy

Hence the positive root of p~! = My (7) is the positive root of (5.4.3). O

Results as in Theorem 5.4.1 are known in risk theory as two-sided Lundberg
bounds for the ruin function ¥(u). Alternatively, an easy application of integral
equation (5.3.9) leads to (5.4.4). Moreover, for all u > 0,

< age” " if ay > P(0),

w(u){ > a—e™ ™ ifa_ < y(0). (5.4.5)

This can be shown in the following way. Note that

w > Jo Ful)dy _ P _
tE e Fy(y)dy v -1 B

and analogously a— < 9(0). Let b > a; such that b > ¥(0). We prove
indirectly that ¥(u) < be~" for all v > 0. Assume the contrary. Denote
uo = inf{u > 0 : ¥(u) > be™"™}. Since ¢¥(u) is continuous we have
¥(ug) = be %0 Furthermore, since ¥(0) < b we can conclude that ug > 0
and ¥(up —z) < be~ (%02} for 0 < z < ug. Note that by the definition of a .,
we have

oo_ OO _
f Fy(y)dy <b / e~V Fy(y)dy.
Uo uo
Considering equation (5.3.9) for u = uy, this gives
o ug _
potun) = A( [ Fula)de+ [ b(uo - 2)Fu (o) dc)
; 0
o o -
< )\( / Fu(z)dz + / be~ " (w0-2)Fy;(z) dz)
;‘g . ° 00 PO
< A / be~ (@02 F 1 (z) dz = bhe™ 7% / / €7 dFy(y) dz
0 0
o0 Y xOO l
= b,\e'“‘"/ / e dzdFy{y) = b,\e""“’/ —(e" — 1)dFy(y)
o Jo ¢ 7
= bIeT (o (n) = 1) = b,

which leads to a contradiction. Thus the strict upper bound in (5.4.5) is
proved. The lower bound follows analogously.
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5.4.2 The Cramér-Lundberg Approximation

In Section 3.4.1 we have found exponential upper and lower bounds for the
ruin function ¥ (u). We are now interested in the asymptotic behaviour of
¥Y(u)e"™. The question is whether y(u)e”™ converges to a limit or fluctuates
between two bounds as u = oc. We will see that the limit lim,_, o ¥(u)e™™
exists. However, to show this we need the following auxiliary result.

Lemma 5.4.2 Assume that the function z; : R, — (0, 00) is increasing and
let z3 : Ry — IR, be decreasing, such that

oC
/ 2(z)z(z) dz < 00 (5.4.6)
0
and
lim sup {21(z +9)/z1(z) : 20,0 <y <k} = 1. (5.4.7)
Then, for z{z) = z1(z)z2(x) and for each distribution F on Ry, the equation
o) ==+ [ gw-v)dFw), w20, (548
0
admits a unique locally bounded solution such that
o0
-1 .
lim g(u) = “r A z(u)du if pp < oo, (5.4‘9)
©w—00 .
0 if up = 00.

Note that Lemma 5.4.2 is a version of the so-called key renewal theorem.
Furthermore, (5.4.8) is called a renewal equation. A more detailed discussion
of notions and resuits from renewal theory is given in Chapter 6.

Theorem 5.4.2 Assume that the adjustment coefficient ¥ > 0 erxists. If

rhg)('y) < 00, then

. . — A
i BT = (o (5.4.10)
o i) () -
i mg)(’Y) = 00, then lim,_,q ¥(u)e™ = 0.
Proof Multiplying (5.3.9) by e”* yields

U W=i Tu wﬁ 2)d u; - Yu—z)F YT
P(u)e ﬂ(e /u v(x) :v+/; P(u — z)e Fy(z)e da:).

(5.4.11)
It follows from the definition of v that

/ M VFy(z)e®dz =1, (5.4.12)
0
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and therefore (5.4.11) is a renewal equation. The mean value of the integrating
distribution dF(z) = A~ Fy(z)e** dz is

| a8 Fu@er dz = ain () - /(6), (5.4.13)
0
if mg)('y) < 00, and oo otherwise. It is easily seen that the function
A .
z(u) = Ee“’“/ Fy(z)dz (5.4.14)
u

can be factored in the way given in Lemma 5.4.2. We leave it to the reader to
show this as an exercise. Since

/0 ” f‘ﬂ-ew / ” Fy(z)dodu = 2 ,;;\“ (5.4.15)

the assertion now follows from Lemma, 5.4.2. (]

The asymptotic result obtained in Theorem 5.4.2 for the ruin probability
¥ (u) gives rise to the so-called Cramér-Lundberg approzimation

8- A
A (v) ~ B

The following numerical investigation shows that the above approximation
works quite well even for small values of u.

Example Let 3 = A =1and Fy(z) = 1 - }(e™® + 2% + ¢3%). In this
example we use the expected inter-occurrence time as the time unit and the
premium per unit time as the monetary unit. The mean value of claim sizes
is 4 = 0.611111, i.e. the net profit condition (5.3.2) is fulfilled. Furthermore,
computing the Laplace transform L (s) and inverting it, we get

Yapp(U) = e, (5.4.16)

¥(u) = 0.550790e~0-485131v 1 (5 0436979172235 1 0,0166231e 279252«

(5.4.17)
On the other hand, (5.4.16) implies that in this case the Cramér-Lundberg
approximation to ¥(u) is ¥app(u) = 0.550790e~0-485131v By comparison to
the exact formula given in (5.4.17), the accuracy of this approximation can
be analysed. Table 5.4.1 shows the ruin function ¥(u), its Cramér-Lundberg
approximation ¥app(u) and the relative error (Yapp (u) —9(u))/¥(u) multiplied
by 100. Note that the relative error is below 1% for u > 1.71358 = 2.8u.

Remark In the case of exponentially distributed claim sizes, the constant
on the right-hand side of (5.4.10) is (86)"!A. Thus the Cramér-Lundberg
approximation (5.4.10) becomes exact in this case. Vice versa, assume that
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0 0.25 0.5 0.75 1

u

(u) 0.6111 0.5246 0.4547 0.3969 0.3479
VYapp(u) 0.5508 0.4879 0.4322 0.3828 0.3391
Er -9.87 -6.99 -4.97 -3.54 -2.54
u 1.25 1.5 1.75 2 2.25
P(u) 0.3059 0.2696 0.2379 0.2102 0.1858
Yapplu) 0.3003 0.2660 0.2357 0.2087 0.1849
Er -1.82 -1.32 -0.95 -0.69 -0.50

Table 5.4.1 Cramér-Lundberg approximation to ruin probabilities

the Cramér-Lundberg approximation is exact, i.e. there exists a constant ¢ > 0
such that ¥(u) = ce™* for all u > 0. Then from (5.3.13) we have

B—Au 1 c

Bs—A1-ly(s)) s 7+s

A rearrangement of the terms in this equation yields

R Bs(y+ s —cs) —s(y+3)(8— )
l(s) = 1- Ay + 8 —c8)
(Bc — Ap)s® — Auys
S e P v P

Since lim,_,o0 {7 (8) = 0, we find that ¢ = Au(8)~! and v = p~! — A3~!. Thus
the claim sizes must be exponentially distributed.

5.4.3 Subexponential Claim Sizes

In Section 5.4.2 we found the asymptotic behaviour of the ruin function
%(u) when the initial risk reserve u tends to infinity. However our result was
limited to claim sizes for which the tail of the distribution function decreases
exponentially fast. For many applications such an assumption is unrealistic.
For instance, data from motor third liability insurance, fire insurance or
catastrophe insurance (earthquakes, flooding etc.) clearly show heavy tail
behaviour. In particular, Pareto, lognormal and loggamma distributions are
popular in actuarial mathematics.

In Section 2.5, we have shown that several families of heavy-tailed claim
size distributions belong to the class of subexponential distributions. It
turns out (see Section 2.5.3) that also their integrated tail distributions are
subexponential. Note that in such a case the Pollaczek-Khinchin formula
(5.3.16) implies that the ruin function v:(u) decreases more slowly than any
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exponential function. Indeed, by (2.5.2) and (5.3.16), we have for u = co
$We™ > (1 - M)A F (we™ — o0

for all s > 0. This simple result indicates that, in the case of heavy-tailed
claim sizes, the asymptotic behaviour of ¥(u) is very different from that in
Theorem 5.4.2. If the integrated tail distribution Ff; is subexponential, then
we have the following result.

Theorem 5.4.3 Let p = AuB~! and assume that F, € S. Then

. Yu) _ p
M TR S 1-p

(5.4.18)

Proof From (5.3.16) we know that ¥(u) is the tail function of a geometric
compound with characteristics (p, F{;). Note that for the probability function
{po,p1,...} with p, = (1 — p)p", there exists some ¢ > 0 such that
Yooy Pa(1 4+ €)™ < 0. Thus, (5.4.18) follows from Theorem 2.5.4 since

oo oC p
D kpe =) k(1-p)pt= .
k=1 k=1 1-p o

The above theorem suggests the approximation
Yeop() = 7= (1 = Fp(u) (5.419)

Note that the quantity p captures all the information on the claim number
process one needs to know.

Examples 1. Assume that the claim sizes are Par(a, ¢) distributed. In order
to have a finite mean (which is necessary by the net profit condition (5.3.2))
we must have o > 1. The integrated tail distribution Fg, is readily obtained

as
(¢ — Dz/ac ifz<e,

8 —
Fi(=) = { 1-ol(z/c)" ™ ifz>e

By Theorem 2.5.5, Ff; is subexponential. Thus, Theorem 5.4.3 leads to the
following approximation to the ruin probability ¥(u):

) _ p u —{a~—1)
)= s ()
for u > c. Details are left to the reader.

2.Let 3=1, A =9 and Fy(z) =1 - (1+z)~!!, where we use the premium
as the monetary unit. The integrated tail distribution F; is readily obtained:
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% (z) = 1—(1+2)~1°. From Theorem 2.5.5 we conclude that both Fyy € S and

% € S. Approximation (5.4.19) then reads tapp(u) = 9(1+u)~!°. Table 5.4.2
gives some values of ¥(u) and of the approximation tapp(u) = 9(1 + u)~10 as
well as 100 times the relative error. The “exact values” of 1(u) were calculated
using Panjer’s algorithm described in Section 4.4.2. In order to get a discrete
approximation to the claim size distribution, this distribution was discretized
with bandwidth h = 1073, i.e. gy = P(k/1000 < U < (k+1)/1000). Consider

u Y(u) Yapp (©) Er

1 0.364 879 x 103 -97.588
2 0.150 1.52 x 10~¢ -99.898
3 6.18 x 102 8.58 x 106 -99.986
4 2.55 x 102 9.22 x 107 -99.996
5 1.05 x 10~2 1.49 x 1077 -99.999
10 1.24 x 10~4 3.47 x 10710 -100
20 1.75 x 10-8 5.40 x 1013 -99.997
30 2.50 x 10712 1.10 x 1014 -99.56
40 1.60 x 10718 6.71 x 10716 -58.17
50 1.21 x 1071¢ 7.56 x 10~17 -37.69

Table 5.4.2 Approximation to ruin probabilities for subexponential claims

for instance the initial risk reserve u = 20. Then the ruin probability ¥ (u) is
1.75 x 10~8, which is so small that it is not interesting for practical purposes.
However, the approximation error is still almost 100%. Thus, in the case of
heavy-tailed claim sizes, the approximation (5.4.19) can be poor, even for
large values of u.

Note that (5.3.18) and (5.4.19) imply that for u (very) large the ruin
probability ¥ (u) is (3 — Au) ™ Au times the probability that the first ladder
height of the random walk {S,} considered in (5.3.1) exceeds u. But (3 —
Ap)~'Ap is the expected number of ladder epochs of {S,}. Intuitively this
means that, for u large, the ruin will occur if one of the ladder heights is
larger than u.

5.4.4 Approximation by Moment Fitting

We now present two further methods for getting approximations to the ruin
function v (u). The first one is based on replacing the risk reserve process
{R(t)} by another risk process {R’(t)} such that for some n > 1 the moments
up to order n of certain characteristics of {R(¢)} and {R'(t)} coincide.
Furthermore, {R’'(t)} is chosen in such a way that the ruin function ¢'(u)
of {R'(t)} is easier to determine than v (u).
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The second approximation method replaces the distribution function 1 —
Bv(u) /(M) by a simpler distribution function such that the moments up to
order n coincide.

The De Vylder Approximation In the case of exponentially distributed
claim sizes, the ruin function is available ¥(u) explicitly by (5.3.8). The idea
of the De Vylder approximation is to replace { R(t)} by { R'(t)}, where { R'(t)}
has exponentially distributed claim sizes (with parameter §’) and

E ((R@t)*) = E ((R'(t)¥) (5.4.20)
for k =1,2,3 and ¢t > 0. Note that
E(R(t)—u) = (8- t,  VarR(t) = Var (u+ 8t — R(t)) = AV,
and
E((R(t) - E(R(#))*) = —=E((u+ 8t - R(t) - E (u+ BtR()))*) = —Mu{t.
This implies that (5.4.20) holds if

A (2) 2) 3) 6’
- = U = — = —_—
(3 - )t (/3 Jl)t, M= sty b= gt
Thus, the parameters (§’, ', 3') are given by
(2) (2) /5142 (2)y3
§ = ﬂ‘(g)_ A = Mg () 9("(3)) A, (5.4.21)
By 2 Apy’
and (2)
2
B=p-duth =gt 2 () (5.4.22)
é 2"U

Consequently, using (5.3.8), we derive the De Vylder approzimation to the
ruin probability ¥(u):

Vapp(u) = Jj\ﬁ' (=N, (5.4.23)

Of course, the approximation ¥app(u) given in (5.4.23) is equal to ¥ (u) in
the case of exponentially distributed claims. However, the numerical example
discussed at the end of this section shows that the approximation (5.4.23) is
quite accurate for nonexponential claim size distributions as well.

The Beekman-Bowers Approximation Consider the distribution func-
tion F(z) = 1 — Sv(z)/(Ap). Then, by (5.3.11) we have that F(0) = 0. Thus
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F(z) is the distribution function of a positive random variable Z. Moreover,
by Theorems 5.3.1 and 5.3.3, the distribution F of Z is absolutely continuous
and has moment generating function

hz(s) = /0 ﬂ?ﬁ*ﬁ’( )dz
B (_s B - Au”
Ap —8s — A1 - iy (s))

In the derivation of the last equation, we used integration by parts. Thus,

B BB=w s
A i Bs—Ahy(s) - 1)

- (- wp)

Mz(s) =1- (5.4.24)

The idea of the Beekman—-Bowers approximation is to approximate the
distribution function F by the distribution function F'(u) of a I'(a’,d')-
distributed random variable such that the first two moments coincide. This
means that we have to determine the first two moments of F. Assume that
ug) < 00. Then, by (5.4.24) the moment generating function 71z (s) is twice
differentiable and the first derivative of /i z(s) is

BB = M) sy (s) — (hw(s) 1)

. (1)
m 5.4.25
2O = T s — Nohuls) - D (5.4.25)
Now, using lim,_,0 s71(8s — A(thy(s) — 1)) = 8 — Ay, we find
sl (s) — (w(s) — 1) _ . mi(s) + s (s) = i} (s) _ g}
lim 5 = lim ==,
s—0 s 50 2s 2
and thus @ @
gpz-PB-N)  wy __ Buy (5.4.26)

206- ) " 2u(B-p)’
Differentiating both sides of (5.4.25), we get for the second derivative of i z(s),

2Oy — BB 1
2 W (Bs—Amu(s) - D)
x (smf?) (5)(85 - Arhgr(s) — 1)
~2(smf})(s) — (thu(s) — D)(B - M (s))) -
Since

lim 52 (s} ()(Bs — Mriw (s) - 1)
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~ 2(srhy (s) — (o (s) — 1))(BMRY ()
= i o0 ((R2() + ol (8)) (B — Mo (s) — 1)
+ s ()(8 — M) (3)) — 280D (s)(8 — Mi (s))
+2(sm}) (s) ~ (R (s) ~ )i (s))

_ B2 (5 i)+ 22 i sy (s) = (hy(s) ~ 1)

82

(3)
= (ﬁ Ap) + (#(2))2,

the second moment of Z becomes

Bz = BB pPB - /3 + N2

i

u (B — Au)®
_ 8w Muf)?
= a5 5 ) o420

Using (5.4.26) and (5.4.27), we get that the parameters a’ and & of the
approximating Gamma distribution I'(a’, §'} are given by

o _ _ B LGRS . A(p%?’)z)
& mB-M) T @7 T e\3@-w) " 2B - )’

Thus, for these parameters a' and &', the Beekman-Bowers approzimation to
the ruin probability ¥(u) = AuB8~1(1 ~ F(u)) is

aoo () = Z2(1 = F'(w), (5.4.28)

where F'(u) is the distribution function of the Gamma distribution I'(a’,d').

Remark Let Z' be I'(a’,4’) distributed. If 2a' € {1,2,...}, then 26'Z' is

x3,-distributed. Thus, approximating 2a’ by a natural number allows the

computation of F'(u) by using standard statistical tables and software for

x2-distributions.

Example Let us again consider the example from Section 5.4.2 with
= f = 1and Fy(z) = 1 — (e + e~2* + e73%). The moments of the

claxm size U are p = p{p) = 0.611111, pP = 0.907407 and pf)) = 2.32407.
The parameters of the De Vylder approximation are

é =1.17131, N =0.622472, B' = 0.920319.
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For the Beekman-Bowers approximation we have to solve the equations

a a'(a'+1)
5 = 1.90909 , -

which yields the parameters a' = 0.895561 and &' = 0.469104. Thus,
using the gamma distribution I'(a’,§’) we can calculate the Beekman-Bowers
approximation (5.4.28) to the ruin probability ¢(u). Alternatively, it is also
possible to approximate ¥ (u) by x?-distributions although 26’ = 1.79112
is not near to any natural number. Following the remark above, we can

= 7.71429,

u 0 0.25 0.5 0.75 1
o) 06111 05246 04547 03969  0.3479
DV 0.5774  0.5102  0.4509 03984  0.3520
Er (in %)  -5.51 -2.73 -0.86 0.38 1.18
BB1 0.6111 05227  0.4553  0.3985  0.3498
Er (in %) 0.00 -0.35 0.12 0.42 0.54
BB2 0.6111  0.5105  0.4456  0.3914  0.3450
Er (in %) 0.00 -2.68 -2.02 -1.38 -0.83
u 1.25 15 1.75 2 2.25
o) 0.3059  0.2606  0.2379 _ 02102 _ 0.1858
DV 0.3110 02748  0.2429 02146  0.1896
Er (in %) 1.67 1.95 2.07 2.09 2.03
BBI1 0.3076  0.2709 02387  0.2106  0.1859
Er (in %) 0.54 0.47 0.34 0.19 0.04
BB2 0.3046  0.2693 02383  0.2110  0.1869
Er (in %)  -0.42 -0.11 0.18 0.40 0.59

Table 5.4.3 Approximation by moment fitting

interpolate between the two distributions x? and x2. This yields
Flop(u) = 0.20888x3(26') + 0.791122(26') (5.4.29)

The weights are 2 — 2¢' and 2o’ — 1, respectively, which is motivated by
2a’ = (2—2a') 1+(2a’~1) 2. In Table 5.4.3 a variety of approximations to ¥(u)
are given for some realistic values u. We observe that these approximations
work quite well: DV denotes the De Vylder approximation, BB1 the Beekman—
Bowers approximation and BB2 gives the values obtained by interpolation
(5.4.29). The relative error Er is given in percent.

Another approximation method, based on moment fitting, relies on a
diffusion approximation to the ruin function ¢/(u) of the compound Poisson
model, see also the bibliographical notes to Section 5.6.
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5.4.5 Ordering of Ruin Functions

We compare the ruin functions ¢(u) and ¥’(u) of two compound Poisson
models with arrival rates A\ and )\, premium rates 8 and &, and claim size
distributions Fy and Fy, respectively. If we suppose that

A < Alt o < py, B 2 AB, (5430)

and

F{: <o Fin, (5.4.31)
then we immediately get ¥(u) < ¥'(u) for all u > 0. It suffices to recall that the
right-hand side of (5.3.16) is the tail function of a geometric compound with

characteristics (p, Ff;) and to use Theorem 4.2.3a. It turns out that (5.4.31)
can be replaced by a slightly weaker condition.

Theorem 5.4.4 If A< X and 8 > 3 and if U <4 U’, then y(u) < ¥'(u) for
allu > 0.

Proof By Theorem 3.2.2 we have that U <g U’ is equivalent to

/:o Fy(y)dy < f:o Fuy(y)dy

for all z > 0. We also have uy < pgr. This gives

@ = [ Fowiz o [ Foway=0Fe, 643

where 8 = py{(puy:)~! < 1. Let L1, I,,... be a sequence of independent and
identically distributed indicator random va.nables with P(I=0)=1-6 and
P(I = 1) = 6. Furthermore, let U1,U0,,... and U"y,U',,... be sequences of
independent and identically distributed random variables w1th distributions
F% and F§. respectively, and independent of {I,}. Finally, assume that
N',N, Ny are random variables which are geometrically distributed with
parameters (N gy )/ 8 ,(Auu)/B, 0N py) /B, respectlvely, and independent
of {In} {U:}, {U'k}. Recall that ¢(u) = P(Z,‘_1 Up > u) and ¥'(u) =
Zn=1 U! > u) and notice that we can write (5.4.32) as

U' > IU. (5.4.33)

Then we get ZL’I (7,: Zst Ef;l I Ui by Theorem 4.2.3a and (5.4.33). It now
remains to show that

N’ . N _
ST L0k 20 Y Uk (5.4.34)
k=1 k=1
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. ' s d
Passing to Laplace-Stieltjes transforms we can venf‘z that Zi\;l {kUk =
Ef__’il Ut and, by Theorem 4.2.3a, we get that 21\21 Uk >a z:‘;l U since
Ns >s N. This completes the proof. (m]

Corollary 5.4.1 If Fy is NBUE, then for allu >0
P(u) < é%g e~y —M (5.4.35)

Similarly, the reversed inequalily in (5.4.35) is true if Fy is NWUE.

Proof Suppose that Fi; is NBUE and let Fy, = Exp(8), where § = uj;'. This
means that E(I/ —z | U > ) < yy for all & > 0, which can be rewritten as

d o _ .
—log [ Fyly)dy<—py, 20
dz " J;

Integrating both sides yields
o0 —
log/ Fy(y)dy < —pg'z+logpy, 220,
x

Hence, f:° Fy(y)dy < upe™%, z > 0, or equivalently U <4 U'. Applying
now Theorem 5.4.4 with A = X and 8 = 5’ and recalling formula (5.3.8) we
obtain that ¥(u) < ¥'(u) = Ay 8~te~(6-*/8)v 4 > 0. Similar considerations
are valid for Fy being NWUE with the reversed inequality in (5.4.35). o

Bibliographical Notes. One-sided bounds of the type ¥({u) < e~
as well as asymptotic relations ¥(u) ~ ce™* for large u-values have
been studied by Filip Lundberg (1926,1932,1934). The modern approach
to these estimations is due to Cramér (1955). By means of martingale
techniques one-sided inequalities were also derived in Gerber (1973) and
Kingman (1964) in the settings of risk and queueing theories, respectively.
In Taylor (1976), two-sided bounds of the form (5.4.4) were obtained for
the ruin function ¥(u). The renewal approach to Theorem 5.4.2 is due to
Feller (1971). Graphical and numerical techniques to estimate the adjustment
coefficient abound. For an existence argument, see Mammitzsch (1986).
Recently, statistical techniques have become available as well. A first attempt
using stochastic approximation can be found in Herkenrath (1986). The
approach used in Csorgé and Teugels (1990) employs the notion of the
empirical moment generating function as defined in (4.5.3); see also Pitts,
Griibel and Embrechts (1996). Other approaches identify the adjustment
coefficient as the abscissa of convergence of a Laplace transform as done
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in Deheuvels and Steinebach (1990) or use intermediate order statistics as
in Csorgé and Steinebach (1991). For a bootstrap version, see Embrechts and
Mikosch (1991). A Hill-type estimate has been proposed in Richter, Steinebach
and Taube (1993). Procedures that apply to more general risk models can be
found in Christ and Steinebach (1995) and in Schmidli (1997b). Bounds for
the adjustment coefficient are given in Gerber (1979). Theorem 53.4.3 goes
back to Teugels and Veraverbeke (1973) and to Embrechts and Veraverbe-
ke (1982); see also Asmussen, Schmidli and Schmidt (1999), Cohen (1973),
Embrechts and Villasefior (1988), Kliippelberg (1989) and Pakes (1975). In the
special case of Pareto distributed claim sizes, the result of Theorem 5.4.3 was
obtained by von Bahr (1975), while Thorin and Wikstad (1977) dealt with the
lognormal distribution; see also Ramsay and Usabel (1997) and Seal (1980).
Higher-order asymptotic expansions can be found, for example, in Willekens
and Teugels (1992). Simulation of ruin probabilities for subexponential claim
sizes was considered in Asmussen and Binswanger (1997). In Kliippelberg and
Stadtmiiller (1998), the asymptotic behaviour of the ruin function ¥ (u) has
been investigated for the compound Poisson model with heavy-tailed claim
gsize distribution and interest rates. It turns out that, in this case, ¥(u)
is asymptotically proportional to the tail function Fy(u) of claim sizes as
u — oo; this is in contrast to the result in Theorem 5.4.3 for the model
without interest. More details on risk models with interest are given in
Section 11.4. Large deviation results for the claim surplus process in the
compound Poisson model with heavy-tailed claim sizes have been derived in
Asmussen and Kliippelberg (1996) and Kliippelberg and Mikosch (1997). The
De Vylder approximation was introduced in De Vylder (1978). The Beekman-
Bowers approximation can be found in Beekman (1969). Theorem 5.4.4 is
from Daley and Rolski (1984). For orderings of risks and results like (5.4.31),
see Pellerey (1995). Asymptotic ordering of risks and ruin probabilities has
been studied, for example, in Asmussen, Frey, Rolski and Schmidt (1995) and
Kliippelberg (1993).

5.5 NUMERICAL EVALUATION OF RUIN FUNCTIONS

In this section, we discuss an algorithm for the numerical inversion of Laplace
transforms which makes use of Fourier transforms. Recall that the Fourier
transform ((s) of a function g : R — R is defined by ¢(s) = f_c_”oo el**g(z)dz.
The following lemma shows how to invert the Fourier transform.

Lemma 5.5.1 Let ¢ : R — R be a measurable function such that
I g(t)dt < oo and let (s) be its Fourier transform.
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(a) If [, |#(s)|ds < oo, then g(t) is a bounded continuous function and

gty = % / e7if3(s)ds, teR. (5.5.1)

-G

(b) If g(t) is a continuous function with locally bounded total variation, then

— 1 H T —ist
9(t) = 5~ lim_ f_ . p(s)ds, teR. (5.5.2)

The proof of Lemma 35.5.1 is omitted. For part (a) a proof can be found, for
example, in Feller (1971), Chapter XV.3, and for (b) in Doetsch (1950).

Another auxiliary result which we need is the Poisson summation formula.
Recall that for a continuous periodic function g,(t), having locally bounded
variation with period 2n/h, the corresponding Fourier series Z:’;_ . cretkht
where ¢ = (h/27) ff,/,l;h gp(t)e~ iRt dt, converges to gp(t) and this uniformly
with respect to the variable f. Actually, for pointwise convergence of the
Fourier series it suffices to assume that g,(t) is of locally bounded variation
and that g,(t) = (1/2)(gp(t+) + gp(t—)). In the following, let

go(t) = i y(t + %) -

k=—o0

Then, assuming that g,(¢) is well-defined for all £, the function g,(t) is periodic
with period 27 /h.

Lemma 5.5.2 Let ¢(s) be the Fourier transform $(s) = [*° e'*tg(t)dt of
an absolutely integrable continuous function g : R — R. If the Fourier series
corresponding to gy(t) converges pointwise to gp(t), then

(e ]

> g(t+2—’}:f) =% i P(kh)e~ikht (5.5.3)

k=—00 k=—00

Proof By the assumption we can represent the function g,(t) by the Fourier
series gp(t) = Y52 _ . ckelFh?, where

ho [/ —ikht h [T & 2710\ _ikhe
e = %/ gp(t)e dt = ﬂ/ ( Z g(t+—h—-))e dt

-n/k ~-n/h e

h ™ i h :
= -2}-/ g(t)e ikrt qp = 2—7r<,o(—lch).

=00

Hence 3732 _, g(t + 2mkh™") = (h/2m) TRL_,, @(kh)e~*r:. D
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We now discuss an algorithm for numerical evaluation of the Laplace
transform

L(z)= /ooo e **c(u) du (5.5.4)

for some class of functions ¢ : Ry — R.. Note that if c(u) is a bounded and
measurable function, then its Laplace transform L(z) is well-defined for all
complex numbers z with 2 > 0. In this section we will assume that c{u) is a
bounded continuous function on Ry with locally bounded variation.

The numerical method discussed below can be used to compute the ruin
function ¥(u) in the case when its Laplace transform is known but does
not allow analytical inversion. Sometimes the analytical inversion of the
Laplace transform of ¢(u) is possible, as in the exponential case as shown
in Section 5.3.3. Inversion is also possible for the hyperexponential claim size
distribution from Section 3.4.2, and for some further examples discussed at
the end of the present section.

We use Lemma 5.5.1 to derive a formula for ¢(u) in terms of its Laplace
transform.

Theorem 5.5.1 For ellu>0 andz > 0

uz T .
c(u) = Tlixl'noo /; cos(uy)RL(z +iy) dy . (5.5.5)

Proof Let x > 0 be fixed. Consider the function g : R = R defined by

[ e7Fe(t) ift>0,
9(t) = { o_t) | 120 (5:5.6)

withz > 0and b= f0°° e~ *tc(t) dt < oo. The corresponding Fourier transform
is then given by @(s) = L(z — is) + L(z +is) = 2RL(z + is). Since g(t) given
in (5.5.6) is an even function, we have @(s) = R@(s). Lemma 5.5.1b yields

T T

\ 1 e ity = l i —ity 5
ot) = o fim [ e dy=go lim [ R[] dy
= ﬂ'rhm / cos(ty)@{y)dy = — hm / cos(ty)p(y) dy
2 T -
= Z lim cos(ty)RL(z + iy) dy .
T T Jg

That is, c{u) = 2e**7~ ! limy_ 50 fUT cos{uy)RL(z + iy) dy for u,z > 0. a

For practical applications of Theorem 5.5.1, it remains to numerically
compute the integral in (5.5.5). This integral has to be approximated by a
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suitably chosen sum. For instance, we can use the infinite trapezoidal rule
with a (possibly small) discretization width 2 > 0 to derive the following
approximation to ¢(u):

capp(u) = %h(gm‘,(z) + f: cos(ukh)RL(z + ikh)) (5.5.7)
k=1

For reasons that will be explained later, we put h = n/(2u), z = a/(2u) for
some @ > 0. Then

?h(%m‘,m + i cos(ukh)RE(z + ikh)

k=1
= T () 2 e () m(*R)).

Now note that

2

and thus we only have to consider even ks. We arrive at the discretization
error

d(u)

cos(kz) _fo if k£ is odd,
T (=1)¥? if k is even,

Ic('u) - C:p}:z(u)l - .
Jetw) -~ S (RE() - 2§(—1)k+1m(&2‘3ﬁ))|.

(5.5.8)
It turns out that the discretization error can be controlled.
Theorem 5.5.2 For all u > 0,
0/2 R (o o] . .
cw) = S (RE(Z)-2) (-nrrE (LA
2u 2u 2u
. k=1 (5.5.9)
— > e %c((2k + 1)u) .
k=1

Proof Consider the function g{t) defined in (5.5.6), i.e.

_ [ e7%e(t) fort>0,
9(t) = { g(-t) fort<O.

In this case the sum gp(t) = Y po_., g(t + 27k/h) converges uniformly in ¢.
Thus, g,(t) is well-defined, continuous and of locally bounded total variation.
The assumptions of Lemma 5.5.2 are therefore satisfied. We denote the Fourier



RISK PROCESSES 187

transform of g(t) by #(s). Let z = a/(2u) and h = m/u. Then, recalling that
L is the Laplace transform of c(z), we have ¢ (kZ) = L(z — ikh), since

gk S R
‘P('_W) = / el(kn/u+na/(2u))tc(t) dt
0

u
0
= / e~(o/EW-tkn /W)t oy gt = F((a — i2kn)/(2u)).
0

Thus (5.5.3) takes the form

— 1 &k
kz_(:)e—a(2k+l)/2c((2k+l)u) - Ek—z: ‘ﬁ(?ﬂ)e—ikw
= _——00
1 — —i2km
T z( l)kL( 2u )’
k=—o0

recalling that e~#* = (—1)*. Since
o0
P(8) = / e'*tg(t) dt = L(z — is) + L(z + is) = 2RE(z + is),
)

this gives

ow) = %‘/_ i l)kL(a+12k7r)

— e/ Z e D/ 2c((2k + 1)u)

k=1
/2 .ra e?/? r s (O Fi2kT
= wWR(g) T R ()
oG
- Ze""‘c((% + 1u},
k=1
which completes the proof. ]

Comparing (5.5.9) with (5.5.8), we get for the discretization error d(u) in
(5.5.8): d(u) = T 5o, €~ %*c((2k + 1)u). Since 0 < c(u) < 1,

e'—ll
1—ea’

d(u) < (5.5.10)
for a > 0. This suggests that a should be chosen as large as possible. However,
if @ is too large, other numerical problems can occur, e.g. rounding errors
resulting from multiplication by the factor e/2,
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Note that the discretization width A = 7/(2u) has been chosen to end up
with an alternating series (5.5.9), provided that the terms RL((a+i27k)/(2u))
have the same sign for all k > 1. The Euler summation method, applied to
alternating series, can now be used to accelerate convergence.

Let {ax} be a decreasing sequence of positive numbers such that a; — 0 as
k — oo. With the notation

o, _
Aap = ag — Qg4 , Artlg, = A(Atay), Alay = ay,

we can represent the n-th partial sum s, = Y p_,(—1)**a, of the infinite
series s = 3 g, (—1)**1a; by

ﬂ 1 £ k+1 _yn+1%n
( 2; Aak)+( P (5.5.11)

Thus, 8, = @;27! + 271 Y72} (~1)**'Aa, — s as n — oo. Moreover, if
the sequence {Aayx} is decreasmg, the sequence {s,} is also alternating and
(5.5.11) implies that the remainder ¢, = s — s, can be bounded by

lenl = (=1)n = (-1)"* (80 — 3)
n—1
[(-1)"+1 (“?1 + % ;H)Hmak - s)] + %"

= ()™ -]+ T <

because then the term in the brackets is negative. Thus, using the same
argument as above, for the remainder ¢, = 3 — s, we have |c,| < Aan/4,
provided that the sequences {Aax} and {A%a,} are decreasing. By iteration
we derive a representation for the alternating series s = Y g, (—1)*"ay.
More precisely, for each n € IN, we have

A 01 1 >
8= Z 2%+l T 3n D (-)F AR, (5.5.12)
k=0 k=1

which suggests that the first sum in (5.5.12) is a good approximation to s
even for moderate values of n.

The Euler transformation {a1,az,as,...} = {A%a;,Ala;, A%qy,...} can
also be used when computing the series s under much weaker conditions. It
is for example not necessary to assume that the a, are positive or monotone.

Lemma 5.5.3 Let {ax} be an arbitrary sequence of real numbers. If the
series s = Y oo (—1)**a; converges, then the FEuler-transformed series
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Yoreo AFay /251 converges to the same limit. Under the additional assump-
tion that, for each n € IN, the sequence {A™ay} is decreasing in k,

n—1
An
ls - ZA”al/?‘“I < Fal- )
k=0

The proof of Lemma 5.5.3 can be found, for example, in Johnsonbaugh (1979).

Usually, a good approximation to s = 3¢ o(—1)*a; is obtained when the
alternating summation ag — a; + a3 — . .. is combined with Euler summation.
S0, 8 =38, + ()" 2,27 (k+D Ak . is approximated by

m-—1
C(m,n) def s + (=1)ntt z 2+t AKG Lo
k=0

An induction argument shows that

C(m,n) = f: (TZ) 2 ™ Stk - (5.5.13)

k=0

Hence, an application of the approximation C{m,n) given in (5.5.13) to the
series in (5.5.9) results in the approximation to c(u)

C(u,m,n) = def Z (TZ) 27" 8k (u), (5.5.14)

k=0

where

sn(u) = —-.SRL( ) + _Z( 1)".%L(a+‘27'k)

Examples Consider the compound Poisson model specified by the character-
istics (A, Fy) and let ¥(u) be its ruin function. Further, p = (AEU)/8. The
Laplace transform L(s) = fo exp(—su)¥(u)du is known by (5.3.14). The
proposed method can lead to two types of errors, resulting from discretization
and from truncation. Choosing a = 18.5, the discretization error is less than
1078 (computed from (5.5.10)). In Table 5.5.1 we present the results of the
numerical computations for three cases of claim size distributions. We always
take p=0.75and 3 =1:

(a) Fy = pExp(a1) + (1 —p)Exp(az) with p=2/3,a; =2and a; = 1/2,ie. U
is hyperexponentially distributed,

(b) Fy is the gamma distribution I'(1/2,1/2) with the density function
fu(z) = (2723)'/? exp(—z/2) (then p =1 and o =2),

(c) Fy is the Pareto mixture of exponentials PME(2).
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Hyper-exponentially distributed claim sizes
u Exact Numerical u Exact Numerical
inversion inversion
0.1 0.73192117 0.73192119 5.0 0.32004923 0.32004975
0.3 0.69927803 0.69927809 6.0 0.27355552 0.27355607
0.5 0.67037954 0.67037965 7.0 0.23382315 0.23382369
1.0 0.60940893 0.60940913 8.0 0.19986313 0.19986366
2.0 0.51446345 0.51446378 9.0 0.17083569 0.17083620
3.0 0.43843607 0.43843650 10.0 0.14602416 0.14602464
T'(1/2,1/2)-distributed claim sizes
u Exact Numerical ! Exact Numerical
inversion inversion
0.1 0.733833531 0.733833534 5.0 0.322675414 0.322675411
0.3 0.705660848 0.705660851 6.0 0.274442541 0.274442538
0.5 0.680115585 0.680115587 7.0 0.233464461 0.233464459
1.0 0.622928580 0.622928581 8.0 0.198626710 0.198626707
2.0 0526512711 0.526512711 9.0 0.168998278 0.168998276
3.0 0.446685586 0.446685585 10.0 0.143794910 0.143794907
Pareto mixture of exponentials PME(2)
u  Numerical Asymptotic # Numerical  Asymptotic
inversion  approximation inversion approximation
1.0 0.60382220 1.5 20.0 0.11036 0.075
2.0 0.50796380 0.75 30.0 0.07060 0.05
3.0 043828568 0.5 40.0 0.05062 0.0375
5.0 0.34156802 0.3 50.0 0.03899 0.03
6.0 0.30629948 0.25 60.0 0.03151 0.025
7.0 0.27682399 0.21429 70.0 0.02635 0.02143
8.0 0.25183704 0.1875 80.0 0.02260 0.01875
9.0 0.23040797 0.16667 90.0 0.01976 0.01667
10.0 0.21185227 0.15 100.0 0.01754 0.015

Table 5.5.1 Ruin probability ¥(u)
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For the numerical computations of 1(u) presented in Table 5.5.1 we used
(5.5.14) with m = 11, n = 15 and a = 18.5. We then have that |C(m,n +
1) — C(m,n)} is of order 10°. Note however that for cases (a) and (b) there
exist explicit solutions. For example, for the case (a) the ruin function v (u)
is given by

¥(u) = 0.75 (0.935194e 015093 4 . 0648059¢ ~*-59%07¢)

We leave it to the reader to show this as an exercise. Furthermore, it is shown
in Abate and Whitt (1992) that, for case (b),

() = plone”™® +p7'B(u) — e (1 + 8p)!/2 - 1)v/u/2)
—aze™B(((1 + 8p)/2 + 1}v/u/2)),

where ®(z) is the distribution function of the normal distribution, and

@ = 1- 201 - p) a = a +___1—2p
! VI+8p(1+2p+/T+8p) "’ 2" p
1 ~(4p-1
d = +8—(p-1) £k = 2p+6-1/2.

4 1

Bibliographical Notes. The method to compute the ruin function ¥(u)
by numerical inversion of its Laplace transform was presented in Abate and
Whitt (1992); see also Abate and Whitt (1995), Choudhury, Lucantoni and
Whitt (1994), O’Cinneide (1997). Another inversion technique for Laplace
transforms has been studied in Jagerman (1978, 1982). For numerical
inversions of characteristic functions, see, for example, Bohman (1975).

5.6 FINITE-HORIZON RUIN PROBABILITIES

We now show that for two special claim size distributions, the finite-horizon
ruin probability ¥(u; z) can be given in a relatively simple form. Furthermore,
we will express the survival probability ¢¥(u;z) = 1 — ¥(u; z) in terms of the
aggregate claim amount distribution and derive Seal’s formulae.

5.6.1 Deterministic Claim Sizes

In this section we give a recursive method to calculate the finite-horizon ruin
probability #(u;x) for the case of deterministic claim sizes. Recall that 7(u)
denotes the time of ruin, and that {z| is the integer part of z.

Theorem 5.6.1 Assume that P(U = u) = 1 for some u > 0, i.e. the claim
sizes are deterministic. Let ¢{u;z,y) = P(7(u) > z,R(z) = y).
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(2) Then fory >0,
$(4;0,3) = du(y), (5.6.1)

and if u/p,B/u € {1,2,...}, then for y such that y/p € {1,2,...},

u/p

stuiz,) = 3 e L g G-ty — o). (562

j=0

(b) Let z = [u/p] + 1 — u/p and assume that (u + 8z)/p € {1,2,...}. Then
for y such that y/u € {1,2,...},

lu/k)

Huiz)= 3 e
=0

—Auz/8 (—/\—“‘j,/ﬂ‘b(u —(f—2)pu;z—p2/B,y). (5.6.3)

(c) Let u,z > 0 be arbitrary and let z = (u + z8)/p — [(u + z8)/n]. Then,
the survival probability 1/(u;x) can be obtained from

Wu+zB8)/u}
Pl z) = Z o(u; z — 244/ B, ki) P(N (2ps) < k) if Bz > zp,
P(N(t),u > u) otherwise.

(5.6.4)

Proof Consider the counting process {N()} where N(t) = N(u8~'t),
i.e. {N(t)} is a Poisson process with rate Au/d. Using the transformation

N(t) FBu~te)
> ui-pt =u( Y w'u —ﬂ;rlt), (5.6.5)
=1 =1

it is enough to prove the theorem in the case 8 = u = 1 which is assumed in the
following. Furthermore, it is easy to see that then the multivariate survival
function ¢(u;z,y) can be analysed by considering the risk reserve process
{R(t)} at those times ¢ only where R(t) is an integer. If R(t) = 0, then ruin
has occurred before ¢ because P(N(t) — N(t—) > 0) = 0. We subdivide the
remaining part of the proof into three steps.

(a) Formula (5.6.1) is obvious. Let £ > 0. There are j claims in the time
interval (0,1] with probability exp(—A) M /(j!). The risk reserve at time 1 is
equal to u + 1 — N(1). Ruin occurs in (0,1] if and only if u +1 - N(1) < 0.
Thus, (5.6.2) follows using the law of total probability and the independence
properties of the compound Poisson model.

(b) Note that R(z) = u+ x — N(z) € Z. The first epoch ¢t > 0 where
R(t) € Z is z. In the time interval (0, 2], there are j claims with probability
exp{—Xz} (Az)7/(j1). The risk reserve at time z is equal to %+ z — N(z). Ruin
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occurs in (0, 2] if and only if u + z — N(2) < 0. Now (5.6.3) follows by the
same argument as used in case (a).

(c) Assume first that £ > z. If ruin has not yet occurred, then the risk reserve
at time z — z is an integer between 1 and u+(z—2) = |u+z|. f R(z—2) =
and ruin has not occurred up to time x — z, then ruin does not occur in the
interval (z — z,z] if and only if N(z) — N(z — 2) < k. This yields (5.6.4).
If £ < z then R(t) ¢ IN for all 0 < ¢ < z. Thus, ruin occurs if and only if
N(z) > u. a

Remark Note that in (5.6.2) and (5.6.3) it is possible to sum over
y € {1,2,...}. Thus, formulae (5.6.2) and (5.6.3) remain true if ¢(u;z,y)
is replaced by ¥(u; z). However, the use of the multivariate survival function
¢(u; z,y) is necessary in order to be able to compute the finite-horizon ruin
probability 9(u; z) = 1—¢(u; z) in the case where R(z)/u ¢ Z. Indeed, if ruin
has occurred before the next time ¥ after £ where R(Z)/u € Z but not before
% — p/B, then we cannot decide whether ruin occurred before or after z.

5.6.2 Seal’s Formulae

We now express the survival probability ¥ (u;z) in terms of the distribution

Fx (1) of the aggregate claim amount X(t) = EN Oy, U has density fu
then the distribution function of X () can be expressed as

Fx@(z) =e” / fxw@dy, =20,

where fx(t)(y) = En_l((/\t)"/n')e"“ "(y). Formulae (5.6.6) and (5.6.7)
below are known in actuarial mathematlcs as Seal’s formulae; see also
Theorem 10.3.5.

Theorem 5.6.2 Assume that P(U >0) = 1.
(a) Then, for initial risk reserve u =0,

Bz
W00 = ZEB@D =5 [ Froway. (669

(b) If u > 0 and U has denscty foly) then
Y(u;z) = Fx(q)(u+ Bz) — ﬂ/o 90,z -y fxqyu+By)dy.  (5.6.7)

Proof Assume first that u = 0. Then

B(0:2) = P(N{RE 2 0)) =E(P(N{X® <o)

<z t<z

X{=z) 1
E((l— e )+)_EER(:c)+

X(:c)))
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where we used the following property of the compound Poisson process { X (¢)}.
For all z > 0 and y € IN, we have

P(X® Bt} | X@ =v) = (1-5),

t<z

see also Theorem 10.3.5. Thus, the first part of (5.6.6) is proved. The second
equality in (5.6.6) follows readily using integration by parts. Let now u > 0.
We leave it to the reader to show that 9(u; z) satisfies the integro-differential
equation

b 58&%‘; 2) - 585%‘; 7)+ 2 /o (u - y; ) dFy(y) — Mp(u; ) = 0. (5.6.8)

Let L—(s z) = fo e~*%3h(u; z) du denote the Laplace transform of ¥(u;z).
Mulmplymg (5.6.8) by e~ ** and integrating over (0, 00}, we obtain

ﬂ(sfq(s;:c) ®(0;z)) - —L-(s )+ Al 7(8i z)(ly(s)-1) =0,
as in the proof of Theorem 5.3.3. From the theory of ordinary differential

equations (see, for example, Hille (1966)) we know that the general solution
to this differential equation is

%(3; z) = (c - / . B(0; y)Be=Be+Mlu()-1))y dy)e(ﬁs+)\(iv(8)-l))x (5.6.9)
0
for some constant ¢. Putting = 0 yields
A~ oo —
c= Ly;(s; 0) = / e " P(u;0)du = s7!
)
Note that s~! exp{At(iy(s) — 1)} is the Laplace transform of Fx(y(v). Thus

etg=1 exp{Ai(ly(s) — 1)} is the Laplace transform of Fx(y)(v + Bt) and

efst exp{)\t(l};(s) — 1)} is the Laplace transform of fx(t)(v + Bt). For the
second term in (5.6.9), this gives

z -
/ B(0; ) BelBe+Alu (9)-D)(z~3) gy
0

= / / B(0:9)8e™*" Fr(o—p) (¥ + B(z — 1) dudy
0 JO

f

[ 90,2 - 8o+ 1) dyeav
¢ Jo

which is the Laplace transform of the second term in (5.6.7). a
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Note that Fx(,)(u + Bz) is the probability that R(x) > 0. This is, of
course, necessary for survival. The second term in (5.6.7) must therefore be
the probability that R(z) > 0 and ruin has occurred up to time z. If ruin
occurs up to time x but R(z) > 0, then there must be a last (random) point
Y before x for which R(Y) = 0. Then, formally we have

P(Yedy) = P(R(y)=0, (] {R(s)20})

y<s<zm
P(X(y) € u+d(8y) ¥(0;z - y)
Bfx(y)(u+ By)¥(0;z — y) dy,
because of the independence properties of the compound Poisson model. Thus

the second term in (5.6.7) can be interpreted as conditioning on the last time
y before ¢ where R(y) = 0.

5.6.3 Exponential Claim Sizes

In this subsection we deal with the case of exponentially distributed claim
sizes, that is Fi; = Exp(d) for some § > 0. Before embarking on the detailed
calculations, we introduce an auxiliary function that is intimately connected
to the modified Bessel function Io(z) introduced in Section 2.2.1:

o0

J@) =Y ;% = L(2V3) . (5.6.10)

n=0
The next lemma collects some useful formulae involving the function J(z).

Lemma 5.6.1 The following relations are valid:
(a) zJ(z) + TV (2) — J(z) = 0.
(b) For a,b,c € R with a #0,

[ [
/ e JW(gw)dw = -l—e_"cJ(ac) 21 + b / e " J(aw) dw .
o a a aljy
(c} For a,b,c€ R withb# 0,
c c 1 C
/ we % J) (qw) dw = —Be‘bc J W (ac) + Z/ et J(aw) dw .
0 0

(d) For s >0 and z € R,

/ e~ J(zw) dw = s~ 'e/*.
0
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Proof All statements of this lemma are elementary. The equation in (a) is the
classical differential equation for the (modified) Bessel function. The formula
in (b) is proved by integration by parts; (c) also follows from differentiation
and an application of (a). Finally, (d) gives the Laplace transform of J(z).
Through Fubini’s theorem we can write

o0 0 2" o0
eI (zw)dw = z —'7/ e " dw
) nn. Jo

n=0
) n

_ Z Z n! =3_1e"/’

- nin! sntl ) ]
n=0

The main result of this section is the following formula for the finite-horizon
ruin probability ¥(u;z} in the case of exponentially distributed claim sizes.

Theorem 5.8.3 Assume that Fy(z) =1 —e7% for all z > 0. Then
Y(u;z) = 1 — e 0u(+M2 o080 4 edz, Az), (5.6.11)

where ¢ = 63/ and

z c6
9(2,8) = J(02) + 050 (62) + / &2~ J () dv — % / 69" J(zc~1v) dv.
’ ° (5.6.12)

The proof of Theorem 5.6.3 is subdivided into three steps. We first reformulate
expression (4.2.8) for the distribution of the aggregate claim amount in terms
of the function J(z) introduced in (5.6.10). Then we derive formula (5.6.11)
for the special case when the initial risk reserve u = 0. By using Seal’s second
formula (5.6.7) and a rather intricate argument we finally treat the general
case.

In Section 4.2.2 we derived a compact formula for the distribution of the
aggregate claim amount X(z) when the claim number process is Poisson
distributed with parameter A and the claim size distribution is given by
Fy(y) =1 —e7%. Then by (4.2.8)

v
Fxz(y) =e™* (1 + \/)«53;/0 e % (2\//\5'0::)) % )

However it is easy to show that I;(2) = Iél)(z) and hence we can rewrite the
function I, in terms of J(. This leads to the expression

Yy
Fx(e)(y) = e (1 + Az /o e~ JW (A duz) dv). (5.6.13)
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Using Lemma 5.6.1b we can still give an other expression for Fx)():

Sy
Fx(z)(y) = e "% J(\xy) +e""’/ e~ J(Azw) dw.
0

Note in particular that this equation can be written in the form
Fx(z)(y) = v(Az,dy) (5.6.14)
where "
V(8,m) = e=*="J(8p) + e~ /o e~ J(Bw) duw . (5.6.15)
From (5.6.13) we also have an expression for fx(,)(y) = 8/8y Fx()(y),y > 0:
Fx@) @) = Az e+ JO (\ggy) . (5.6.16)

We now treat the case u = 0. To do that we apply Seal’s formula (5.6.6) when
calculating the survival probability ¥(0;z) = (8z)~* ff ® Fx(z)(y) dy. where
the integrand has been obtained before. The calculations go as follows. Start
from (5.6.13) to write

— 1 [ Ad Bz ry
¥(0;z) = % / e M dy + Ee—Az / / e~ JM (\Svz) dvdy
0 [¢] 0
A6 fz
= e"\‘+7e"\z/ e~ (Bz — v)JV (Adzv) dv.
0

Now use statements (b) and {(c) of Lemma 5.6.1 to arrive at the expression

eAm(l-{-c) E(()’ :t)

_ cAz
J(AB6z2) + Az TV (\B8z?) + fc—l / AT J(\gw) dw
0
gledz, Az) .

Thus,
¥(0; z) = e~ =0+ g(eAx, Ax) (5.6.17)

where ¢ = 3/ and g(z2,8) is defined by (5.6.12). This proves the statement
of Theorem 5.6.3 for u = 0.

Before turning to the general case we derive an alternative expression for
the quantity g(z,8) introduced in (5.6.12). First note that forc > 0anda € R

¢ 1
/ e YJ(aw)dw =c / e~} J(acv) dv
] 0
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a® o0 ™ 1 s m+s+1
D S D s

o0

Yoy gﬁ=z‘;_z_j%=}:—eﬂ (@),

s=0 = n=s+l

it

where we used the abbreviation en(z) = ¥ v, 2°/(s!). We use this represent-
ation formula twice to rewrite g(z,8) from (5.6.12) in a series expansion. This
yields

= 2" o~  z"6" — 2" "
9(2,0) =) W‘FOZ TR > ;z_‘en—l(o)_— Z —en-1(2/¢),
In! "7 & ! 1" & ¢

n=0 n=l

or equivalently

9200 = 3 (@) - 1Y T e (e (56.18)

n=0 n=1

To simplify the notation a little, we introduce the function

9c(2) = cg(€.z/c), (5.6.19)

which will be rather useful in the sequel. Using (5.6.18) we can write g.(2) ina
power series with respect to z. As the calculations are tiresome but elementary
we leave them to the reader as an exercise. We arrive at

9o(2) = i Crle) 2", (5.6.20)
r=0
where
¢ ifr =0,
Cole) = +(c l)zn'@m ! if r =2m >0,
H(:n;-i-l—)i -1 E m ifr=2m+1

We now turn to the case of an arbitrary initial reserve u > 0. Recall Seal’s
second formula (5.6.7) but written in the form

F(a)(u + 82) — B(u;2) = 8 fo T B(0:2 — ) Froin s+ By) dy
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On the right hand side we have expressions for both ¥(0;z — y) and

Fx(y)(u+By). Now, using (5.6.16) and (5.6.17), after a little algebra we obtain
the intermediate expression

Fx(a)(u + Bz) - ¥(u;z)

A z
ﬁTe“(”c"““ [) ge(eA(z — y)) y IV (ASy(u + By)) dy

Az
= eMelire-du f ge(cre = 9))v IV (u(du + cv)) dv.
1]

Hence by (5.6.14), we can write that
¥(u; x) = v(Az,du + eAr) — gz, du) (5.6.21)

where v(@,n) is given by (5.6.15) and

q(0,n) = el-n+6(+c) /0 vge(c(8 — v))JV (v(n + cv)) dv . (5.6.22)
0

It remains to rewrite ¢{f,7) in such a way that we arrive at formula (5.6.11).
We prepare this in the next lemma.

Lemma 5.6.2 For the function g.(§) given in (5.6.19) and (5.6.20),
respectively, the following identities hold:
(al) ForfeIN and A€ R

Zczr(,\ B (5629

(a2) For£e N and A€ R

£ b—r
2—;)021-“( ( D (L,(I:),e LUV (5.6.24)

(b) For A, w >0

/ ’ ge(M)JOw(v — w))dv = ** — 1. (5.6.25)
[\]

(c) For A,z,y >0

z N Az N Y ;
/ Q) ((z-v)(y—Iv)) dv=e ’[; e "J(Xv) dv. (5.6.26)

0
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Proof (al) For £ = 0, the proof is trivial. For £ > 0, we introduce the explicit
expression of the quantities Ca,()). The relation to be proved is then

Z( )¢ (r + )! +()\_1)2( -1) ~'(r+£)!’il X7t e

riri{é — r)! r)! — s!(2r — s)!
The first sum can be rewritten in the form

feress b))

r=0

D (L) e () -

Using this outcome above, we still need to prove the identity

z‘: f (D7 + 0! o A2
Y — ) ~1

&y e (£ - 1)Inl(2r — n)! A-1

Rearrange the left-hand side into a power series in X to obtain

¢ ¢

m 1)"’(r +)! /\‘“ m
2/\ Z (K—'r)' )!(r+m)‘ A- Z/\

m=]

Put r = m + j. Now, it only remains to prove the identity

Z (-1)8-"(r + £)! “z’:" (=1)!=m(m + £+ )1
7 =)l —m)lr+m)! — &2 (£—m ~j)lji(2m +5)! —
Replace £ =m + k. Then the expression turns out to be

k

(CDF Ik +2m4 ) s e (R 2m 5 (k)
2 k= =Y ()0) =

j=0 7

which follows from a classical identity for the binomial coefficients, i.e. when
0<k<nandteR

S ()= (.4

The proof of (a2) is left to the reader as an exercise. To show (b), we apply
expression (5.6.19) and the series expansion of the function J(z) given in



RISK PROCESSES 201

(5.6.10). Then we reduce the remaining integral to a Beta function. More
explicitly,

/w ge(A)J(Av(v — w)) dv

0
ZC"()‘)Z 'n'/ vt (v — w)" dv

r—O

( ln‘\r w” r+n n
= ZC ,\)Z — +2"+1/0 (1 - )" dt

r:-.-O

= z Cr(\) Z ()" (r + n)! I

I( 1
vt nl(r+2n+ 1)!

To continue, we are forced to split the summation over r into even and odd
values. We then rewrite both terms by inverting the summmations. For the even
terms we obtain

(=D)"A2r +0)! oianis
;}Cm(/\) Z nl@r+en+ 1)

b—ryr+t '
_ ZCM/\ Z( )P G e

2 ZPN2E+ 1)
B 2t+l ( l)t—r(,r+e)! .
= Z(zeu)'*‘z% )~
(w/\)2£+1
lz:; e+ 1)

by an appeal to (5.6.23). We leave it to the reader to similarly prove that

(=1)"AZrnt1(2r 4 4 1)1 TR (wA)*+2 )2é+2
ZC%H @) Z n!(2r + 2n + 2)! Z (2¢+2)0°
=0 n=0
with a reference to formula (5.6.24). This then proves the required expression
in (b). Next we show statement (c). As both sides of expression (5.6.26) are
convolutions, the identity will be proved if the Laplace transforms of both
sides coincide. Let s > A. On the left-hand side we have

/oo et /x a(Az)d ((z - 2)(y — Az)) dzdz
0 oco -
= / g)\(/\z)/ e " J((x — z)(y — Az}) dzdz
0 z
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/oo e ** gx(A2) /oe e ¥ J (v(y — Az)) dvdz
0 0

o
/ e *2e¥=32) 5 g, (22) dz
0

where we used statement (d) of Lemma 5.6.1. The calculation of the Laplace
transform of the right hand side is even easier and leads to s~ (s — X) ™! Ae¥/%.
Hence we need to prove the equality

o0
/0 e-—(a+)\s—1)ve(y-»\v)/ﬂgA(,\v) dv = 8_;\: ) (5.6.27)

However this equation follows from (5.6.25) by taking Laplace transforms. We
leave it to the reader to verify this. a

To finish the proof of Theorem 5.6.3, take partial derivatives with respect
to y in (5.6.26) to obtain

z 1 Az y
/ () —v)JD ((z - v)(y — W) dv = Xe’\‘ / e VuJV (XU) dv.
0 0

Identify this expression with the right-hand side of (5.6.22) to find

n+(1+c)8 _1 cb < —v,, 7(1) n
e q(n,0) = -e e vJW (v(6+ =) ) dv
c 0 c

n+cf
C

<8
= —8J0(n + ch)) + %e‘:"/ e vJ( v)dv
0

where we used again statement (b) of Lemma 5.6.1. Combining the latter
expression with formulae (5.6.15) and (5.6.21) the result of Theorem 5.6.3
follows,

An alternative representation formula for the finite-horizon ruin probability
¥{u; ) is given by the following result.

Theorem 5.6.4 Assume that Fy(z) =1—e% for allz > 0. Then
Wlu;z) = ¢~ le~{e- Ve o _ e""““*"'w"‘/ g(éu, Az,y)dy, (5.6.28)
0

where ¢ = 63/ and

e(2\/Ea+w/\‘ﬁ) cos y w
(siny sin(y + —=siny)) . (5.6.29)

g(w.8,y) =2\/51+c._2\/8cosy ve
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Proof We only give a sketch of the proof. The crucial link between the two
expressions for the function ¥(u;x) is provided by the following integral

1 r7 b(2t+v)cosy . .
J(b,v,t) = 7—1_/0 T35 —Sheosy siny sin(y + vbsiny) dy

_ b 02 (4v) L v (b4
= 3® 53¢ (5.6.30)

b o= t* 1 o= (t+v)?
- 3 E men-l(bz(t +v)) + % E (?)_erﬁ-l(bzt) .
n=1 " n=0 :

When proving this formula, we use the following expansion:

e" %% sin(af + enlp — o) sin ) = Z (no sm((a —¢k)8 + enpsing) ,
k=0
(5.6.31)
where a,7, 8, p and £ are arbitrary real numbers and ¢ = +1. Formula (5.6.31)
is most easily proved by relying on the complex form of the sinus function.
For it can easily be checked that

e <o gin(af + en(p — £) sinf) = %(exp(i(cw + enpsin @) + née %)
— exp(—i(af + enpsin 8) + née'?)) .

Write twice that

exp(née?) Z (ﬂf) olek

k=0
and collect the coefficients of (n€)* to arrive at the requested formula (5.6.31).
In proving (5.6.30) apply (5.6.31) with the choicea =1,e = -1,n=b,p=1t
and { =t + v to get

_ el (b(t+~v))"_1_/ sin ye® ¥ sin((n + 1)y — btsmy)
J(b,u,t)—z n w o 14 b2 — 2bcosy dy.

n=0

Apply (5.6.31) again but now with the choiccea=n+1l,e=1,2=0,p=0
and £ = t. We get now

J(b,v,t) = Z Z (B( t:_v))" (bt)* 1 /(;7' siny sin((n + 1 — k)y) dy

%! _
hopar T 1+ — 2bcosy

The remaining integral can be found, for example, via residual calculus:

1 [" siny sin(my) e im0
_/ _smysin(my) . _ ] g if m = 0,
7 Jo 1+b%—2bcosy —g-lp—m ifm< -1
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After a number of steps we arrive at the expression

n 2
Tty =" Z(b’(t+u)) enlt) - 2bz(t+u) E (bt

n=0 n: k=n+2

In the first sum we use the obvious identity

Z —en(y + Z en—l(z) =e"tV

n—-O n=1

with z = b2(¢ + v) and y = t. In the second sum we can write

3 GO .

k=n+2

This proves (5.6.30). The link with the function g(z,8) from (5.6.12) is very
easy and reads as follows:

9(z,6) = %J(C‘”z,z — o, cB) + ¥+ — ¢ lel2/O)Fed

Substitution of 2 = du + cAz and 8 = Az leads to the desired formula. o

By way of conclusion we like to point out that (5.6.18) provides a
third expression for the ruin probability ¥(u; z). Furthermore, using formula
(5.6.28) for the finite-horizon ruin probability ¥(u; z) in the compound Poisson
model with exponentially distributed claim sizes, we also get a De Vylder
approximation to ¢(u; z):

o~ I
Yapp(uiz) = é'ﬁ' @-xsm_ 1 /0 o(y) dy (5.6.32)
where ', §', X’ are given in (5.4.21) and (5.4.22), and g{y) is given in (5.6.29).

Bibliographical Notes. Formulae (5.6.1) and (5.6.2) as well as Theo-
rem 5.6.2 can be found in Seal (1974). Note however that in the context of
queueing theory, Theorem 5.6.2 goes back to Takacs (1962). Other recursive
methods to calculate the finite-horizon ruin probabilities ¥(u; ) can be found
in Dickson and Waters (1991) and Stanford and Stroinski (1994). Under the
assumption that the claim sizes are integer-valued, Picard and Lefevre (1997)
show that ®¥(u;z) can be expressed in terms of generalized Appell polyno-
mials. The proof of Theorem 5.6.4 is inspired by Arfwedson (1950), whose
proof relies on the solution to a partial differential equation; see also Arfwed-
son (1955). Our method is elementary. A proof of Theorem 5.6.4 which uses
the queueing-theoretic approach is given in Asmussen (1984). For normal-type
approximations to ¥(u; z), see Asmussen (1984), Malinovskii (1994) and von
Bahr (1974).
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CHAPTER 6

Renewal Processes and
Random Walks

In this chapter, we consider the risk reserve process { B(t), ¢ > 0} in continuous
time as it has been introduced in Section 5.1.4. Unless otherwise stated,
we assume that the claim counting process {N(¢)} is a renewal counting
process, i.e. {N(t)} is governed by a sequence of independent and identically
distributed inter-occurrence times {T,} with a common distribution Fr.
Furthermore, the sequence {U,} of claim sizes consists of independent
and identically distributed random variables with distribution Fy and is
independent of {T,,}. This model is called the Sparre Andersen model. A
case of particular interest is the classical compound Poisson model which was
studied in Chapter 5; there, {N(¢)} was a Poisson process with intensity A.
We recall that then Fr(z) =1— ™%,z > 0.

6.1 RENEWAL PROCESSES

6.1.1 Definition and Elementary Properties

Let T,,T5,... be a sequence of nonnegative, independent and identically
distributed random variables. The sequence {o,,n € IN} with og = 0 and
opn=Th+...+T, forn=1,2,...is called a renewal point process and oy, is
the n-th renewal epoch.

To avoid trivialities we assume that the inter-renewal distances 71,75, ...
are not concentrated at zero, that is P(T = 0) < 1. As in Chapter 5 we may
think about the 77, 7%, ... as inter-occurrence times of claims. Another and
mathematically equivalent description of the renewal process {o,} is given in
terms of the renewal counting process {N(t),t > 0}, where

N(t) = i Ko < t) (6.1.1)

n=1
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is the number of renewal epochs in the interval (0,¢]. The equivalence of the
two processes {o,} and {N(t)} follows from the fact that

N()=n ifandonlyif {on<t<on1}. (6.1.2)

Note that {N(t),t > 0} is a continuous-time process with piecewise constant
right-continuous trajectories.

Suppose that the generic inter-renewal distance T has distribution F and
expectation u. In some cases, F' will be a defective distribution, which for
the distribution function of the nonnegative random variable T means that
lim, o F(z) < 1. That is, T can be infinite with the positive probability
1 — F(oc), where the symbol F(oo) is defined by F(oo) = lim;_,00 F(z). The
resulting renewal process is called terminating. We will indeed see below that
N(00) = lims—ye0 N(t) is finite with probability 1 and oy () is a geometric
compound.

Theorem 6.1.1 (a) If F(oo) = 1, then the trajectories of {N(t),t > 0} are
increasing to infinity with probability 1. Moreover, with probability 1

i N(t)_ u'l if p < 00,
Lliglo t {0 if p = oo. (6.1.3)

(b) For a terminating renewal process, N(oc) is finite with probability 1.
Moreover, on(xo) 18 6 geometric compound with characteristics (F(o0), F),
where F(z) = F(z)/F(c0).

Proof We first show part (a). The limit lim;_,, N () exists in (0, oo} because
the trajectories of the process {/N(¢)} are increasing. Since P(o, < oc) = 1
for every n € IN, we get from (6.1.2) that lim;,o N(t) = co with probability
1. From the strong law of large numbers we get that lim,, om0, = > 0
with probability 1. Consequently, lim;_,oo N(t)~'on(y = p with probability
1. From (6.1.2) we have on(yy < t < On()41. Thus, dividing by N(t) we have

INW o _t . ONm+ N(i)+1
N@) S N@) - N@) +1 N

and (6.1.3) follows. To prove part (b), note that N{oo) = limseo N(t) =
N(oo) = min{n : T, = 0o} — 1, i.e. N{o0) has a geometric distribution with
P(N(oc) = 0) =1 - F(00). By the law of total probability we now easily get
that the random variable oy (o) is 2 geometric compound with characteristics
(F(o0), F). 0

In Chapter 4 we discussed methods to determine the distribution of the
aggregate claim amount ZN (#) U;. In connection with this it is important to

i=1
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know the distribution of the claim number N(t). Unfortunately, in many cases
it is impossible to determine this distribution explicitly. The following central
limit theorem gives a possible approximation to the claim number distribution,
provided that ¢ is large enough.

Theorem 6.1.2 If0 < VarT < o0, then for each x € R
. N(t) — tu™? _
Jim P(T <z) =) (6.1.4)
where ¢ = u~3Var T and ®(z) is the standard normal distribution function.

Proof By the usual central limit theorem for sums of independent and
identically distributed random variables we have

. On — N _
Jim P(—nVarT < :z:) = &(z), (6.1.5)

uniformly in z € R. Furthermore, using (6.1.2) we can write

N(@#)—tu™!
F(TE

= POmns 21 = P(

< x) =P(N(t) < zvet + tp™)

Om(t)+1 — u(m(t) + 1) > t — u(m(t) + 1) )
Vmt) + DVarT ~ /(m(@) + DVar T/’
where m(t) = |zv/ct+tp~!]. Since lim;_, o m(t) = 00, it suffices to show that

. t—um(t)
lim —— = g,
t=oo \ /m(t)Var T
bearing in mind that 1 — &(—z) = ®(z) and that the convergence in (6.1.5) is
uniform in z € IR. Note that m(¢) = zv/ct +tp~* +£(t), where 0 < |e(f)l < 1.

Thus
t—pm(t)  t—pavet —t — pe(t)

— -z. a
vm{t)VarT vm{t)VarT free

The following law of small numbers approximates the distribution of the
number of claims reported to a reinsurer in the interval (0, ] under the stop-
loss contract with retention level a. As in Theorem 6.1.2 the result gives an
asymptotic approximation which works well if @ and ¢ are large enough.

Theorem 6.1.3 Assume that g < oo. For each a > 0, consider the claim
counting process {N,(t),t > 0} with No(t) = Zf_l__(f) I(U; > b). Let a(t) be a
function such that p~ Fy(a(t))t = X ast = oo, for some A > 0. Then the
random variable Ny;)(t) is asymptoticelly Poi())-distributed, i.e. for each

PUN

lim P (N =k) =75 e, kel (6.1.6)
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Proof We use Theorem 6.1.1a and the compound Poisson approximation
considered in Section 4.6. Note that

P(Nogy(t) = k) ZP(Z 1(Ui > aft)) = k)P(N () = n)

n=0
< ZIP(Z 1(U; > a(t)) = k)
n=0 i=1

(—nF U(a(t))

— exp (-nFy(a(t))) o ! P(N(t) =n)
+ Z exp (—nFy(a(t))) tﬁf—y,;(!‘l—(%P(N(t) =n).

n=0

Thus, putting 8; = Fy(a(t)) and G = §;, Theorem 4.6.2 gives

(N(®)Fu(a(®)" )
Klexp (N(OFu(a(®))/

P(No () = k) < Fula(®) + E (

Analogously, we get

. (N Fu(a))" _
Fu(a(®) + B (5, Pl t)))) < P(No(t) = h).
Now, using (6.1.3), the dominated convergence theorem gives (6.1.6). a

6.1.2 The Renewal Function; Delayed Renewal Processes

Equation (6.1.3) motivates the term intensity of the renewal process for
the quantity p~!. The mean number of renewals H(t) = EN(t) as a
function of ¢t is called the (zero-deleted) renewal function of {N(t)}. Since
N(t) =Yoo, I(on < t) we have

HO =E i Kon < t) ZE I(on <t)= Z F*(¢). (6.1.7)

n=l n=1

Sometimes we need to include the renewal epoch at 0. Consider the random
measure N given by N(B) = Y oo Ko € B), B € B(R.), where N(B)
counts the number of renewal epochs (including zero) in the set B. The renewal
measure H is then defined by

H(B)=EN(B) = ZF*"(B), BeBRy). (6.1.8)

n=0
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We will write No(t) = N([0.t]) and Ho(t) = H([0,t]) instead of N(t) =
N((0,t]) and H(t) = H((0,t]). From Theorem 6.1.4 we get that H(B) is finite
for bounded B € B(R...). For some distributions, (6.1.7) can be used to derive
the renewal function H(¢) explicitly.

Examples 1. If the inter-renewal times T7,T5, ... are constant and equal to
A~1, then (6.1.7) yields H(t) = |At] < At

2. If the inter-renewal times T),T5,... are exponentially distributed with
parameter ), then the corresponding renewal counting process {N(t), ¢t > 0}
is a Poisson process. Note that in this case the random variables N(t) are
Poisson distributed with parameter At. Hence H(t) = At for all ¢ > 0 as
shown in Section 5.2.

3. For another example where the renewal function can be determined
explicitly, take T1,T%,... Bernoulli distributed with generic variable T such
that P(T = 1) = p=1-P(T = 0). In this case it is convenient to have zero
counted. Indeed, at each time ¢ € IN we can have multiple renewal epochs
forming batches Yp,Y],... that are independent and follow a zero truncated
geometrical distribution with P(Y = k) = p(1 — p)*~! for k = 1,2,.... Thus
N(0,1)) = TI ¥; and

Holt) = [t|EY < it_L. (6.1.9)
Theorem 6.1.4 (a) If Foo) = 1, then H(t) = Ho(t) — 1 < 00 for all t < oc.
Moreover, H(t) is increasing and lim,_, o, H{t) = oo.

(b) For a terminating renewal process, H(oo) = lim,_, o, H(t) < 00.

Proof Let F{oc) = 1. Without essential loss of generality suppose that
F(1) > 0 and define the Bernoulli distributed random variables TP®" by

Ther — 0 ifT; <1,
T 1 T >1.

Since TP®* < T, we have for the corresponding renewal counting process
{NPer([0,1]), t > 0} that N([0,£]) < NPe([0,¢]) for each t > 0. Hence, from
(6.1.9) we get Ho(t) < HE*(t) < oo for all ¢ < oco. Part (b) follows from
Theorem 6.1.1 using the monotone convergence theorem. =)

From Theorem 6.1.4 we get that H(B) is finite for bounded sets B € B(IR).
Since the probability measures F*" are concentrated on [0, 00), the measure
H is also concentrated on [0, 00).

With the exception of a few special cases, the renewal function H(t)
cannot be given in simple form. However the Laplace-Stieltjes transform
le(s) = f0°° e~*%* dH(z) of H can always be expressed in terms of the Laplace-
Stieltjes transform of F.
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Theorem 6.1.5 For all s > 0,

. i

ig(s) = el (6.1.10)

Proof From (6.1.7) we get

~

=i - wn_ LF(s)
;([;‘(3)) = 1- iF(S) 3

where the geometric series converges because [r(s) < 1 for s > 0. O

Ir(s) = /0 e d(3 F(m)) =
n=1

For IN-valued random variables T7,Ts,... we can also study the renewal
sequence {hy}, defined as the mean number of renewals at n, i.e.

[o o] o
hn=EY Xor=n)=) pi¥, nel,
k=1 k=1

where {p;¥,n € IN} is the probability function of the k-fold convolution of
{pn}. H P(T = 0) = 0, then h, < 1 since we can have at most one renewal
epoch at n. If however p = P(T = 0) > 0, then the conditional distribution of
the number of renewal epochs at n is modified geometric under the condition
that there is at least one renewal epoch at n. Hence, in both cases the renewal
sequence is bounded.

In view of Theorem 6.1.1a we can conjecture that the renewal function
H(t) = E N{t) will show an asymptotic linear behaviour, similar to (6.1.3).
To show that this conjecture is correct, we use the following auxiliary result
which is called Wald’s identity for renewal processes. A more general version
of this identity will be proved in Chapter 9 using martingale techniques; see
Corollary 9.1.1.

Lemma 6.1.1 Let g : Ry — R be a measurable function. Then for allt > 0

N(t)+1
E( 3 g(T;)) =EgT)EN(t) +1). (6.1.11)

i=1
Proof In order to prove (6.1.11) we define the auxiliary random variables

v {0 Hi>N@+1,
T 1 i< N@) +1.

Then by the monotone convergence theorem

N(t)+1 00

E(Y o) =E(Xamy) = Y Bemr).
i=1 i=1 i=}
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The remaining expectation can be further evaluated by the fact that g(T3)
and Y; are independent. This is true since the Bernoulli variable Y; will be
independent of T; if and only if the event {Y; = 1} is independent of T;.
However, {Y; = 1} = {N(@) + 1 > i} = {0i-1 < t} and this last event is
independent of T;. Hence we find

N(t)+1 o0 o
E( Y o)=Y EgT)EY: =EgT) Y P(Yi=1)
=1

i=1 i=1

= Eg(T)) P(N(t)+1>i)=Eg(T)(EN(t)+1).

i=1 o
We are now in a position to prove the elementary renewal theorem.
Theorem 6.1.6 Assume that F(oo) = 1. Then,
. H{) [ ut difp<oo,
tl-l-ynolo t { 0 if p = oc. (6.1.12)

Proof Suppose first u < 0o. Using Theorem 6.1.1a, we get by Fatou’s lemma
p~! = E liminf t ' N(t) < liminf t YEN(t) = liminf t " H(¢).
t—ro0 t—roo t—o0
However, we also have

p~t > limsupt~1H(t). (6.1.13)

t— o0

In order to show this we consider the truncated inter-occurrence time T}, =
T, A b for some b > 0 such that ET' > 0. Let {N'(t),t > 0} denote the
corresponding counting process with

N'@$) =3 10, <t), on=)_T{, (6.1.14)
n=l

and H'(t) = EN'(t). Then, N'(t) > N(t) and consequently H'(t) > H(t) for
each ¢t > 0. This and Lemma 6.1.1 give

Eo),.
limsupt 'H(t) < limsupt™'H'(t) <lim supt'l-—]-;%(f,)L1
t—00 t—o0 t->00
< limsupt ™ E (o) + Thniey+) BT) ™!
t—o00
< limsupt™'(t+bET) ! = (ET)'.
t—o0
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Thus, (6.1.13) follows since limp_,oc ET' = ET. If g = oo, then we get
lim sup,_, ., H(t)/t = 0 in the same way as (6.1.13). a

We now consider the following slight generalization of the renewal model in-
troduced in Section 6.1.1. Assume that T3, T3, . .. is a sequence of independent
nonnegative random variables and that T3, T3, ... are identically distributed
with distribution F. Note that T\ can have an arbitrary distribution F}, which
need not be equal to F. Then {o,,n > 1} with o, = T1 +... + Ty, is called
a delayed renewal point process. Defining N(t) as in (6.1.1), {N(¢),t > 0} is
called a delayed renewal counting process. The case when Fj is equal to the
integrated tail distribution F*® of F' is of particular interest.

Theorem 6.1.7 Assume that y < 0o and that

1 /%
Fi(z) = F*(z) = I—I/o F(y)dy (6.1.15)
Jor all x > 0. Then, the renewal function H(t) = EN(t) is given by
H(t)y=p"1t. (6.1.16)
Proof Analogously to (6.1.7) we have
H(t) =) (R +F D)), (6.1.17)
n=1

Taking Laplace-Stieltjes transforms of this equation we get

Ir(s) _ _Ir(s)
1-Ip(s) 1-Ip(s)

{n(s) =

as in the proof of Theorem 6.1.5. Use the fact that {p+(s) = (1 — {p(s))(sp)!
to see that [y (s) = (sp)™ = p~! [;° e~*" dv. This yields (6.1.16) because of
the one-to-one correspondence between renewal functions and their Laplace—
Stieltjes transforms. m]

For a delayed renewal process which satisfies (6.1.15), an even stronger
statement than the one in Theorem 6.1.7 is valid. To formulate it properly,
we introduce the excess T'(t) = o4y — ¢ at time ¢ > 0.

Theorem 6.1.8 Under the assumptions of Theorem 6.1.7, the delayed renewal
counting process {N(t),t > 0} has stationary increments.

Proof Since the random variables T),T5,... are independent, the joint
distribution of the increments

(Nts+t) = N(to+t),...,.Nta+t) = N(tp_1 + 1))
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does not depend on t if the distribution of the excess T'(t) has this property.
Thus, in view of Definition 5.2.1b, it amply suffices to show that P(T(t) <
z) = F*(z) for > 0, independently of t. We have

P(Tt)<z)= ip(an—l <t<op, <t+1)

n=1

Fn) - PO+ /0 (F(t+ 2 —y) - F(t — ) d(FF0-D)(g)
n=1

it

t
= F‘(t+:c)—F‘(t)+u‘1/0 (F(t +2 —y) - F(t — y))dy = F*(z),

where we used (6.1.16) in the third equality. n]

6.1.3 Renewal Equations and Lorden’s Inequality

We continue our discussion of (nondelayed) renewal processes with a number
of results that turn out to be useful in connection with actuarial problems. In
many applications we meet the renewal egquation

o(z) = 2(x) + /0 " gz - v)dF(v), (6.1.18)

where z : R = R is a locally bounded function vanishing on (—o0,0) and F
is a distribution on R,.. If F is a defective distribution, then we call (6.1.18)
a defective renewal egquation. First we show that, whether F is defective or
not, the (locally bounded) solution to the renewal equation is unique. Let
Ho(z) = Yoo o F**(z) be the renewal function corresponding to F.

Lemma 6.1.2 The only solution g(z) to (6.1.18) which is vanishing for < 0
and bounded on finite intervals is given by

(x) = 3 xz(a:—v)dF"‘(v)
9(z Eofo
= / z2{x — v)dHy(v), z2>0. (6.1.19)
0

Proof Note that the series Y 5o, fo |2(z — v)| dF"¥(v) converges to a finite
limit for each & > 0 because

g /0 " 2(z - v)| dF**(v) < Ho(c) 1<)
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and Ho(z) < oc by Theorem 6.1.4. Thus the function g(z) given in (6.1.19) is
well-defined and locally bounded. It is easily seen that the function g(z) solves
the equation (6.1.18). Assume now that g'(z) is another solution to (6.1.18)
vanishing for u < 0 and bounded on finite intervals. Then using (6.1.18) we
have

o(z) - ¢'(z) = /0 “(9(& - v) - ¢'(z — ) AF ().

Inserting (6.1.18) repeatedly into the right-hand side of this expression, we
can prove by induction on n that

9@ -d@I = |[ (e-0)-g@-)arw)

< [ *lo(e - v) - ¢z — )| dF"(v)
< F™z)sup{lg(v) —¢'(v)|: 0 < v < 7},

for all n = 1,2,... and = > 0. Thus g{z) = ¢'(z) because Theorem 6.1.4
implies that F**(z) =+ 0 as n — oc. o

Examples We illustrate the general solution (6.1.19) to the renewal equation
(6.1.18) by a number of different choices of the function z(z).

1. Take z(x) = 1 for all z > 0. Then the equation g(z) = 1+ foz g(z—v)dF(v)
has the unique solution g(z) = Hyp(z).

2. Consider the expected number Hg(z) — Ho(z — y) of renewal epochs in
the interval {(z — y,x|, where y > 0 is kept fixed. Then using the result
of Lemma 6.1.2, we obtain a renewal equation for the function g(z) =
Ho(z) — Ho(z — y), ie.

g(z) = (do(z) — do(z — y)) + /0: gz —v)dF(v). (6.1.20)

3. Take z(z} = F(z). Then the unique solution (6.1.19) to (6.1.18) has the
form g(z) = Yo7, F**(z) = H(x).

4. As another example assume that F is nondefective and has a finite
mean pg. Now take z(u) equal to the integrated tail distribution F® of F,
ie. z(z) = p~! [f (1 — F(v))dv. Using (6.1.17) and (6.1.19), Theorem 6.1.7
then gives g(z) = z/p.

We next show that the renewal function Hy is subadditive.

Lemma 6.1.3 For allt,s > 0

Holt + v) < Ho(t) + Ho(v). (6.1.21)
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Proof Consider the excess T'(t) = on()41 — t at time t. Note that
No(t + v) = No(t) + No(t + v) — No(t) = No(t) + N'(v),

where {N'(v},v >0} is a delayed renewal counting process with Fy(z) =
P(T(t) < x) and with inter-renewal distance distribution F. Since §y <q; Fi,
we have N'(v) <4 No(v). Thus, (6.1.21) is proved. D

We close this section on elementary properties of the renewal functions
H(t) and Hg(t) by proving Lorden’s inequality. This inequality yields
estimates for the speed of convergence in the elementary renewal theorem;
see Theorem 6.1.6.

Theorem 6.1.9 If the second moment y(? of F is finite, then

0< Hot) - £ < #2 6.1.22)
> ol w= “2 . ( oA

Proof Using (6.1.11), the subadditivity property (6.1.21) of Hgy(t) can be
easily employed to prove that also the expected excess ET(t} = uHp(t) —t is
subadditive,i.e. ET(¢+v) < ET(t)+ET(v) for all t,v > 0. From a graphical
representation of this excess over the interval [0, t] (see Figure 6.1.1) we obtain

\

log =0 T
3 N+,

Figure 6.1.1 The excess T(v) at time v

the following equality:
N{t)+1

t
/ Twydv=4 Y T2-4iT(t).
0 =1

Take expectations of these expressions, apply Fubini’s theorem on the left and
(6.1.11) on the right to obtain the intermediate formula

/ t ET(v)dv =1 u® Ho(t) - ET(t). (6.1.23)
0
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On the left hand side we apply the subadditivity of ET(t) to get
¢ t/2 ¢
/ ET{(v)dv= / (ET(v)+ET(t - v))dv > §ET(t) .
0 0
Thus, using ET?(t) > (ET(¢))?, (6.1.23) gives
@ .
tET(t) < —y—(ET(t) +1t) - (ET(t)*.

The resulting quadratic inequality for ET(t) can easily be put into the form
(ET(t) + t)ET() - p®/u) < 0, from which (6.1.22) follows by using
ET(t) = uHp(t) — t once more. O

6.1.4 Key Renewal Theorem

Besides the asymptotic linearity property stated in Theorem 6.1.6, a much
stronger result can be shown for the asymptotic behaviour of the renewal
function H(t) as ¢t = oo. The following limit theorem, called Blackwell’s
renewal theorem, says roughly that the renewal measure defined in (6.1.8)
asymptotically behaves like the Lebesgue measure.

Theorem 6.1.10 Assume F is nonlattice with u < co. Then, for each y > 0
zlggo (Ho(z) — Ho(z — y)) = pu~'y. (6.1.24)

The proof of Theorem 6.1.10 goes beyond the scope of this book. We therefore
omit it and refer, for example, to the books by Daley and Vere-Jones (1988)
and Resnick (1992), where a probabilistic proof of this theorem is given. The
proof there uses a coupling method by comparing the renewal function Hyp(t)
with the renewal function of a delayed renewal process which satisfies (6.1.15).

In Section 6.1.3, (6.1.20), we mentioned that the difference g(z) = Ho(z) —
Ho(z — y) can be seen as solution to the renewal equation (6.1.18) with
2(z) = bo(z) — do(z — y). Thus, (6.1.24) can be written in the form

s <}
: _ -1
zli*nolcg(z) =u /(; z(v)dv. (6.1.25)
We next study the asymptotic behaviour of the solution g(z) to (6.1.18)
as £ — oo, when z(z) is nonnegative and satisfies some integrability
property. More specifically, for each b > 0, define the upper integral sum
Z(h) = hY o, sup{z(z) : (n — 1)h < & < nh} and the lower integral sum
2(h) = hY L, inf{z(z) : (n — 1)h < z < nh}. The function 2(z) is called
directly Riemann integrable if Z(h) < co for all A > 0 and if

Jim (2(h) — 2(k)) = 0. (6.1.26)
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The following lemma gives a sufficient but useful condition for direct
Riemann integrability.

Lemma 6.1.4 Let z; : Ry — (0,00) be increasing while 2 : Ry — Ry i3
decreasing, such that

o ]
/ 21(x)22(z) dz < 00 (6.1.27)
0
and ( )
. 21{z + Y . _
%&%sup{——h(z) . 2>0,0<y< h.} =1. (6.1.28)

Then, the product z(z) = z (z)z2(x) is directly Riemann integrable.
Proof With the notation c¢(h} = sup{zi(z + y)/z1(z) : £ > 0,0 < y < h} for
h > 0, we have

sup{z(z) : (n — 1)h < z < nh} z1(nh)z2((n — 1)h)

c(2h)z; ((n — 2)R)23((n — 1)A)

for n = 2,3,.... Since z;((n — 2)h)z2((n — 1)h) < z1(x)22(z) for n = 2,3,...
and (n — 2)h < z < (n — 1)h, this gives

<
<

Z(h) < hsup{z(z) : 0 < z < h} + c(2h) /oo z1(x)z2(z) dz .
0

Similarly, we obtain z(h) > (c(2h))™! f:° z1(z)z2(z) dz. Thus (6.1.27) and
(6.1.28) imply (6.1.26). o

Remark Each directly Riemann integrable function is also Riemann inte-
grable in the usual sense. However, the converse statement is not true, as can
be seen from the following example. For each n = 1,2,..., we consider the
function z, : R —» R, with

1 Zn(m)
Enfb-=——m— - —

n—an/2 n n+§z,./2 T

Figure 6.1.2 The function 2»(z)

n—0n 2, n—z| ifz€(n-an/2,n+an/2),
otherwise,

zn(z) = {

o,
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where 27! > a; > a2 > ... > 0 and limp00an = 0,limys006n =
and Y% €n@n < 00. Then, for z(z) = Yoo, zx(z), we have [i° 2(z)dz =

—1y Enan < 00, but Z(h) > A3 02 | €5 = oo forall A > 0.

To formulate the next result, assume that F is a nonlattice distribution,
that is F(z) does not increase on a lattice only. We also suppose that F is
proper (nondefective). The following theorem is known in the literature as the
key renewal theorem.

Theorem 6.1.11 Let z(x) be directly Riemann integrable. Then for the
solution g(z) = fo°° z(z — v) dHp(v) to the renewal equation (6.1.18)

zangog(x) = { I(;F—lfo‘” z(v)dv :‘;;Zz z, (6.1.29)

Proof Take h > 0 arbitrary but fixed and approximate z(z) from below and
from above by the step functions

@) =3 mbn- Db, (@) = Z b (((n = 1)h,nh)

n=l

where we used the abbreviations m,, = inf{z(z) : (n — 1) < zh™! < n} and
My = sup{z(z) : (n — 1) < zh~! < n} for n > 1. Obviously for all z > 0,
z,(z) < z{z) < z*(z). By the monotonicity of the renewal function Hy(z) and
the positivity of z(z) we also have

/z zs(z —v)dHp(v) < /z z{z — v)dHy(v) < /z 2"z — v)dHy(v) .
0 0 0

Take the quantity on the right of the above inequalities. Then by the additivity
of the integral we find that

x

/x Z*(z—v)dHp(v) = Y / 8z—v([(n — 1)h,nh)) dHo(v)
0 n=1
= ) M (Ho(z — (n~ 1)h) — Ho(z — nh)) ,
n=1

where we put Hg(t) = 0 for ¢ < 0. Note that by the result of Theorem 6.1.10,
the differences Ho{z — (n — 1)h) — Ho(z — nh) are uniformly bounded for
all z > 0 and n € IN. Furthermore, 3 .o, M, < oo by the direct Riemann
integrability of 2(z). Hence by an application of the dominated convergence
theorem, Theorem 6.1.10 gives

z

x
limsup | z(z - v)dHp(v) < limsup/ 2" (z — v)dHo(v) = h Z My, -
0 z—=00 JO 13

=00



RENEWAL PROCESSES AND RANDOM WALKS 219

In a similar fashion we find that

o ‘ . N h
hzrglcgf A z(z—v)dHo(v)Zhﬂg.}f/; z,,(:c—v)dHo(v)=; m, .

n=1

If we now let h | 0, then (6.1.29) follows by condition (6.1.26) because

i‘rﬁn=/oooz(v)dv. o

n=1

oc
limh m, =limh
k{0 nz_:l =n rﬂ%

6.1.5 Another Look at the Aggregate Claim Amount

We consider anew the aggregate claim amount X(t) = Zfi(f) U; introduced

in Section 5.1.4. Here, {U,} is the sequence of independent claim sizes with
common distribution U. Further, {N(t),¢ > 0} is the claim counting process
given by N(t) = Yooy X(o; < t); on = Y 1o T: and where the sequence
{on,n € IN} is an (undelayed) renewal point process with inter-occurrence
times T, following a distribution F. In this section we do not assume that U
is nonnegative.

In order to keep a renewal structure, we have to assume that the sequence
{(T,U,)} consists of independent and identically distributed random vectors.
But, we do not exclude that U, may eventually depend on T},. For example,
in health insurance the amount to be paid out can depend on the time since
the last payment. We assume, however, that E[|U|; T = 0] = 0. This excludes
the possibility that one has to pay a bill even when no time has elapsed since
the last payment.

Note that {X(t),t > 0} is also called a renewal reward process. We cannot
expect that we can get very precise asymptotics for X (t) as t = oo, especially
when we do not specify the dependence structure between U and T'. However,
we have the following general results.

Theorem 6.1.12 Assume that F(0) = 0, ur = ET < o0 and E|U| < 0.
Then, with probability 1

. _1 T -1 - S | .
thrgt X(t) = tl_xgxot EX(®t)=ppr EU,; (6.1.30)
if F is nonlattice, then
Jim B (X (¢ + h) - X(t)) = up  hEU, h>0. (6.1.31)

Proof We start with the first equality in (6.1.30). Observe that, as in the proof
of Theorem 6.1.1, the strong law of large numbers for sums of independent
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random variables yields lim;_ o0 (N (t))“z;fv__.(f) U; = EU since N(t) = oo as
t = oo. This and (6.1.3) imply that

SR | N
tl_{)n;et X(@)=pr v - (6.1.32)

To derive the second equality in (6.1.30), decompose X (t) into two parts:

N(t) N(t)
X(t)=Y_ UIU; >0+ > Uil{U: <0).
i=1 i=1
Considering the sums on the right-hand side separately, we can proceed as in
the proof of Theorem 6.1.6 to obtain the second equality in (6.1.30). The
details are left to the reader. We are now going to prove (6.1.31). Using
analogous arguments as in the proof of Wald’s identity (6.1.11), we find that
E(XNO+ 1) = EUH(t). Hence EX(t) = EUHo(t) ~ EUngy41- To
evaluate the remaining expectation, we condition on the number of renewal
epochs g, that have occurred up to time ¢. More specifically,

oo o0
EUn@)+1 = ZE[UN(t)+1§N(t) =n]= ZE[UnHWn <t < ong1)

n=0 n=0

0 t i
= Z/- E[Un+1;t—v<Tn+1]dF*”(v)=/ E[U;T >t —v]dHo(v),
n=0"0 0

where z(t) = E[U;T > ¢]. This gives EUn(y41 = fot z(t — v) dHg(v) for all
t > 0o. Noticing that 2(0) = EU we find that

t £
EX(t) = /0 (z(0) — z(t — v))dHp(v) = —/0 Hy(t —v)dz(v).
Now,

E(XE+h) -X@) = - /Ot(Ho(t +h —v) — Ho(t — v)) dz(v)

t+h
- Ho(t + h —v)dz(v).
t
" Using Theorem 6.1.10 we can apply the dominated convergence theorem to the
first integral to obtain the expression hE Uuj' for the limit of this integral as
t = 00. Using the monotonicity of Hy(t), the second term can be dominated
by Hg(h)|2(t) — z{t + h)|, which tends to 0 as ¢ — oo. m]

Bibliographical Notes. The results presented in this section and further
details on renewal processes can be found, for example, in Asmussen (1987),
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Daley and Vere-Jones (1988), Feller (1971) and Resnick (1992). A
comprehensive survey on the coupling method which is a useful tool for
proving Theorem 6.1.10 is given in Lindvall (1992). For discrete-time renewal
theory we refer to Feller (1968) and Kingman (1972). The notion of direct
Riemann integrability was introduced in Feller (1971). An earlier version of
the key renewal theorem is due to W. Smith and therefore sometimes we meet
the notion of Smith’s theorem for Theorem 6.1.11. Note also that many results
of the present section hold true under weaker mathematical assumptions.
For example, in the proof of Theorem 6.1.3 we did not explicitly use the
assumption that the inter-occurrence times are independent. We only used the
compound Poisson approximation considered in Section 4.6 and the statement
of Theorem 6.1.1a, a special case of a more general ergodic theorem. See also
Chapter 12, where we discuss results for more general point processes with not
necessarily independent inter-occurrence times. Further details of the general
theory of point processes on the real line can be found, for example, in Baccelli
and Brémaud {1994}, Daley and Vere-Jones (1988), Konig and Schmidt (1992)
and Last and Brandt (1995).

6.2 EXTENSIONS AND ACTUARIAL APPLICATIONS

In this section we derive some extensions to the basic results from renewal
theory presented in Section 6.1. They will prove to be useful in the
investigation of actuarial problems.

6.2.1 Weighted Renewal Functions

We study a generalization of Theorem 6.1.6 for the weighted renewal function

Afz) = i a, F**(z), (6.2.1)

n=0

where F is a nondefective distribution on R, with mean x and {a,,n € IN}
is a sequence of nonnegative numbers. By the weak law of large numbers

. pen 0 ify<p,
nlglgoF (ny) = { 1 ify> g (6.2.2)

Intuitively, the individual summands in (6.2.1) will contribute a value near to
1if z > nuor if n < |z/u}, and a value near to 0 otherwise. This suggests
an estimate for (6.2.1) of the form Z,E‘_jé‘l an. We will prove this conjecture

under some appropriate requirements on the sequence {a,,n € IN}.
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Theorem 6.2.1 Assume that

Z[(r+1)(l+6)] an
limlimsup =225(L T -0 (6.2.3)
80 roo Zn:ﬂ Qp
and o
a(s) = Z ans" converges for |s} < 1. (6.2.4)
n=0

If0 < pu < o0, then as z - o©

2/u)
AR~ > an. (6.2.5)
n=0

Proof It is pretty obvious that (6.2.5) holds if }">° ;an < co. Indeed, both
sides of (6.2.5) converge to the same constant by the monotone convergence
theorem. So, assume Zzio a, = 00. Let £¢ € (0,u) be fixed and define
mg = |z/p) for any £ > 0. With this definition of m, we can write

Alz) = f:anP(a'n <z)

n=0
My My o0

= Z an — Z e, P(o, > 2} + Z a,P(o, < )
n=0 n=0 n=me+1

and hence we see that we need to show that

zlgrgo(f an) - (— gjanP(an >z)+ 5_0: anP(op < :c)) =0.
0

n= n=0 n=ma+1

We further subdivide the two sums in two parts by considering the quantities

m_(z) me
Lhiz)= Y a.P(op>1), D)= Y anPon > 1),
n=0 n=m-(z)+1
my(z)+1 ac
(@)= Y @Pla<z), hE)= Y aPlo.<2),
n=mz+1 n=my4(z)+2
where 41
=|_Mz ()= | =T | _
m-(=) = l1+(€/u)J’ m+(z) l1—(f5/u)J :

My

We prove that each one of these four sums is o(} )=, an) 8s ¢ = oo or
equivalently as m; — oo. Note that by the definitions of m,,m_(z) and
m.,.(z) we have a number of inequalities that will be used a couple of times:

Map <z < (Mg + 1, (6.2.6)
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m_(z)(1+p7le) < my < (m_(z) + D)1+ pe), (6.2.7)
(ma(x) + 1A -ple) <me+1 < (m_(z) +2)(1 - pte). (6.2.8)

We consider first I;(x). Since n < m_(z) in this summation, we can write
z 2 mgpp > m_(z)(1 +¢e/p)p > (i + €)n. Hence

m._(z)

I](-’B) < z anP(n_lan -pn>e€),
n=0
which is of the form Y- (*) a.b, with b, = P(0,/n ~ i > £). By the weak
law of large numbers b — 0 as & — oc; see (6.2.2). Hence for the given e > 0,
choose m’ large enough to have by < € as soon as k > m’. Then

m_(x) m' m_(zx) m_(z)
D Gnba=3 anbat D anbn < Zan +e D an.
n=0 n=0 n=m'+1 n=0 n=0
Dividing by Y 1.5 an, which tends to oo with z, we see that
I
lim sup —,1,—5,9— <e.
z—00 n=0 %n

Next consider I(z). The values of 0, might be too close to z, and hence we do
not expect help from the probabilities involved. Instead we need a condition
on the sequence {a,}. By inequality (6.2.7) on m, we can write

Z(m—(r)+1)(1+(5/#))

IZ(I) n=m_(z)+1
YnZetn = m-{2) 4

Hence condition {6.2.3) on the sequence {a,,} can be applied with r = m_(z)
and § = £/p. We therefore deduce that

T
lim lim sup —2(—-)-—
&l0 zoo n—O Qn

=0.

We now turn to Ji(z). From the definition of m4(z) we can write

(me+1)(146")

Jh (15) < Z Qn ,

n=mg-+1

with 6 = (2¢)/(u — €). Again apply (6.2.3) with r = m, and § = ¢'. Hence,
Ji(z) = o=y an). Finally we consider Jz(x). In this summation we have
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n>my(z) + 2, and = < (Mg + Dp < (my(z) + 2)(p — €) by (6.2.6) and by
the definition of m(z). Hence

o0 oo

Jo(z) = Z a,Plo, <z2) < Z aPlop/n—p < —€).

n=my(z)+2 n=my(z)+2

Since the inter-occurrence time T is nonnegative, we can apply Theorem 2.3.2
to the random variable ny — o, to see that there exists a constant ¢ < 1 such
that P(o,/n — p < —¢) < ¢” for all sufficiently large n € IN. Thus, the sum
Yo, (2)+2 GnC" i8 convergent by condition (6.2.4). Since Y oo Gn — 00 also

Ja(z) = oYXy an) a8 T — 00. a

Examples Let us illustrate Theorem 6.2.1 by a series of examples, where
A(z) = Yoo anF*"(z) and p is the expectation of F.

1. In order to obtain the elementary renewal theorem derived in Section 6.1.2,
we take a, = 1 for all n > 0. Then A(z) = Hy(x) and by Theorem 6.2.1 we
have Hy(z) ~ zu~! provided that x < co. Recall that in Theorem 6.1.6 we
proved this result by relying on Wald’s identity. Furthermore, considering
the truncated inter-occurrence times T, = T, A b for some b > 0 which
leads to the shadow renewal process {N'(t),t > 0} defined in (6.1.14), we
showed in Theorem 6.1.6 that the condition g < oo is not necessary, that is
lim, 00 Ho{z)/z = 0 if u = oo.

2. Another example of a weighted renewal function is obtained by the choice
ao = 0, ap, = n7! for n > 1. In this case we check that assumptions (6.2.3)
and (6.2.4) are fulfilled using }_,_, 1/k ~ logn as n — oo . Then we get the
asymptotic behaviour of the harmonic renewal function,

l=/0)
A(z)~zﬁ~logm, T —00.

n=1

3. We now study the weighted renewal function with a power-like sequence
{an}, where a, ~ cn™9 for some ¢ > 0 and 0 < d < 1. In this case we also
assume g < 0o. Using Y-, n~¢ ~ m!~¢/(1—d), we can check that conditions
(6.2.3) and (6.2.4) hold. Moreover as 2 = co

l=/u)
A@)~ Y an~apt1—d) 't (6.2.9)

n=]1

We leave it to the reader to show (6.2.9). Note that for the case d = 0 and
¢ = 1 we find the elementary renewal theorem again. On the other end of
the scale, d = 1 and ¢ = 1 do not yield the harmonic renewal case unless we
interpret {z¥ — 1)/y as logz when y = 0.
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6.2.2 A Blackwell-Type Renewal Theorem

In this section we prove a theorem that could be called of Blackwell type. More
precisely, we will show that we can derive a Blackwell-type renewal theorem for
the weighted renewal function A(z) = Y > anF*"(z) if we already have an
elementary renewal theorem for the allied function B(z) = 3 o2 o b F*"(x).
Here the two sequences {a,} and {b,} are linked by the relation

by, = (n + 1)ap41 — na,, n>0, (6.2.10)

or equivalently by the Cesdro averages a, = n™?} E bJ, n > 1. In this
section we assume that 37 ; a,s" is convergent at least for [s| < 1.

Theorem 6.2.2 Let F be a nonlattice distribution on R, such that 0 <
pr < oo. Assume that the sequence {b,} is nonnegative. If for all y € R,
B{z +y) ~ B(z) as x — 00, then forally ¢ R

A(z +y) — A(z) ~ yB(z)/x, T — 00. (6.2.11)

In the proof of Theorem 6.2.2 we use an auxiliary result. To simplify the
notation, for a function of bounded variation G on R, we put

T
G'(z) = / ydG(y) - (6.2.12)
0
Note that in terms of Laplace-Stieltjes transforms this means that
lgi(8) = —s~ W (s) . (6.2.13)

We first derive a link between the function A(z) and the zero-deleted renewal
function Ho(x) generated by the distribution F.

Lemma 6.2.1 For the weighted renewal functions A(z), B(z) with {a,} end
{b,} linked by (6.2.10),

A'(z) = B* F' x Hy(z), z>0. (6.2.14)

Proof It suffices to prove that the Laplace-Stieltjes transforms of both sides
of (6.2.14) coincide. By (6.2.13) we have [ 4, (s) = -s"lfg)(s), where in turn

@)= [ e (T o (@) = 3 anlle (@) = alle(),

n=0 n=0

and a(z) = %, anz. Hence {4 (s) = —5~1{M(5)a® (I (s)). However, using
(6.2.10) we find the relationship (1 ~ z)a(l (z) = b(z) for |z] < 1, where
b(z) = T2, buz™. But then 4 (s) = b(ir(8))(~I%(5)) (s(1 — Ir(s)))~" and,
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using Theorem 6.1.5, we see that this is the Laplace-Stieltjes transform of the
right-hand side of (6 2.14), since as before {p(s) = b(l ir(3)). (]

Proof of Theorem 6.2.2 Let 4'(z) and F'(z) be the functions which
are induced by A(z) and F(z), respectively, according to the abbreviation
(6.2.12). The monotonicity of A(z) then implies for0 <z <z +y

(e +) - A0) S A +) - AR) S 3 (K@ +1) - 4(@)

Since limz_,o B{z + y)/B(z) = 1 for all y > 0, the dominated convergence
theorem shows that

B x F'(z) ~ upB(x) (6.2.15)
as £ — co. Thus, it suffices to prove that for each y > 0
.+ ' _ At = i
Ill)lr:;° s F’( ) (A'(x+y) — A=) ur (6.2.16)

To show this we will use the result of Lemma 6.2.1. Put R(z) = B * F'(z) for
convenience, so that A’(x) = R« Ho(z). Thus, for each zq € [0, 2]

r+y
Alz+y)-Ax) = / Ho(z +y — 2)dR(z)
+ f_ (Ho(z +y — 2) - Holz — 2)) dR(2)

+ / T Ho(z + - 2) — Holz — 2))dR(z).
0

Denote the three integrals on the right by I (2), Iz(x) and I3(z), respectively.
We first estimate I (z). By the monotonicity of R(z) we find

Li(z) R(z+y)
< B SHO (5 - 1).

Further, for I3(z), take any ¢ > 0 and choose zp so large that by
Theorem 6.1.10, p}ly —€ < Ho(v+y) — Ho(v) < pp'y +¢ for all v > zo.
Then

0<

Y R(x —z0) _ I3(x) Y R(zx — z¢)
Gr )" Fm <70 <) R

Finally, for I;(z) and the same zo we apply the subadditivity of Hy(z) proved
in Lemma 6.1.3 to find that |I2(z)/R(z)] < Ho(y)(1 — R(z — zo)/R(z)). Now
let  — oo. Then the contributions I(z) and I3(z) disappear since by (6.2.15)
we have R(z+y)/R(z) ~ B(z+y)/B(z) — 1 for each y > 0 fixed and z — oc.
Thus, by letting € { 0, we get (6.2.16). a
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6.2.3 Approximation to the Aggregate Claim Amount

As an application of weighted renewal functions to actuarial problems we
deal with estimates for the aggregate claim amount, that is we consider again
the compound distribution Fx = Y -, px (¥, where Fx is the distribution
of the aggregate claim amount accumulated by a claim size distribution
Fy. Recall from the discussion of the Lundberg bounds in Section 4.5 how
exponential estimates for the tail function F x(r) heavily depended on the
existence of a solution 4 > 0 to an equation related to the moment generating
function 1hip, (s). Recall the notation s}, = sup{s > 0 : g, (s) < oo}
introduced in Section 2.3. If a compound geometric distribution is considered,
i.e. px = (1—p)p* for some p € (0,1), and if 7, (sf, ) = o0, as is usually the
case, then the existence of a unique solution to (4.5.5) is guaranteed, whatever
the value of p.

In this section we will show that a similar procedure can be used to derive
asymptotic expressions of F x (z) for large z. Starting out with a distribution
Fy that has an exponentially bounded tail, we use {Fyy,,t € (85,,5%.)},
the family of distributions associated with Fyy which has been defined in
Section 2.3, to get an alternative expression for the tail of the compound
distribution Fy.

Consider the weighted renewal function

M,(y) = D pr (iry (3))* Fh(v) (6.2.17)
k=1

for s € (s;'l,s;U). Recall that rp = (limsup,_,..(ps)}/?)"! is the radius
of convergence of 3> pns". Then we have the following representation
formula.

Lemma 6.2.2 Assume that the generating function §(z) = 3 roo Dkz* of the
claim number distribution {pi} has radius of convergence ro, which is larger
than 1. Take r € (1, o) and assume that there ezists a positive value v for
which Mg, (v) = r. Then the compound distribution Fx is given by

1—Fx(z)=7ve™ " /ooo e " (M, (z +v) — My(z)) dv. (6.2.18)

Proof By our assumptions we have s'},u > 0. Thus, for any s € (0, s}u) we
can write

1-Fx(@) = 3 m(l - Fo*(2)
k=1

NACAO Temarghw) = [ eramw
k=1 x z
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with M,(y) as defined in (6.2.17). Now, changing variables in the last integral
yields the formula

e’*(1 - Fx(x)) = /ooo e My(z + dv). (6.2.19)

We rewrite this expression by performing an integration by parts. Let w be
any large but finite positive number. Then

w
/ e "M, (z + dv)
0

w

= e "™M,(z+w)- M, (z)+ 7/ e "M, (z +u)dv
0
w
= e "™(M,(z +w)— M,(z)) + 'y/ e " (M, (z +v) — M,(z)) dv.
)

We next show that, due to the fact that v > 0, the first summand disappears
as w — oo. Let & € (0,) be arbitrary but fixed. Then

T+w - )
ko (-5 2 /0 eV dFF (y) 2 e T Fh (2 + ).

Using this inequality we get the following estimate:

e (My(z +w) - My(z)) < e TM,(z+w)

= ™Y pulthr, (M) FEE (2 + w)
k=1

oo
< T N (i, (v, (—8)).
k=1

On the other hand, by the definition of the associated distribution F’U,, (see
also (2.3.7)), we have ey (V)hg, (—8) = mp,(y - 6). Since vy > 6 > 0
we see that g, (v — d) < r and hence the remaining sum is bounded by a
constant c, independently of w. We therefore have e~ (M, {z+w)—M,(z)) <
ce~(v=8w+dz whore the bound tends to zero as w — oco. m]

We now formulate a general result that shows under what conditions
the asymptotic behaviour of Fx(z) is basically exponential. One of these
conditions is that the generating function of the claim number distribution has
a finite radius of convergence. Note that unfortunately the Poisson distribution
and a couple of other traditional claim number distributions escape the
specific approach with associated distributions since their moment generating
functions are entire.
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Theorem 6.2.3 Consider the compound distribution Fx (z) = Y poo puFt (z)
and define a; = pkrh"},-u (7) and by = (k + 1)agy1 — kax. Now assume that
(a) the generating function §(z) = Y 1o, Pre* has a finite radius of conver-
gencerg > 1,

(b) there exists a value v € (0, s}';u) Jor which Mg, (y) = ro,

(¢) b ~ ck® as k = oo, for some £ > —1 and ¢ > 0.

Then, with the notation k = ﬁzg,}g (7)/ro,

[+

].—FX(.'B)N m

ezt o . (6.2.20)

Proof As shown in Example 3 of Section 6.2.1, we can apply Theorem 6.2.1
to the weighted renewal function B(z) = 32 o bx Fgi% () to get

c T 1+4
B(z) ~ 17 f(upb.,,) : (6.2.21)

In particular, for all y € R, B(z + y) ~ B(z) as £ — oco. Furthermore,
br > 0 for all k sufficiently large. By Theorem 6.2.2 we can then derive a
Blackwell-type renewal theorem for the weighted renewal function A(z) =
Y reo akﬁi‘,ﬁy (z). Using the notation introduced in (6.2.17), this means that
forallve R

M,(z +v) - M,(z) ~ vB(z)/z, z — 00. (6.2.22)

Note that M (z + v) — M,(z) < Yo, ax = §(rhr, (7)), which is finite by

+ N
assumptions (a) and (b). Since s"-'u = 8, — we have B(z)el*ru76)"

-0

£y,
for alle > 0 a)l;nd it follows that there is a constant ¢ > 0 such that
z/B(zx) < ce Cru =777 Thus we can apply the dominated convergence

theorem to obtain from (6.2.22) that
o oxy
/ e " B(z) 'z (M, (z + v) — M, (z)) dv = / e "vdv, T —00.
0 0

Thus, (6.2.18) and (6.2.21) give

e'Vz C T l+t
~—(1 - ~ , -+ 0.
— (- Fx(@) ~ 77 Wx(um) Z = 00

which leads to (6.2.20) since mi}lz (0) = M) (7)/thrs (v) = s by (23.7). O

Examples We illustrate the result of Theorem 6.2.3 by a few concrete
examples of claim number distributions.
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1. Recall from Section 4.3.1 that the negative binomial distribution NB(, p)
is a popular claim number distribution. Thus, let us apply Theorem 6.2.3 to

the case where tE-1
a —
Pe =( " )(1-p)°p"-

Since the generating function §(z) = 3 jo,Pxz* is then given by the
expression §(z) = ((1 - p)/(1 - pz))™ we see that its radius of convergence is
ro = p~!. Hence define the quantity v € (0, s}u) by the equation rig, () = ro
provided that such a solution exists. Then we can identify the current situation
with that of Theorem 6.2.3, where ax = (1 — p)*(**£~!). Note that in
this case by = aay, as the reader can show by a simple calculation. Hence
br ~ (1 — p)°(T(a))"tk>"1. A straightforward application of Theorem 6.2.3
yields the estimate

1 ya 1 o
I—Fx(x)~(m(;g(7)) T 1 (6.2.23)

where as before v is the solution to g, (y) = p~!. We draw attention to
the form of the right-hand side where we recognize the tail behaviour of a
gamma distribution. As such (6.2.23) should be compared to (5.4.28) that has
been obtained from the Beekman—Bowers approximation. Also note that the
asymptotic expansion in (6.2.23) is of a different nature than approximations
that are obtained from refined versions of the central limit theorem.

2. The logarithmic distribution Log(p) can be treated in the same spirit but
the approach is technically simpler. Here py = (—log(1—p))~! p*/k for k > 0
where 0 < p < 1. Since the radius of convergence of §(z) equals ro = p~! we
look for a value y that satisfies the equality g, (y) = p~*. Once this value has
been chosen, we identify the quantity e in Theorem 6.2.3 by a; = ¢/k with
¢ = (—log(1 — p))~!. This implies that by = cdx({0}) and hence B(z) = c.
The relation in (6.2.22) immediately yields M., (z+v) — M, (z) ~ cv/z. Hence,
without recourse to Theorem 6.2.3, the relation in (6.2.18) immediately applies
to give 1 — Fx(z) ~ (—log(l — p)y) "1z~ te =,

3. The Engen distribution Eng(6, a) can be found as a solution to the recursive
system (4.3.1) starting at k = 2. Then the probabilities p; are given by

_ 6 a*T'(k - 9)
b= T =) RT(1-9)
where 0 < # < 1 and 0 < @ < 1. The generating function §(z) has radius
of convergence equal to a~!. Again, take v such that /g, (y) = a~'. Then
ax = c(k — 8)/k! ~ c k=%, where ¢ = 8((1 — (1 — a)®)'(1 — 8)) . Further,
by = (1 — B)a; as follows from a simple calculation. Putting & = am(,.fg (7) we
ultimately find the estimate 1 — Fx (z) ~ ¢y~ 1?1 e 77z ~?.
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6.2.4 Lundberg-Type Bounds

The exponential estimates presented in Section 6.2.3 supplement the Lundberg
bounds as derived in Section 4.5. We now show that similar upper bounds for
the tail of the compound distribution Fx(z) = ¥ po, prFy*(x) are possible
whenever associated distributions of Fyr are applicable. In connection with
this we use the following Berry~Esseen bound for concentration functions.

Lemma 6.2.3 Let X;,Xs,... be independent and identically distributed
random veriables with E X% < co. Then, forallv >0,n=1,2,...,

supPz < X1+ Xo+...+ Xp<z+v)<cn /2, (6.2.24)
z€R

where ¢ i3 a positive constant independent of n and v.

The proof is omitted. It can be found, for example, in Section 3.2 of
Petrov (1975).

Theorem 6.2.4 Assume that sf,, > 0. Then, for all s € (0,5}, )
1\ _er = —1/2 S k
1-Fx(z) < c(l + —) e Z k™ %pr (g, (3))° . {6.2.25)
8 k=1
Proof As in the proof of Lemma 6.2.2, formula (6.2.19) yields the equality
o0
1-FEx(z) =se™ % / e™*" (M (z + v) — M,(z)) dv, (6.2.26)
0

where in turn M,(y) = Yo, akﬁ‘g-’,(y) and a; = px(hr, (s))*. The k-fold

convolution F(}f‘, can be interpreted as the distribution of a sum Sy of &
independent copies of a random variable with distribution F‘U, « Thus, using
the result of Lemma, 6.2.3, the difference I:",},",(a:+ v)— 1:",},’; (z) can be bounded
by cvk~*/2. Introducing this in formula (6.2.26) yields (6.2.25). ]

The summation in (6.2.25) may be hard to handle. On the other hand one
can still minimize the right-hand side of (6.2.23) over s satisfying 0 < s < s'};u.

Bibliographical Notes. The estimate in (6.2.11) has been found in
Embrechts, Maejima and Omey (1984). The more specific form (6.2.23) can
be found in Embrechts, Maejima and Teugels (1985). For the other cases and
applications to stop-loss calculations, see Teugels and Willmot (1987). The
proof of Lemma 6.2.2 has been inspired by Steinebach (1997).
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6.3 RANDOM WALKS

We turn to the discussion of some basic properties of random walks on the real
line R. These processes are useful when computing ruin probabilities in the
case where premiums are random or when extending bounds and asymptotic
results as in Section 5.4 to the case of general inter-occurrence times.

Let Y7, Yz, ... be a sequence of independent and identically distributed (not
necessarily integer-valued) random variables with distribution F which can
take both positive and negative values. The sequence {S,, n € IN} with
So=0and S, =Y1+...+ Y, forn=1,2,...is called a random walk. We
assume that the first moment EY exists and that Y is not concentrated at 0,
e P(Y =0) <1

6.3.1 Ladder Epochs

Look at the first entrance time of the random walk {S,} into the positive
half-line (0, c0)
vt =min{n >0: S, >0}, (6.3.1)

setting v+ = o0 if S, < 0 for all n € IN, and call v* the (first strong)
ascending ladder epoch of {S,}. Similarly we introduce the first entrance time
to the nonpositive half-line {—oo0, 0] by

v~ =min{n>0: S, <0}, (6.3.2)

setting v~ = 00 if S > 0foralln = 1,2,..., and call ¥~ the (first) descending
ladder epoch of {S,}. As we will see later, we need to know whether EY is
strictly positive, zero or strictly negative, as otherwise we cannot say whether
vt or v~ are proper. In Figures 6.3.1 and 6.3.2 we depict the first ladder
epochs v+ and v~. For each k = 1,2,.. ., the events

{vt =k} = {5 <0,5,<0,...,5_1 <0,S >0} (6.3.3)

and
{vV=k}={5>0,8>0,...,5_-1>0,S <0} (6.3.4)

are determined by the first k values of {S,}. Note that this is a special case
of the following, somewhat more general, property. Consider the o-algebras
Fo={0,Q} and Fi = {{w: (S1(w),...,Sk(w)) € B}, B € B(R")}. Then, in
view of (6.3.3) and (6.3.4), we have {v+ = k} € F¢ and {v~ = k} € F; for
k € IN. This means that the ladder epochs v+ and v~ are so-called stopping
times with respect to the filtration {F,} generated by {S,}; see Chapter 9
for further details. From Corollary 9.1.1 proved there we have that, for each
stopping time 7 with respect to {F,},

ES, =ETEY (6.3.5)
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provided that E7 < oo and E|Y| < oo, which is known as Wald’s identity
for stopping times.

Actually, we can recursively define further ladder epochs. Define the
sequence {v;,n € IN} by

vt =min{j >yt : ;> S,+} (6.3.6)

where 7 = 0 and v} = v*and call v} the n-th (strong ascending) ladder
epoch. A priori, we cannot exclude the case that, from some random index on,
all the ladder epochs are equal to oco.

In a similar way, we recursively define the sequence {v;,n € IN} of
consecutive descending ladder epochs by vy =0, v; = v~ and

7 =min{j >u;,Sj SSV:}, n=12,... (6.3.7)

Another interesting characteristic is the step v at which the random walk
{S=} has a local minimum for the last time before v, i.e.

u=max{n:0<n<u‘,S"= min §;¢,
0<j<y—
as depicted on Figure 6.3.1.

g
Sn

"]/ n
.

Figure 6.3.1 Last minimum before “ruin”

6.3.2 Random Walks with and without Drift

Depending on whether EY is positive, zero or negative, we have three different
kinds of evolution for the random walk {S.}.

Theorem 6.3.1 (a) IfEY > 0, then lim, o, Sn = 0.
(b) f EY <0, then limy,_,00 Sp = —00.
(c) IfEY =0, then limsup,_,., Sp = 00 and liminfy_, Sn = —oo.
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Proof From the strong law of large numbers we have S,/n — EY with
probability 1. This gives S, — oo with probability 1if EY > 0,and S, = —oc
with probability 1 if EY < 0. Thus, the statements (a) and (b) are proved.
To prove (c) assume EY = 0 and define N = min{n : S, = max;»o Sj}. We
put 7 = oo in case max;»o S; = co. Then,

1 > P(N<oo)=iP(N=n)

n=0
o0
= Y P({Sj<Saforall0<j<n-1}n{S; < S, forallj>n})
n=0
o<
= Y P{{TpjpnYe>0foralj=01,...,n-1}
n=0
{1 Y <O for all j > n})
oG
= Y P(TrjaYe>0forall j=0,1,...,n—1)
n=0

x P(¥] 1 Ye <Oforall j>n)

o0
= Y P(Ya>0,Ya+Ya1>0,....5 0 ¥i>0)
n=0

x P(S; <0for all j >0)

o0
= Y PYi>0Y1+Y2>0,..., 5, Vi >0) P(v* = ),

n=0

where for the last equality we used the fact that (Ya,...,Y;) 4 Yi,.... V)
see Lemma 5.1.1. Thus,

1> iP(u" > n)P(vt = oc0) = Ev P(rt = 00). (6.3.8)

n=0

Assume for the moment that P(v* = oo} > 0. Then it follows from (6.3.8)
that Ev™ = Y > (P(¥~ > n) < oo. Thus, using Wald’s identity (6.3.5),
we have ES,- = Ev"EY = 0. Since S,- < 0 by definition, we would
get that S,- = 0 with probability 1. This leads to a contradiction because
P(S,- <0)>2PQ: <0)>0if EY; = 0. Thus, P(v+ < 00) = 1, i.e. the
random variable S, + is well-defined, and S,+ > 0 by definition. Now consider
the whole sequence {v;, n € IN} of ladder epochs. Using the same argument
as above we get that P(v;}t < 00) = 1 for all n € IN and that

{8+, =S, neN} (6.3.9)
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is a sequence of independent and identically distributed random variables
which are strictly positive by definition. We leave the proof of this fact to the
reader. In particular, ES,+ > 0. By the strong law of large numbers, we have

1 1
T—lSV'T = ; ;)(S”:-+l - S”:-) - ES,+>0
for n = oo. Thus, lim, S, + = 00, i.e. limsup, , S, = oo. The proof
that liminf; o0 Sp = —00 is analogous because we can consider the reflected
random walk {—S,} with E(-Y) = a

Theorem 6.3.1 motivates the use of the following terminology. We say that
the random walk {S,}

e has a positive drift provided that EY > 0,
e has a negative drift provided that EY < 0,
o is without drift or oscillating provided that EY = 0.

As already noticed in Section 5.1.2, the ladder epochs and, in particular,
the maximum M = max{0, S, S3,...} of a random walk play an important
role in the computation of ruin probabilities. Note that Theorem 6.3.1 implies
that M is finite with probability 1 for a random walk with negative drift, and
infinite otherwise.

6.3.3 Ladder Heights; Negative Drift

In this subsection we assume that the random walk {S,,} has a negative drift,
i.e. EY < 0. A basic characteristic of {S,} is then the first ascending ladder
epoch vT. As one can expect, and we confirm this in Theorem 6.3.2, the
distribution of the random variable »* is defective under the assumption of a
negative drift. The overshoot Y+ above the zero level is defined by

Y+ _ Su-f- if V+ < 00,
R ) otherwise

and is called the (first strong) escending ladder height. A typical trajectory of
the random walk {S, } which reflects this situation is presented in Figure 6.3.2.

More precisely, we have a result for G*(z) = P(Y* < ), the distribution
function of Y+ and G*(00) = limz—0 G ().

Theorem 6.3.2 The following statements are equivalent:
(a) EY <0,

(b) M is finite with probability 1,

(¢) Gt (o0) < 1.
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f
Sn —4.',
Y+
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— f 1 T lT ]
1 2 3 4(=v") 5 n
‘e, N
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Figure 6.3.2 Ascending ladder height

The proof of this theorem is easy and is left to the reader.

Suppose that ¥* < 0o. We can then repeat the same argument as above,
but now from the point {(v*,Y™), because of our assumption that the
increments Y3, Y2, ... of the random walk {S,} are independent and identically
distributed. This means in particular, as illustrated in Figure 6.3.2, that we
can define a new random walk S,+,; — Sy+,S,+4+2 — S,+,... which can be
proved to be an identically distributed copy of the original random walk
{Sn} and independent of Si,Sa,...,S,+. We leave it to the reader to show
this. Iterating this procedure, we can recursively define the sequence {v;}} of
consecutive ladder epochs in the same way as this was done in (6.3.6). The
random variable

Y=

n

e+
Sy = S,+ iy <oo,
fos) otherwise

is called the n-th ascending ladder height of {S,}. It is not difficult to show
that the sequence {Y;" +...+Y;F,n=0,1,...} forms a terminating renewal
process. Moreover, for the maximum M = max{0, Sy, Sz,...} of {S,} we have
(see also Figure 6.3.2)

N
Me PR AS (6.3.10)
=1

where N = max{n : ¥} < oo} is the number of finite ladder epochs.
Thus, with the notation Go(z) = G*(z)/G*(00), where Go(z) is a proper
(i.e. nondefective) distribution function, we arrive at the following result,
saying that M has a compound geometric distribution.

Theorem 6.3.3 IfEY <0, then for all z > 0 and for p = G+ (c0)

POI <) =(1-p) 3 (@)@ = - prGiHe).  (6311)
k=0 k=0
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Proof Recall that {Y;" + ...+ Y ,n = 0,1,...} is a terminating renewal
process and the distribution of N = max{n : v} < oo} is geometric with
parameter p = G*(00), i.e. P(N = k) = (1 - p)p* for k = 0,1,.... Thus,
using (6.3.10) and Theorem 6.1.1b, we have

N (o) o
P(M <2)=P(Y ¥ <2) = Y (1-pptGeta) = 3 (1- PG ™).

This completes the proof. : m]

Theorem 6.3.3 implies the following result for the ruin function ¥ (u) =
P(M > u) considered in Section 5.1.

Corollary 8.3.1 For any u > 0, ¥(u) = Y o2, (1 —p)p"G—{,"’(u).

Note that for the special case of integer-valued increments concentrated on
the set {—1,0,1,...}, the statement of Theorem 6.3.3 has already been proved
in Theorem 5.1.1 where the distribution function Gg(z) has been determined
explicitly. In the general case, the calculation of Gp(z) is more complicated.
We will discuss this problem in Sections 6.4.2 and 6.4.3.

However, before doing so, we introduce the dual notions of descending
ladder heights. Consider the descending ladder epoch v~. The undershoot
Y~ below the zero level is defined by Y~ = S,- and called the (first)
descending ladder height. The n-th descending ladder height is defined by
Yo = S,- - S”;-x' Since Y, ,...,Y,; are independent and identically
distributed copies of Y, it is clear that the sequence {— Y} .., ¥;", n € IN}
is a nonterminating renewal process (in the case of the negative drift). Indeed,
under our assumption on the negative drift it follows from Theorem 6.3.1 that
all descending ladder epochs and heights are proper random variables.

Bibliographical Notes. The basic references for Section 6.3 are Feller (1971)
and Chung (1974). The proof of Theorem 6.3.1 is from Resnick (1992).

6.4 THE WIENER-HOPF FACTORIZATION

6.4.1 General Representation Formulae
Define the ladder height distribution G~, concentrated on R_, by
G (z)=PY <1z, zeR. (6.4.1)

Thus G~ dualizes the ladder height distribution G* which is concentrated on
(0, 00) and is given by

Gt(z)=PY*+ <), zeR. (6.4.2)
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Let Hy be the measure on R.. given by
o0
Hy(B)=) (G7)*(B), BeBR-). (6.4.3)
k=0
We also introduce as a dual measure Hf on R,

o

HF(B)=) (G*)*(B), BeB®R,). (6.4.4)

k=0

Note that the definition (6.4.3) of Hy is similar to that of the renewal measure
Hy considered in Section 6.1. Moreover, from (6.4.3) it follows that

Hy G~ =Hy - 6. (6.4.5)

It turns out that Hy is equal to the so-called pre-occupation measure y~ given

by v~ (B) = E (X5 K(S; € B)) for B € B(R), where obviously v~ (B) = 0
for B C (0, 00).

Lemma 6.4.1 For each B € B(R) and H; (B) = Hy (BN R.) we have
Hy (B) =1 (B).

Proof Note that (G~)*°(B) = I(0 € B) = P(S; € B) and (G™)**(B) =
P +...+Y;7 €B)=P(5,- €B)foralln=1,2,.... Thus

Hy (B)

Y (G )™ (B)=10¢€B) + ip(s”n_ € B)
n=0

n=}
= 1(0€B)+E (i 1(5,- € B))

n=1

= I0eB)+E (i i I(v; = K)K(S,- € B))
n=1 k=1
= 1(0€B)+ iE (i Kv, =k,S,- € B)).
k=1 n=1
On the other hand,
o0
E(Zl(u; =S, € B)) =P(Sk<S:, i=0,....,k—1, S € B)
n=1

k

k k .
P(} %i<0) %<0, ..,%<0,) YieB)

i=1 =2 =1

= P(% gO,...,iY;gO,iYieB),

i=1 =1
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where the last equality follows from Lemma 5.1.1. This gives

x
I0€B)+ Y P(S;<0,i=0,...,k,5 € B)

Hy (B) =
k=1
o0
= E (2 vt >k+1,5 € B)).
k=0
Thus, the proof is complete since
00 vt—1
E(Zl(u+2k+1,SkEB))=E(Z I(SkeB)). -
k=0 k=0

Next we show that the distribution F of the increments Y1,Y3,... of the
random walk {S,} can be expressed in terms of the ladder height distributions
Gt and G~. This is the so-called Wiener-Hopf factorization of F, which is
sometimes useful when computing the distribution of the maximum M of the
random walk {S,}.

Theorem 6.4.1 The following relationship holds:
F=G*"+G™ -G~ xG*. (6.4.6)
Proof We first show that
o+ *xF=~v"+G . (6.4.7)

Let B € B(IR) be an arbitrary Borel set. Then,

vt-1 pt-1
> 1S, €B)+X(S,+ €B)=K0€B)+ »_ KSns1 €B). (648)
n=0 n=0

Now E (Z'ﬁ_l I(Snt1 € B)) = E(X2, K(v* > n,Sn41 € B)) and, since

n=0

the event {¥* > n} is independent of Y,11, the above equals

E/x P(v™ >n,8, € B-y) F(dy) = Fxvy7(B).

n=0

Taking the expected value of both sides of (6.4.8), we get (6.4.7). Convoluting
both sides of (6.4.7) with G~ we obtain

G +G *y *F=G xy~ +G™ xG*.
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On the other hand, by (6.4.5) and Lemma 6.4.1, we have vy~ * G~ =7~ —dg.
Thus, G~ + (v~ — &) * F = v~ — 8 + G~ * G* and, equivalently, F =
G~ -G~ *xG* + 4~ * F — 4~ + &. Using (6.4.7) again, this gives (6.4.6). O

If we want to compute ruin probabilities, we need to determine the ladder
height distribution G+ that appears in Theorem 6.3.3. The Wiener-Hopf
factorization (6.4.6) vields the following representation formula for G*.

Corollary 6.4.1 For B € B((0,00)},

0
GHB)=F+H;(B)= [ FB-pHGG), (649

bde <}

while for B € B(R_)
G~ (B)=Fx*Hf(B) = /Doo F(B - y)dHT (y). (6.4.10)

Proof Convoluting both sides of the Wiener-Hopf factorization (6.4.6) by
G, weobtain F*G~ =G* G~ + G~ * G~ — Gt » (G™)*2. Iterating this
procedure we get F * (G™)** = Gt « (G™)** + (G~ )**+D) — G+ + (G—)*(k+1)
for each k = 1,2,.... Summing over k from 0 to oo we obtain

Fx i(G-)*’“(B) =G*(B) - G* % (G7)""*(B),
k=0

for B € B((0, 00)). This completes the proof, because lim, o (G™)}**(B) =0
for all B € B((0,00)) and hence lim, o, Gt * (G~)*("+1)(B) = 0. The proof
of (6.4.10) is similar. |

6.4.2 An Analytical Factorization; Examples

We give two cases for which we can compute the distribution of the maximum
M = max{0,51,Sz,...} of the random walk {S,}, using the Wiener-Hopf
factorization (6.4.6). Recall that M is finite with probability 1 if and only if
{Sn} has a negative drift; see Theorem 6.3.2. Thus, throughout this section we
suppose that EY < 0. From Theorem 6.3.3 we can easily draw the following
general result.

Corollary 6.4.2 (a) For s <0,

1-G*(o0)

T (6.4.11)

mum(s) =



RENEWAL PROCESSES AND RANDOM WALKS 241

(b) If Y is integer-valued, then M is a nonnegative integer-valued random
variable with generating function

. 1-G* (o)
= — -1<s<1. 6.4.12
gm(s) = 7= s (5) <s< ( )
The proof is obvious because (6.4.11) and (6.4.12) directly follow from (6.3.11)
and from the product formulae (2.1.9) and (2.1.10). a

Recall that the moment generating functions of the distributions G+,G~
and F can be defined as functions of a complex variable z € €. Since G+
is concentrated on (0,00), the moment generating function g+ (2) is well-
defined on the half-plane R(z) < 0. Analogously, since G~ is concentrated
on R, its moment generating function rhg-(z) is well-defined on the half-
plane ®(z) > 0. The moment generating function ir(z) is well-defined at
least on the imaginary axis R(2) = 0 because each point on ®(z) = 0 can
be represented as z = it for some real ¢ and then mp(z) = [ € dF(z),
which is the characteristic function of F. An immediate consequence of the
Wiener—Hopf factorization (6.4.6) is the following analytical factorization of
the corresponding moment generating functions. For the generating function,
see Corollary 6.4.4.

Corollary 6.4.3 If for some z € C all the moment generating functions
mp(z), thg+(2), g-(2) exist, in particular if R(z) =0, then

1 - 1p(z) = (1 — tag+(2))(1 — hg-(2)). (6.4.13)

If Y is an integer-valued random variable with probability function {p:},
i.e. pr = P(Y = k), then both the ladder-height distributions G* and G~
are discrete: G* is concentrated on {1,2,...} and G~ is concentrated on
{0,-1,-2,...}. Let {p}'} and {p; } denote the probability function of G* and
G, respectively. Let us consider the generating functions gg+(2), jo- (2) and
dr(z). Note that o+ (2) is well-defined in |z] < 1, gg-(2) is well-defined in
[z[ > 1, and §r(z) is well-defined at least on |2| = 1. In this case, from Euler’s
formula we have z = €t for some 0 < t < 2, and §p(2) = Y oo Pk €%¥,
which is the characteristic function of Y at ¢. Then (6.4.6) takes the form

oG
pr=pf+p5 - Y Pi_;pj, keZ. (6.4.14)
j=—0

Analogous to the analytical factorization given in Corollary 6.4.3, we have the
immediate consequence of (6.4.6).

Corollary 6.4.4 For |z| =1,
1-gp(2) = (1 - ga+(2))(1 - §o-(2)). (6.4.15)
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Proof Multiplying both sides of (6.4.14) by z* (|z} = 1) and summing over k
from —oo to +o00 we arrive at

) oc
Z prz* Z prz* + Z przf - Y (Z pi'_,-p,-‘)z'“
k=—o00 k=—o00 k=-o00 k=—oc j=-—o00
However
o0
Z (Z pk ]p]) Z p;ZJ( Z p:—jzk—j) =§G—(Z)gc+(Z).
k=—-o00 j=-—o00 k=—00 Jj=-—o00
This gives (6.4.15). a)

In the remaining part of this section we derive the explicit factorization for
the special case when Y is lattice and bounded either from above or from
below. Subsequently, we will find gg+(z).

Suppose that Y is integer-valued and bounded from above, i.e.
>0, and ppy; =0, j=1,2,... (6.4.16)

for some integer b > 0. In this case G* is discrete and assumes values from
the set {1,2,...,b}. Thus, the generating function gg+(z) is a polynomial
of degree b and is well-defined in the whole complex plane C. Using the
fundamental theorem of algebra we can write

b
1 — gg+(2) = const H(zj -z), (6.4.17)

=1

where z; (j = 1,2,...,b) are the roots of equation 1 = jg+(2). Note that
9+ (0) = 0 by setting z = 0 in (6.4.17). Hence

1-gg+(2) = ]’[(1 —z/z). (6.4.18)

j=1

The left-hand side of (6.4.18) is equal to 1 for z = 0, ie. z; # 0 for
Jj = 1,2,...,b. Moreover, G~ is discrete and concentrated on the set
{0,-1,-2,...} and G~(0) < 1. Thus 1 — jg-(2) is well-defined on |z] > 1
and hence 1 — gp(z) is well-defined on |z| > 1. Consequently, (6.4.15) holds
on |z| > 1 too.

It is obvious that, if for a complex-valued function g, |g(z)] < 1 for some
z € €, then z is not a root of the equation g(z) = 1. But then, 1 = jg+(2)
has no root in |2| < 1, since G+(oo) < 1 by the fact that {S,} has negative

drift. More explicitly, |gg+(2)] < 2 1Pz < 21-1 p; =G*(o0) < 1.
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Lemma 6.4.2 The eguations 1 = gg+(2) and 1 = gr(z) have exactly the
same roots in |z| > 1.

Proof Assume for the moment that there is a complex number 2 such that
1 = gr(zo) and |zo| > 1, but 1 # g+ (2p). Then from the equation

(1-346+(2))(1 - ge-(2)) =1-Gr(2), |2| 21, (6.4.19)

we would have that 1 = jg- (20). However, since |29} > 1 we have |gg- (20)] <
Z;L_w p; = 1 which means that zo cannot be a root of 1 = §g-(20), i.e. each
root of 1 = gr(z) with |z| > 1is a root of 1 = §g+(z). On the other hand, by
(6.4.19) each root of 1 = gg+(2) with |z| > 1 is a root of 1 = §r(z). mi

From the above considerations, we get the following result.

Theorem 6.4.2 Let zy,...,2, be the roots of 1 = gr(2) in |2| > 1. Then

b
de+(z) =1- [0 =2/2) (6.4.20)

j=1

and for |z} <1
b -1
am(2) = ([T - 2/2)) (1= g+ (1)). (6.4.21)
Jj=1

Proof Equation (6.4.20) follows from (6.4.18) and Lemma 6.4.2. Equation
(6.4.21) follows from (6.4.12) because G*(o0) = gg+(1). ]

Corollary 6.4.5 If the roots 21, 25, . .., 2 of the equation 1 = gp(z) in [z] > 1
are different, then by partial fraction decomposition we get

b
. R zj
()= (1= ge+ () Y_e——, |l <1 (6.4.22)
=t
where ¢; = [[g; (2 — 2;) 7 28).
Proof Since 21,..., 2, are different, we can write
L b z;
=) ¢——. (6.4.23)
g zj—2 ; ‘zi—z

Let k € {1,...,b} be fixed. In order to determine c;, it suffices to multiply
both sides of (6.4.23) by (2 — 2) to get

zi zi(zx — 2)
zkH 2 =ch—’-g——+ckzk .
2 — % z;— 2

j#k J#k
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Then for z = z this gives ce = [];4 2i/(2; — 2k)- a
Notice that for each j = 1,...,b, the function

25 _ 1
zi—z  1-(z/z)’

l2| <1,

is the generating function of the sequence {z; ¥},k € IN. Thus, the re-
presentation of gas(z) by the linear combination of the moment generating
functions given in (6.4.22) makes it possible to express the survival probability
1-4(n) = P(M < n) directly in terms of the roots 2, z,...,2s of 1 = §p(2)
in jz| > 1. From (6.4.20) and (6.4.22), it follows that

b
P(M=n)=(H l—zkl))Zch_” nelN,
k=1 J=1

and so
—~(n+1)

¥(n) = 1‘[(1 - z;‘)Zc,

We now suppose that Y is mteger-valued and bounded from below, that is
for some integer b < 0 we have p, > 0 and p; = 0 for all j < b — 1. In this
case G~ is discrete and concentrated on {b,b+ 1,...,0}. The ladder height
Y ~ takes value b if S; = Y7 = b. Therefore

(o o]
p, =P =b)+ZP(51 >0,...,51-1>0,8, =b) = p,

n=2

because P(S51 > 0,...,8,_1 > 0,5, = b) = 0 for all n > 2. The generating
function gg- is well-defined for = # 0 and the function zltlGg-(z) is a
polynomial of degree |b| defined on the whole complex plane €. Therefore
1 = gg-(2) has exactly |b} roots. Since for |2| > 1

0 0
1=gg-(1) =Y p; > Y _pjlel > lgs-(2)l,
i=b

i=b

all the roots are in 0 < |z| < 1. On the other hand, G* is discrete and
concentrated on {1,2,...} and 1 — gg+(z) is well-defined in |2} < 1. Similarly,
1 — gr(2) is well-defined for 0 < |z| < 1. Therefore, equation (6.4.15) can be
considered on 0 < |z| < 1.

Lemma 6.4.3 The equations 1 = jg-(2) and 1 = §p(z) have ezactly the
same |b] roots in 0 < |z| < L.
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Proof Since |§g+(2)} < §o+(1) < 1 for |z| < 1, we immediately get from
(1= 9c+(2))(A - §g-(2)) =1 - §r(2) (6.4.24)

that the roots of 1 = gg-(z) in |2z| < 1 are roots of 1 = §p(z). Conversely,
suppose that z is a root of 1 = gp(z), but 1 # gg-(2). Then from (6.4.24)
we would get that 1 = §g+(2), which is not possible because [gg+(2)| < 1 for
2| < 1. O

There is a single root z = 1 and it is the only root for which |z| = 1. The
position of the other roots on € is discussed in the remark below. Readers
who are not interested in the refined analytical details can pass immediately
to Theorem 6.4.3. They however should accept the assumption that there
exists a continuous function h(z)} in 0 < |2| < 1 for which

{8l

1-gr(2) = h(2) [[(z - ). (6.4.25)

=1

Remark Let 21,23,...,2 be the roots of 1 = §r(2) in [z} < 1. To make
a factorization like (6.4.25) the roots lying inside 0 < 2] < 1 cause no
problem since 1 — gg(z) is analytic there. So, let us first look at roots on
the boundary |z| = 1. It is immediate that one root is 1. Let 2; = 1. Since
1-2" = (1 - 2) Yrg 2* we can write

|l

1=0r(e) = 3 pal=+ (-5

L

-a-9 3 (B9 3 (Ea)

n=0 m=n

i

provided that oo (oo pm) < 00. The latter condition is satisfied if the
first moment of Y is finite. Therefore, there exists an analytic function hy(z)
on 0 < |z| < 1such that 1 — gr(z) = (1 — 2)hi(2). Note that 2; = 1 is a single
root. because otherwise k(1) = 0. However, k;(1) = EY < 0, and hence the
root z; = 1 is single. To continue the analysis, we make one more assumption
in that Z is the minimal lattice on which F is concentrated, that is there is
no k = 2,3,... such that Fy is concentrated on {kn, n € Z}. In this case,
using Lemma 15.1.4 from Feller (1971), there are no other roots on |z| = 1.
Now since h;(z) is analytic on 0 < |z| < 1 and h;(z) has roots z2,.. ., zjp}, we
get formula (6.4.25).

We are now ready to state the following representation formula for gg+(2).
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Theorem 6.4.3 For 0 < [2{ < 1,

h(z)2M 10 2

jo+(2)=1- —(:ﬁW . (6.4.26)

Proof The fundamental theorem of algebra yields

[b}
Plge-(z) - 1) =[] (z — z)-
Jj=1
Letting z = 0 we see that ¢ = (—1)""([’[;’2l z;)"'p; and hence, because
Do =Dy
Ib]
) py(—1)1+1 7.
1-gG-(z)=—(—)——H(1——’-).

H.I;b-_{-.l % j=1 z
Now, (6.4.26) follows from (6.4.24) and (6.4.25). o

We conclude this section with a few comments on another form of the
Wiener-Hopf factorization (6.4.6). Suppose that for some € > 0 the function
gr(z) is well-defined in 1 — ¢ < |2] < 1+ ¢. Define the functions

dt(z) = exp(— i F—[—z—i'%ﬂ) (6.4.27)
n=1
and o s
a () = exp(~ 3 E—[f—féﬂ) (6.4.28)
n=1

It can be shown (see, for example, Prabhu (1980)) that, in |2} < 14¢, d4(2) is
analytic, bounded and bounded away from zero and that d_(z) has the same
properties in |z| > 1 — . Moreover, d™(z) = 1 for z — 0. We leave it to the
reader to show that

1-gr(z) =dt(2)d (2), 1-e<|z|<1+e. (6.4.29)
Hence,
1-gg+(2) = exr>(— f: M) (6.4.30)
and ':] <
1- gg-(2) = exp(- nZ=1 E—[z—“ns"—sol) , (6.4.31)

since the factorization given in (6.4.29) is unique within the class of functions
satisfying the same conditions as mentioned above for d*(z) and d™(z).
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6.4.3 Ladder Height Distributions

In Theorem 6.3.3 we showed that the probability of ruin ¥(u) = P(7(u) < oc)
is closely related to the ladder height distribution G of the random walk {S,}
with S, = Y., (Ui — 8T;). In Sections 5.1.2 and 6.4.2 we determined G* for
some cases when the increments Y;, = U,, — 8T, were integer-valued. We now
compute G, p= Gt () and Go(u) = G+ (u)/G*(00) for two further cases,
i.e. the compound Poisson model with general claim size distribution, and the
Sparre Andersen model with exponentially distributed claim sizes. We again
assume that the drift of the random walk {S,} is negative, or equivalently
that EU - JET < 0.

We start with the compound Poisson model. We first prove a lemma of
independent interest, which gives a simple expression for the pre-occupation
measure 7~ = Hy introduced in Section 6.4.1.

Lemma 6.4.4 For the compound Poisson model,
Hy ((—z,0))=1+A87'z, >0, (6.4.32)
or, alternatively, dH; (z) = ddo(x) + A3~ 1 dz.

Proof From the definition (6.4.1) of the ladder height distribution G, we
have

G (-z) =P(S,- < -2)

o0
= SOP(BTe 2 2+ Uk + Skct [{BTk 2 Ui + Sk1 > 0} N A)P(v™ = k)
k=1

where Ay = {Sk-1 > 0,...,81 > 0}. Apply Lemma 2.4.1 with X = 8T,
W = Ui + Sk_; and A = A; to get that

f:P(BTk >z)P(v” =k)

k=1

oo ) -
= Z e M TP =k)= e 7,
k=1

G (-x)

because P(v~ < co) = 1. The lack-of-memory property (2.4.7) implies that

oy _ [ e ifz <o,
G (x)—{ L fz>0 (6.4.33)

From the definition (6.4.3) of Hy we get that Hy ((—x,0)) is the renewal
function of a Poisson process with intensity A3~!. We finally use the first
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formula in (5.2.8) with some care as the direction of the renewal process has
to be changed, and remember to add 1 for (G~)*°. a

Next, we derive an expression for the tail function G¥ (z) = G*(00)—G* ().
It turns out that, in the compound Poisson model, the conditional ladder
height distribution Gy coincides with the integrated tail distribution F} of
claim sizes. The following result was already obtained as (5.3.11) and (5.3.18).
But, for methodological reasons, we give a separate proof here.

Theorem 6.4.4 For the compound Poisson model,

o0
GH(z) =871 / Fy(w)dv, z>0. (6.4.34)
Hence
p= Myf! (6.4.35)
and
w —
Go(z) = pg' / Fy(v)dv, z>0. (6.4.36)

Proof We have mip(s) = mhy(s)A/(A + 8s) and, from (6.4.33), g-(s) =
A/ (A + Bs). Thus (6.4.13) implies

1 — 1y (s)A/(A + Bs)
1= /(A + Bs)

for —A/3 < 8 < 0. This is equivalent to (6.4.34). w]

1—-1thg+(s) =

We turn to the Sparre Andersen model with general inter-occurrence time
distribution but with exponentially distributed claim sizes. In particular, we
derive the ladder height distribution G+ and the probability p that the first
ascending ladder epoch v* is finite.

Theorem 6.4.5 If the claim size distribution Fy is ezponential with
perameter § > 0, then G is exponential with the same parameter § and §(1—p)
18 the unique positive root of

fry (s) = 6—f—siT(ﬂs) =1. (6.4.37)

Proof As in the proof of Lemma 6.4.4, the ladder height distribution G+
introduced in Section 6.3.3 is given by

GH(z) =Y P(Sk>z| Sk >0, <0,...,5 <OPw* =k).

k=1
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Apply Lemma 2.4.1 to
PUr >z + 8T, — Sk—1 | U > BT}, — Sk—1 > 0,S5,-1 <0,...,5; <0)
to obtain G*(z) = Yo, P(Us > z)P(vt = k) = e *P(v* < o0), or
dG*(z) = pse" dz (6.4.38)
for all x > 0. From (6.4.13) we have

(1=t (2) = (1~ - @) (1 - p )

for 0 < Rz < 4. If ry (2) = 1 for some z > 0 then hg- (2) < 1 and therefore
z = §(1 — p). We still have to show that (6.4.37) has a positive root. Note that
iy (0) = 1 and m{P(0) = E[Y] < 0. Moreover, iy (z) — oo as z 1 § and

iy (z) is continuous. Thus (6.4.37) has a positive solution. a
The following result is an obvious consequence of Theorems 6.4.4 and 6.4.5.

Corollary 6.4.6 Consider the compound Poisson model with intensity \ and
ezxponential claim size distribution Fy = Exp(d). Then Gy = Exp{d) and
p=\38)~".

Bibliographical Notes. Factorization theorems for random walks appear
in many books and articles and in different forms. We refer, for example,
to Chung (1974), Feller (1971), Prabhu (1980), and to Resnick (1992),
Section 7.2. A probabilistic proof of the Wiener-Hopf factorization (6.4.6)
has been given in Kennedy (1994). The exposition of Section 6.4.2 follows
Asmussen (1987), Chapter 9.2. Theorems 6.4.4 and 6.4.5 are standard in the
theory of random walks and can be found, for example, in Billingsley (1995),
Feller (1968) and Resnick {1992).

6.5 RUIN PROBABILITIES: SPARRE ANDERSEN
MODEL

6.5.1 Formulae of Pollaczek—Khinchin Type

Sometimes it is more convenient to consider the claim surplus process {5(t)}
with S(t) = Zfi‘f) U; — 8t for t > 0 instead of the risk reserve process
{R(t)}. The ruin function %(u) is then given by ¥(u) = P(r(u) < o0},
where 7(u) = min{t : S(tf) > u} is the time of ruin for the initial risk
reserve u. As already stated in Chapter 5, a fundamental question of risk
theory is how to derive pleasing formulae for y(u). However, most often
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this is impossible, as formulae turn out to be too complicated. As a result,
various approximations are considered. From random walk theory, applied to
the independent increments Y, = U, — 8T,, we already know that there is
only one case that is interesting, namely when the coefficient p = (AEU)/8 is
less than 1, as otherwise ¥(u) = 1 (see Theorem 6.3.1). If p < 1, then the drift
EU — BET of the random walk {S,} with S, =Y; +...+Y,, is negative. In
risk theory it is customary to express this condition in terms of the relative
safety loading n, which is defined as

BET-EU 1 .
:————-—:—-—1. 6.{).1
EU p ( )

Obviously, n > 0 if and only if p < 1. The concept of relative safety loading

comes from the following considerations. Consider a risk reserve process in
the compound Poisson model,

N(t)
Rt)=u+XEUt- Y Up, t20,

n=1

where the premium rate 8 = AE U is computed by the net premium principle.
From random walk theory, we already know that the risk reserve process
without drift will have unbounded large fluctuations as time goes on, and so
ruin happens with probability 1. If we add a safety loading eAE U for some
€ > 0, then ruin in the risk reserve process { R(t)} with

N(t)
Rit)=u+(1+e)AEUt- Y Up, 20,

n=1

will no longer occur with probability 1. Solving equation (6.5.1) for 8 =
(1+£)AEU, we have the relative safety loading n = ¢.

In the sequel to this chapter, we always assume that 0 < ET < oo,
0 < EU < oo and that the relative safety loading 7 is positive so that
EU - BET < 0. We know from Section 6.3.3 that the survival probability
1 — ¢(u) is given by the following formula of Pollaczek—Khinchin type.

Theorem 6.5.1 For all u > 0,

1-g(u) = 1-p) Y (G W) = S (1 - pp*G3*(u), (6.5.2)
k=0 k=0

where Gt is the (defective) distribution of the ladder height of the random
walk {Sa}; Sa = Y1y (Us — BTS), p = G*(00) and Golu) = G* (u)/G* ().
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Note that (6.5.2) implies
e —_—
v =(1-p)Y p*Get(u), u>0. (6.5.3)
k=1
After some simple algebraic manipulations, this reads
o u
Yu) = Zpk“ /0 Golu —v)dGgt (v), u>0. (6.5.4)
k=0

In the case of a compound Poisson model we know from Theorem 6.4.4 that
Gl is equal to the integrated tail distribution F}; of claim sizes. We rediscover
the classical Pollaczek-Khinchin formula for the ruin probability ¥(u) from
Theorem 5.3 .4.

Corollary 6.5.1 The ruin function in the compound Poisson model is

w(u) = Y _(1- p)p"(Fp)"™ (), (6.55)
k=1
which i3 the same as
v =3 [ TR - vaE) o). (6.5.6)
k=0 0

The proof is immediate as it suffices to insert (6.4.35) and (6.4.36) into (6.5.3).
In the same way (6.5.6) follows from (6.5.4).

Corollary 6.5.2 In the Sparre Andersen model with exponential claim size
distribution Exp(6),

Y(u) = (1—v/8)e”™ (6.5.7)
for all u > 0, where « is the unique positive root of (6.4.37).
Proof Theorem 6.4.5 and the representation formula (6.5.2) yield that 1—(u)
is the distribution function of a geometric compound with characteristics

(p, Exp(48)). It is not difficult to see that the zero-truncation of this compound
distribution is the exponential distribution with parameter 6(1 — p). Thus,

$(u)/1p(0) = e~ -2l (6.5.8)

for all w > 0. From (6.5.2) we have that ¥(0) = p. Moreover, Theorem 6.4.5
implies that p = 1 — 46~!, where « is the unique root of (6.4.37). This and
(6.5.8) imply (6.5.7). a

Corollaries 6.5.1 and 6.5.2 yield the following result, which coincides
with (5.3.8).
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Corollary 6.5.3 In the compound Poisson model with exponential claim size
distribution Exp(4),

P(u) = % e"@-MBl 4 >0. (6.5.9)

Again the proof is immediate as (6.5.8) and (6.4.35) imply (6.5.9), having in
mind that (0) = p.

We now determine the joint distribution of (X *(u), Y *(u)), where X *(u)
is the surplus just before ruin time 7(u) and Y*+(u) is the severity of ruin
as defined in Section 5.1.4. More generally, we consider the multivariate ruin
function

¥(u,7,y) = P(r(u) <00, XT(u) < 2,Y7(u) > ), (6.5.10)

where u,z,y > 0. We derive a representation formula for ¥(u,z,y),
which generalizes the representation formula (6.5.2) for the (univariate) ruin
function ¢(u) and expresses ¢(u,z,y) in terms of p, Go and (0, z,y). Here,
(0, z,y) is obtained from the distribution of (X*(0),Y*(0)). Recall the pre-
occupation measure v~ = Hf = Y0 o(G)** = Y52, pP*Go** introduced in
Section 6.4.1.

Theorem 8.5.2 The multivariate ruin function ¥(u, z,y) satisfies the integral
equation

u
'/)(“7 xyy) = 1!')(0,3? -u,y+ ’ll.) +p/ ¢(u -, y) dGO(U) (6‘511)
0
for all u,z,y > 0, its solution is
Y(u,z,y) = / (0,2 —u+v,y+u—v)dH} (v). (6.5.12)
0

Proof First consider the event {7(u) < 00, X*(u) < z,Y*+(u) > 3, Y*+(0) >
u+y}, and denote A = {Y*(0) > u+y}. Then, A = AN {r(u) = 7(0)} and,
consequently,
{r(u) < c}NA = {r(0)<oo}nNA4,
{Y*w>yind = {YH0)>u+y},
{XtTw)<z}nA = {X*(0)<z-u}nA.
Using the law of total probability, we get from definition (6.5.10) of ¥(u,z,y)
¥(u,z,y) = P(r(u) < 00, XF(u) <2, Y*(u) >y, Y (0) >u+y)
+P(r(u) < 00, X*(u) < 2,Y*(u) >3, YH(0) < w)
= P(r(0) <00, X (0) <z —uYH0)>y+u)

+/uP(T(u—v) <00, X (u—-v) <z, Y (u-1v)>y)dG(v),
o
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S(t)
U+ Yy

Figure 6.5.1 Y*(0) =Y (u)+u>u+y

which proves (6.5.11). Note that, for z,y > 0 fixed, (6.5.11) is a defective
renewal equation with respect to g{u) = ¥(u,x,y). This gives (6.5.12) by
applying Lemma 6.1.2 with z2(u) = ¢(z — u,y + ©v) and F(v) = pGe(v) =
G*(v). o

Corollary 6.5.4 For all u,y > 0,
Y¥(u,00,y) = p/ Go(y +u—v)dHS (v). (6.5.13)
0

Proof Since 1(0,00,y) = pGo(y), we obtain (6.5.13) from (6.5.12). u]

Note that formulae (6.5.12) and (6.5.13) are extensions of (6.5.4), since
¥(u) = ¥(u,00,0). Furthermore, recall that in the case of the compound
Poisson model, the characteristics p, Go and

(0, z,¥) = P(1(0) < 00, X*(0) > z,Y(0) > y) (6.5.14)

can be easily expressed in terms of A\, 3 and Fy as shown in Sections 5.3.4
and 6.4.3. In particular, we have the representation formula (5.3.18):

w029 =287 [ °+° (1-Fu()dv, z,y20. (6.5.15)
Ty

Clearly, then ¥(0,z,y) = ¢(0,0,y) — ¢(0,z,y) can also be expressed by A, 3
and Fy. Using (6.5.13), from (6.5.12) we immediately obtain the following
formula. for ¥(u, z,y).
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Theorem 6.5.3 In the compound Poisson model,
¥(u,z,y)
= o[ (B(@-u+o)r+ G+ u—v) - Fyly+u =) dET0),
’ (6.5.16)
for all u,z,y > 0, where p = A8~ py and Hy (v) = S50, o5 F5 5 (v).

Note that the marginal ruin function ¥ (u,00,y) can be obtained directly
from Corollary 6.5.4 and Theorem 6.4.4.

Corollary 6.5.5 The probability ¥(u,00,y) that, in the compound Potisson
model, the overshoot Y (u) at ruin time 7(u) exceeds y is given by

bl 00,y) = 3 o+ /0 F(y +u— ) d(F5) ™ (v). (6.5.17)
k=0

The marginal ruin function ¥{u,co,y) can also be obtained in the Sparre
Andersen model with exponentially distributed claim sizes if one uses
Corollary 6.5.4 and Theorem 6.4.5.

Corollary 6.5.6 In the Sparre Andersen model with exponential claim size
distribution Exp(4)

P(u,00,y) = Y(u) e = (1 ~ y/8) e~ v+ (6.5.18)
Jor all u,y > 0, where v i3 the unique positive root of (6.4.37).

Proof The formula (6.5.18) follows from (6.5.13) and (6.5.7), bearing in mind
that Gy is exponential with parameter 4. 0

In order to determine the probability that, besides the overshoot Y*(u),
the total maximal deficit Z+(u) after time 7(u) exceeds level z we define for
u,z,y,z2 >0

Y(u,z,9,2) = P(r(u) <00, XtT(u) <2,V (1) >y, Z%(u) > 2).
Clearly, for y > z we have Y(u, z,y,2) = ¥(u,z,y,y) = ¥(u,x,y). Using the

same argument as in the proof of Theorem 6.5.2 we get the following defective
renewal equation for ¥(u,z,y, 2). For all u,z,y,2z > 0, we have

v(u,z,9,2) =90,z —u,y+u,z+u) +p/ Plu—v,x,y, 2) dGo(v) . (6.5.19)
0
The proof of (6.5.19) is left to the reader as an exercise. Hence, by Lemma 6.1.2

u’v(u,;t,y,z):/ ‘z[s(O,:c—u+v,y+u—v,z+u—v)ng(fv) (6.5.20)
0
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for all u,z,y,z > 0, where here and below HF(v) = Y 1ooP*Gpt(v).
Moreover, since

max{y.z}

¥(0,00,y,2) =p(/

¥(z - v") dGo(v") + Co(max{y, 2}))
v

(6.5.20) yields the following extension to (6.5.13). For all u,y,2 >0

u pmax{y,z}+u—v
¥(u,00,4,2) = p// ¥(z +u - v —v')dGo(v')
0Jy

+u—v

x Go(max{y, 2z} +u —v)dH (v).

6.5.2 Lundberg Bounds

Formula (6.5.2) for ¥(u) is of theoretical importance, as it can hardly be used
for direct numerical computation. For the compound Poisson model, however,
Theorem 5.4.1 gave useful two-sided bounds for ¥(u) that were obtained by
applying Theorem 4.5.1 to the compound geometric distribution in (6.5.3).
Unfortunately, in general neither Gy nor p is known.

In Theorem 6.5.4 below, we extend the result of Theorem 5.4.1 and derive a
two-sided Lundberg bound for the ruin function (%) in the Sparre Andersen
model with general distributions of inter-occurrence times and claim sizes. For
the Sparre Andersen model, we have the geometric compound representation
(6.5.3) for the ruin function ¥(u). We can therefore try to prove a two-
sided Lundberg bound by relying on Theorem 4.5.1 with G = G, in the
same way as was done in Section 5.4.1 for the compound Poisson model.
Unfortunately, the prefactors a.. and a; would then be expressed in terms of
the unknown distribution Gg. To avoid this complication, we take a slightly
different approach.

Consider the equation

y (8) = iy (s)ir(8s) = 1. (6.5.21)

Clearly, iy (0) = 1. This equation may have a second root. If such a root
3 # 0 exists, then it is unique and strictly positive. The solution to (6.5.21),
if it exists, is called the adjustment coefficient and is denoted by 7. For the
compound Poisson model, the solutions to (3.4.3) and (6.5.21) coincide. As we
will see in the next Section 6.5.3, the adjustment coefficient - in Theorem 6.5.4
satisfies f0°° e"* dGo(z) = p~'. This means that also in this more general case,
~ coincides with the adjustment coefficient considered in Theorem 4.5.1. Let
zo = sup{z : Fy(z) < 1}.

Theorem 6.5.4 Suppose that there ezists a positive solution v to (6.5.21).
Then
b_e " <yf{u)y<bye ™ (6.5.22)
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for all u > 0, where

) e Fy(z) e Fy(z)
b.= inf —w——7—, by = sup —m——— . (6.5.23)
:cel[O zo) f e dFy (y) M z€lo a:o) f e dFy (y)

Proof The proof is similar to that of Theorem 4.5.1. Suppose that Fo(z) =
by e™7® for all z > 0 and Fo(z) = 1 otherwise. For n € IN define the sequence
{Fn(x)} of distribution functions by

[ Fulz —y)dFy(y) ifz >0, 6.5.24
Foii(2) = { ifz <O. ( )

Then, in view of (6.5.21), we have

Fy(z) _ Fy(z)

Fole) =™ 2 T v dry) ~ 1= J7, o9 dFv(y)

From (6.5.24) we get F(z) = Fy(z) + by e™"* ffoo eV dFy(y) forallz >0
and F;(z) = 1 otherwise, and thus Fo(z) > F)(z). Use (6.5.24) recursively
to obtain Fy(z) > Fny1(z) for all z € R and n € IN. For the upper bound
in (6.5.22) it remains to show that

lim Fa(u) = ¥(u). (6.5.25)

For this we consider a sequence Ly, Ly, ... of nonnegative random variables,
not necessarily integer-valued, fulfilling L,+1 = (Lp+Yaus1)4 forn=1,2,.. .,
where Lg is independent of the sequence {Y,,} and distributed according to Fp.
Then, F, is the distribution of L,, and, in a similar manner as in Section 5.1.3,
we can prove that

L, max{0,Y,, Yo 1+Y,,...Y2+.. .+ Vo, Lo+ Y1 +... + Y, }

max{0,Y1,Y1 +Ys,.... i +...+ Yo, Lo+ Vi +... + V3, ).

fle 1l

Thus, repeating the proof of Theorem 5.1.2, we obtain (6.5.25) since, by the
law of large numbers, Lo+ Y, +...+ Y, = —o0 as n = oc. The lower bound
in (6.5.22) can be derived similarly. a

A somewhat weaker though probably more useful bound is obtained if we
express the prefactors in the two-sided Lundberg inequality (6.5.22) via the
claim size distribution Fys. Thus we define further constants b* , b% by

bl =

" Fy(z) b= sup TV 6k a5
7 5

z€l0,2y) [° eV dFy(y) ’ zefoz) [ €vdFy(y)’
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where  is the solution to (6.5.21) and zg = sup{z : Fy(z) < 1}. Note that

1 .
— =supE (Y3 | Y > z),
z

1
3 — =supE W7 |U>z) (6.5.27)
- T

b

and that (b;)~! and (b3 )~! can be expressed in a similar way.

Theorem 6.5.5 The constants b%.,b_, b, , b} defined in (6.5.23) and (6.5.26),
respectively, satisfy 0 <b* <b_ <by <P < 1.

Proof By the law of total probability and our assumption that the random
variables T and U are independent, (6.5.27) implies that

(b)"' = supE(e"U~BT+) |y 5 gT + 1)
= ey do EE@UTCHING > i+ 2)) dFr(2)
= P P(U > 6T + 2)
_ up 0 EEYCHD | US> bt + 2)P(U > ft + 7) dFr(t)
- %P P(U > AT +2)
< sup Jo” sup,50 E(€ U2 | U > s)P(U > Bt + ) dFr(t)
Tz P(U > 0T +x)
" P(U > Bt +z)dFr(t)
— b* -1 fO - x\—1 i
- Y L

Thus, b* < b_. The proof of by < b5 is similar and 0 < b ,b} < 1 directly
follows from the definitions of b* ,b} given in (6.5.26). o

It is easily seen that (5.4.3) and (6.5.21) coincide for the compound Poisson
model. For the Sparre Andersen model with general inter-occurrence time
distribution Fr and exponentially distributed claim sizes with parameter 4,
the adjustment coefficient v is the solution to (6 — s)~'dl7(8s) = 1. Moreover,
b* = b} = (6 — )0~ and we immediately obtain the expression (6.5.7) for
¥(u) given in Corollary 6.5.2.

It is clear that the lower bound in (6.5.22) is only useful when the prefactor
b_ is positive. A sufficient condition for this is given in the following result.

Theorem 6.5.6 Suppose there ezists a distribution F such that mp(y) < oo
and
Fyz <a F (6.5.28)

for all x > 0, where Fy(y) = P(U —z < y | U > x) is the distribution
function of the remaining claim size seen from level T and where ¥ > 0 is the
solution to {6.5.21). Then 0 < b* < b_.
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Proof We show that (b*.)~! < oo. From (6.5.27) we have

(®2)™!

i

>0
supE (W9 |U> 1) = Sup/ e" dFy,.(y)
z z JO

o0
< sup / eV dF(y) = r(7),
z 1]

where in the last inequality we used (6.3.28) and the fact that the function
g(y) = € is increasing. Taking into account the result of Theorem 6.5.5, this
completes the proof since rp(y) < oc. a

Corollary 6.5.7 Suppose that (6.5.21) has @ positive solution and Fy; is IHR.
Then 0 < b* < b_.

Proof From Theorem 2.4.2 we get that (6.5.28) is fulfilled for F = Fy;. Thus,
the assertion follows from Theorem 6.5.6. a

6.5.3 The Cramér-Lundberg Approximation

In this section we assume that the distribution F of Y is nonlattice and
EY < 0. The reader should prove that then the ladder height distribution
G corresponding to F is nonlattice too. Furthermore, we assume that (6.5.21)
has a positive solution . The following theorem deals with the asymptotic
behaviour of 4(u) as u becomes unbounded large. It extends Theorem 5.4.2
of Section 5.4.2 from the compound Poisson model to the Sparre Andersen
model.

Theorem 6.5.7 For the Sparre Andersen model,
lim e"™y(u) =¢ (6.5.29)
U—00
where the constant ¢ > 0 is finite and given by

o 1 - G*(00)
AR dG ) |

Proof Recall that /p(8) < oo for 0 < 8 < «. Then, it is easily seen that
mg+(8)} < oo for 0 < 3 < #. By Corollary 6.4.3,

1—1hp(s) = (1 - thg+(s))(1 —thg-(s)), O0<s<v (6.5.31)

because riig-(s) is finite for all s > 0. Furthermore, mg-(y) < 1. Thus,
mp(v) =1 and (6.5.31) give

(6.5.30)

g+ (7) = /0 G (z) = 1. (6.5.32)
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But then ¢(u) satisfies the defective renewal equation
¥(w) = G*(00) — G*(u) + /0 " 0 - v) dGH (v). (6.5.33)
Multiplying both sides of (6.5.33) by €, we have
¥(u) = e"*(G* (00) ~ G*(u)) + /0 ‘ Y(u - v)dG*(v) (6.5.34)

for all u > 0, where ¥(u) = eT(u) and dG¥(z) = edG* (z). The
distribution G+ is nonlattice and in view of (6.5.32) nondefective, and
therefore we can apply Theorem 6.1.11 to the renewal equation (6.5.34). For
this we still have to show that the function z(u) = ¢"*(G"(oc) — G+ (u)) is
directly Riemann integrable. By Fubini’s theorem we have

/oe e"(G*(o0) - G*(v))dv = /ooew/oo I(u > v)dG* (u) dv
0 0 0
/ / e I(u > v)dvdGt(u) = -1-(1 -Gt (o0)) < oo
o Jo Y

Now, from Lemma 6.1.4 we derive that z(u) = e*(G*(o0) — G*(u)) is
directly Riemann integrable. Indeed, z(u) is the product of the increasing
function z; (u) = € and the decreasing function z3(u) = G*(00)—G*(u) and
condition (6.1.28) is obviously satisfied. By Theorem 6.1.11, (6.5.29) follows
with

_[DetG ) - Gre)dy _ 1-GHe)

<c¢ = .
0< fo” ver dG* (v) vy vertdG+(v) a

Note that if ¢ > 0 the asymptotic result obtained in Theorem 6.5.7 gives rise
to the Cramér-Lundberg approzimation Yapp(u) = ce™ " to the ruin function
1(u) when u is large.

Remark The constant ¢ in Theorem 6.5.7 is positive if j;)°° ve’? dG(v) < 00.
This condition holds if, for example, mr(8) < oo for s < v+ ¢ for some e > 0.
Then mp(s) is continuously differentiable in the interval 0 < s < vy +¢ and
hence from the Wlener-Hopf 1dent,1ty (6.5.31) the same property holds for

g+ (8). Consequently, mG+ = 57 ve? dG*(v) < oc.

Feller (1971) gives a different proof of (6.5.32) which is based on a
construction which is similar to the chenge-of-measure technigue considered
in Section 9.2. The idea is to introduce an associated random walk {8,} with
8. = 30 | Vi, where the distribution F of the increments ¥; of {S.} is given
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by dF(z) = e dF(z). Indeed, F defined in this way is a (nondefective)
distribution because 7 solves (6.5.21), that is f e dF(z) = 1. To show

the validity of (6.5.32) it is enough to prove that the random walk {5.} has
a positive drift. This can be seen as follows. Since s (7) < oo, the moment
generating function riip(s) exists in the interval (0,%]. Moreover, mp(s) is
differentiable in (0,~) and

d . © . .
a;mp(s)lm_o = /_ . e dFp(z) = EY. (6.5.35)

Since 7ap(0) = rap(7) = 1 and the function rmp(s) is strictly convex, we
have (d/ds)r(s)]s=y—o0 > 0. In view of this, the drift of {S,} is positive and
as a consequence we get that the ladder height distribution G+ of {S,} is
nondefective. Furthermore, Gt can be represented by

dG*(z) = e dGF(z), £>0. (6.5.36)

Namely, we have 1 — G*(z) = b P(5; <0,...,5,.1 <0,5, > z) and
1-G¥z) = ol P(S1 £0,...,8,21 0,8, >z)forallz > 0. It is
therefore sufficient to show that

P(5: <0,...,8,.1<0,5, > 1)
o<
= / €"P(S, <0,...,5_1 < 0,5, € dy),

foralln = 1,2, ...a,nd:p:>0.Puttingv,,=y1+...+yn,weha,ve
P(5: <0,...,85,1<0,5, > )

/[—m S  Riean

X P(Yp_1 € dyn_1)...P(¥ € dy2)P(Y; € dy1)

0 -9 —tn - oo
- / / / / ™ P(Y,, € dyn)
—00 J ~00 —00 T—Up-1

x P(Yn_y € dyn_1)-.. P(Ys € dys)P(Y; € dy1)
o
=/ EVP(S; <0,...,5._1 < 0,5 € dy).

Hence we get (6.5.32) since the associated random walk {S$,} has positive
drift.

6.5.4 Compound Poisson Model with Aggregate Claims

In the compound Poisson model studied in Chapter 5 as well as in earlier
sections of the present chapter, ruin could occur anytime whenever the risk
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reserve became negative. What happens if we are only able to inspect the value
of the risk reserve at countably many, equally spaced time epochs ¢t = h, 2h, . ..
for some k > 0?7 To specify the problem, we consider the risk reserve process
{R(t)} given by R(t) = u+ 8t — YN U, = u+ gt — X(2), where {X(¢)}
is the compound Poisson process w1th the increments X (¢t + h) — X(h) =
va___(;;;:; +1 Ui- We now say that ruin occurs if R(kh) < 0 forsome k =1,2,....
In terms of the claim surplus process {S(t)} with S(t) = X(¢) — 3¢, this
can be written as S(kh) > u for some k = 1,2,.... Since the compound
Poisson process {X(t)} has independent and stationary increments, the
random variables Yx(h) = X(kh) — X((k — 1)h) — Bh, k = 1,2,..., are
independent and identically distributed. Hence, ruin occurs if the random
walk {S(nh), n =0,1...} with S(nh) = 3 _, Ye(h) crosses the level u. We
call this model the compound Poisson model with aggregate claims as it is
closely related to the risk model with discrete time considered in Section 5.1.
However, now the aggregate claims do not necessarily take values in IN.

Another interpretation of a compound Poisson model with aggregate claims
is that of a Sparre Andersen model with constant inter-occurrence times
T, = h, premium rate 3 > 0 and (individual) claim sizes U, (h) = X (nh) —
X{({(n — 1)h) having a compound Poisson distribution with characteristics
(Ah, Fy). For the initial reserve u, the ruin probability is then given by
Ya(u) = P(max,>o S(nh) > u), and ¥n(u), as a function of u, is called the
ruin function of the compound Poisson model with aggregate claims. Below
we derive a Lundberg bound and a Cramér-Lundberg approximation for this
model. Note that in these results the adjustment coefficient ~ is the same as
for the ordinary compound Poisson model considered in Chapter 5.

Theorem 6.5.8 In the compound Poisson model with aggregate claims there
exist constants 0 < b_ (k) < by (h) <1 such that

b-(h)e™® < Pa(u) < by (h)e™ ™, (6.5.37)

Jor all u > 0, where the adjustment coefficient v is the positive solution to
(5.4.3) which is assumed to exist.

Proof The inequalities (6.5.37) follow from Theorem 6.5.4 applied to the
Sparre Andersen model with generic claim size U(h) = 3 ;| MR y,, inter-
occurrence time T(h) = h and premium rate S. Indeed the generic
incremental random variable of the underlying random walk is Y(h) =
Eﬁ(:" U; — Bh. Applying (5.2.7), equation (6.5.21) for v is then iy (s)(s) =
e?(mu(s)-1)-Bhs — 1 and so A(rhy(s) — 1) — Bs = 0, which coincides with
(5.4.3). Thus, from (6.5.22) we obtain (6.5.37), where

1 e Fyny(z)
z [ZewdFyu(y)’

e Fy ()
f e dFyn)(y)

b_(h) = b+(h) = su
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Assume now that the distribution of U is nonlattice and (5.4.3) has
a positive solution v. We next derive a version of the Cramér-Lundberg
approximation (6.5.29) for the compound Poisson model with aggregate
claims.

Theorem 6.5.9 There ezists a positive and finite constant c(h) such that
lim e"yp(u) = c(h). (6.5.38)
u—ro0

Proof We again consider the Sparre Andersen model with generic claim size
U(h) = Z,’::(',‘) Un,, inter-occurrence time T'(h) = h and premium rate 3.

Applying Theorem 6.5.7 to this model and proceeding as in the proof of
Theorem 6.5.8 we get (6.5.38). i

In general it is difficult to compare the constant c(h) with the constant
¢ that appears in the original Cramér-Lundberg approximation (5.4.10) for
the compound Poisson model with permanent (time-continuous) inspection.
Nevertheless, the following asymptotic result holds.

Theorem 6.5.10 If rag; (v + €) < oo for some € > 0, then

C [

lm he(h) =

A , 6.5.39
h—o0 78(1—-p)  myApv ( )

where 5 = B(Apy)~! — 1 is the relative safety loading of the compound
Poisson model with permanent (time-continuous) inspection of risk reserve
and ¢ = ((1 — p)B)/ (M (y) — B) is the constant appearing in the original
Cramér-Lundberg approrimation (5.4.10).

Proof The ascending and descending ladder heights of the random walk with
generic increment Y (h) are denoted by Y*(h) with distribution G} and by
Y~ (k) with distribution G}, respectively. The distribution of Y'(h) is denoted
by Gj. From my(y + €) < oo we have g, (7 + €) < oco. Furthermore, this
implies that ﬁsz {v + &) < 00, as can be shown by the reader. Clearly, since

Y—(h) < 0 we also have mG; (v +¢) < oo. Now, from Corollary 6.4.3, we
can derive that 1 — g, (s) = (1 — ﬁzG: (s - ﬁzG; (s for0<s<~v+e
Differentiating this factorization identity at s =+, one finds that

OC oC oc
—/ ve”™ dGp(v) = —/ ve" dGj (v) —/ v’ dGjy, (v)
0 0 . 0
+ 1th (”y)/ ve"" dG} (v)
0

+1hg, (1) / ve" dG} (v).
0
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Use 7itg+ () = 1 (see (6.5.32)) to obtain

s o] o
/ ve”" dGh(v) = (1 - Mg- ('y))/ ve dG} (v).
0 0
Hence, from (6.5.30) we obtain

~Gi(c) _ (1=Gi(o0)( = hg-(7))

c(h) v fo verv dG+ ('U) g'). (7)

(6.5.40)

We now compute the derivative ﬁzgz (y) of g, (s) = exp(s EN(") Ui — Bh).
By the result of Corollary 5.2.1 we have g, (s) = exp(h{(A(Thy (s) — 1) — Bs)).
As the definition of adjustment coefficient v gives iy () — 1 = (87)/A, we

get ﬁzgl (v) = h.(/\rhg) (%)~ A). Since in the original Poisson compound model

c=((1-p)8)/ (/\ﬁzg)('}') — f3), this implies rhgz () = he71(1 — p)B. Therefore
by (6.5.40)

he™ (1~ p)Be(h) = (1 - G} (00))(1 — thg- (7).

It remains to show that lims oo GF (00) = 0 and limp_oo M- (7) = 0. By

the strong law of large numbers we have limp_00 A=Y (h) = Amy — 8 < 0.
The formal proof is given in Theorem 10.3.4; see also Theorem 6.1.1. Hence

Jim (1- G (00)) = lim P(S(h) <0,5(2h) <0,...) =

We also have Y~ (h) < Y(h). But then lims_ 0o P(Y~(h) > z) = 0 yields
limp 500 rhG; (v)y=0. a

6.5.5 Subexponential Claim Sizes

The Cramér-Lundberg approximation studied in Section 6.5.3 to the probabil-
ity of ruin is valid for claim sizes having exponentially bounded or light-tailed
distribution. To be more precise, the assumption that (6.5.21) has a positive
solution v means that the moment generating function it g, (s} is finite in a
right neighbourhood of s = 0. Furthermore, for all s > 0 with g, (8) < oc,
the moment generating function i fy (s) of the integrated tail distribution F
is

1 Fy (8) -1

SUFy

Consequently, rizpy (s) is finite in the same right neighbourhood of s = 0.
When modelling la.rge claims, one often uses claim size distributions Fy

hpy (s) =
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like the Pareto or the lognormal distribution and that do not have this
property. In the present section, we consider the Sparre Andersen model where
the integrated tail distribution F§ of claim sizes belongs to the class S of
subexponential distributions introduced in Section 2.5. We will show that the
ruin function ¢(u) has then the same asymptotic behaviour as the tail function
Fj(z). See Section 2.5.3 for sufficient conditions to have Fj; € S, in terms of
the hazard rate function of Fy.

For heavy-tailed claim size distributions, the following result is an analogue
to the Cramér-Lundberg approximation from Theorem 6.5.7. It extends The-
orem 5.4.3 and shows that, for EU fixed, the asymptotics of the ruin function
¥(u) depends on the claim size distribution Fy, (z) only through its behaviour
for large values of . Another interesting fact is that, in the case of a heavy-
tailed claim size distribution, the asymptotic behaviour of ¥(u} does not
depend on the form of the inter-occurrence time distribution but only on
its mean ET.

Theorem 6.5.11 If Fj; € S, then

lim ¥(u) EU
u—o0 F[s](u) ﬂET EU -

(6.5.41)

The proof of Theorem 6.5.11 will be partitioned into several steps. First we
show the following auxiliary result for the integrated tail distribution Fy, of
the generic increment Y}, = (U — 8T),. Recall that Y, = max{0,U — 8T}
and note that Y, is not the generic ladder height of a random walk, which we
denote by Y'*.

Lemma 6.5.1 If Fj; € S, then Fy, € S and

@  EU

Jim —=—— @) EY+ (6.5.42)

Proof Since Fy, (z) = [;* Fy(z + Bt) dFr(t) for all z > 0, we have
— w ——
Fy, () = / Fulz+B8t)dFr(t), z30.
)
Thus, by Fubini’s theorem,

@) =

7 )
-

Q+

/ Fu(u+ 8t) dudFr(t)
Fy

(z + Bt) dFr(t).
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Using now that Ff,(z + 8t)/F§(z) < 1 and that by Lemma 2.5.1,

Fi(z+p8t)

lim =1

z—00 _g(z)

for all t > 0, the dominated convergence theorem gives (6.5.42). The proof is
completed because, by Lemma 2.5.4, F; € S implies Fj_ € S. a

We are now in a position to prove that subexponentiality of the integrated
tail distribution F; of claim sizes implies subexponentiality of the conditional
ladder height distribution G, where Go(x) = p~'G+(z) and p = G*(00).

Lemma 6.5.2 If Fy, € S, then Gy € S and
. (2)

0
. _ P - .

Proof Note that
0 0 0
/ Fy(t)dt < / PU-BT <t)dt < / P(-8T <t)dt
= /wP(TZt/ﬂ)dtgﬂET<oo,
0

and, by (6.4.6), Fy(t) = G~(t) - [;° G~ (t — ) dG*(y) > G~(t)(1 — p) for
t < 0. Thus,
0 0
/ [t dG™(t) =/ G (t)dt < 0. (6.5.44)

Also, by (6.4.6), we have for all t > 0

. 1]
Fy,(t) = / (G*(t—y) - G*(£) dG~(v).

—00

Integration of both sides of this equation from z > 0 to a > g gives
/ ‘ Fy,(t)dt = / ’ / a(G+ (t—y)—-GH{t))dtdG (v), (6.5.45)
T —0C S I
where on the right-hand side the order of integration has been changed. Since
[ere-v-crma=[o-crwa+ [(@e-n-na
E A T

z—y a a-y
= / (p-G*(®)dt+ (p—G*(t))dt+/ (G*(t) — p)dt

Ty —¥

/ T o-er@)ya- / o-cr@)ar,
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we get forally <0

@@ -G o= < [ (-3 -G O)dt < ~p- G (@),
Substituting this into (6.5.45) and letting ¢ — oo, we obtain, for z > 0,

Lulllo-Gre-9)d6-() . T _p-6'@)
EY, [°_ |yldG—(y) "f_ ly|dG-(y) = EY:

, (6.5.46)

where, in view of (6.5.44), the bounded convergence theorem is used for the
lower bound. The upper bound in (6.5.46) gives, replacing x by = + ¢,

p—Gt{(z+1)

— s t,z > 0.
EY+F')S/+(Z+t)

0
1< [ Wi w
-0
On the other hand, the lower bound in (6.5.46) yields
1 f° - + S
577 | W46~ - 6" (e +1) < TR ().

Thus,

p-Gt(z+1) f_ lyldG~(y) F3, (=)
EY,F}_ (m+t) = 2 lvldG- (y) Fy (z+t)

]
1< / lv1 4G~ ()

Since, by Lemma 2.5.1, lim;_, F'Tn(:v) /F_fq_(z + 1) = 1, letting £ — oo and
then £ — oo we get (6.5.43). Now, in view of Lemma 2.5.4, Gy € S follows. O

Proof of Theorem 6.5.11 Assume that Fj, € S. Then we have Gp € S by
Lemmas 6.5.1 and 6.5.2. On the other hand we have by (6.5.3),

) _ GF )
Totu) ”)Z Tolw)

Use Theorem 2.5.4 to get limu,oo(Go(uw)) *9(u) = (1 - p) Yo, kp* =
p(1 — p)~*. Thus, by (6.5.42) and (6.5.43),

im _t_b_(u) _ (@(u) _—Gl;—(u) (u) )
wve Fg(u)  umoo\ Ty (u) Fy, (u) Go(u)
EY; pf0 I1dG-(t) 1-P  (1-p) [° [tdG-(t)
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However, (is) "} (1—mhp, (is)) = (1 —1hg+(is))(is) 7} (1 —1he- (is)) follows from
rewriting (6.4.13). But then JET — EU = (1 — p) f_ [t|dG~(t) as s = 0.

Hence,
EU

Jim (-F_isl(u))_l Ylu) = BET-EU

(]

Examples 1. We showed in Section 2.5.3 that the Weibull distribution
= W(r,c) with 0 < r < 1,¢ > 0 belongs to S*. Furthermore, using
Theorems 6.5.11 and 2.5.6 we have (for Fyy = W(r, 1))

1 ©
TBET —T(1/7) / ey, w0, (6547)

Note that the integral in (6.5.47) is the tail of an incomplete gamma function.
2. Let Fy € S be the Pareto distribution with density

¥(u) ~

ac®z~et) if z > ¢,
folz) = { ife<e,

with a > 1,¢ > 0. We leave it to the reader to show that then puy = ac/(a-1),
Fy € S and 9(u) ~ c(BET(a — 1) — ac) " (c/u)*? as u = oo, where it
suffices to prove that the condition of Corollary 2.5.1 is fulfilled and to use
Theorem 6.5.11.

3. Let Fy € S be the lognormal distribution LN({e,b) with —co < a < oo,
b > 0. If we show first that

F5(z) ~ b% exp(—b?/2) z exp(— (logz — a)?

e2/2r  (logz —a)? 252 ) ’

and then that the right-hand side belongs to S, then we can conclude that
5 € S. Now it is not difficult to show that

P(u) ~c

—a)?
logu a))’ “ = 00,

u (
(logu — a)? exp (_ 22
where ¢ = B3(v2r(BET — expla + b2/2)))~".

Bibliographical Notes. The surplus just before ruin and the severity of
ruin were studied by many authors, mostly for the compound Poisson model;
see the bibliographical notes to Section 5.3. Note however that results like
formula (6.5.15) remain true even for much more general arrival processes
with stationary increments. Using techniques of the theory of random point
processes, such extensions to (6.5.15) have been derived, for example, in
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Asmussen and Schmidt (1993, 1995) and Miyazawa and Schmidt (1993). Some
of them will be discussed in Chapter 12. Theorem 6.5.4 was proved in the
queueing setting in Kingman (1970) using monotonicity properties of the
recursion defined in (6.5.24) and in Ross (1974) by martingale techniques;
the proof presented in Section 6.5.2 i3 due to Kingman (1970); see also
Stoyan (1983). The original proof of Theorem 6.5.7 given by H. Cramér is
analytical, using Wiener-Hopf techniques and expansions of the resulting
solutions. The approach via ladder heights, as presented in Section 6.5.3, is
due to W. Feller. Theorem 6.5.10 is from Cramér (1955), p. 75. The exposition
of Section 6.5.5 follows Embrechts and Veraverbeke (1982). Properties of
subexponential distributions like those used in the proof of Theorem 6.5.11
can be found, for example, in Athreya and Ney (1972), Pakes (1975),
Teugels (1975) and Veraverbeke (1977); see also Section 2.5. An extension of
Theorem 6.5.11 to more general claim arrival processes is given in Chapter 12.
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CHAPTER 7
Markov Chains

Throughout this book, a Markeov chain is understood to be a stochastic process
in discrete time possessing a certain conditional independence property. The
state space may be finite, countably infinite or even more general. We begin
with the simplest case of finitely many states. Note however that all definitions
and statements presented in Section 7.1 remain valid for a countably infinite
state space. Among the applications, we will pay special attention to the use
of Markov chains to model bonus-malus systems in automobile insurance.

7.1 DEFINITION AND BASIC PROPERTIES

7.1.1 Initial Distribution and Transition Probabilities

Consider an evolution (of prices, premiums, exchange rates etc.} in discrete
time on the finite state space E = {1,2,...,£}. Let o; € [0,1] and interpret
a; as the probability that the evolution starts in state ¢ € E at time 0.
Furthermore, let p;; € [0, 1] be interpreted as the probability that, in one step,
the evolution moves from state i to state j. Since in each step we ultimately
move somewhere we assume that

4
pi; 20, ) p;=1. (1.1.1)
=1

Each matrix P = (pij)ij=1,., fulfilling (7.1.1) is called a stochastic
matriz. The future development of an evolution is often independent of its
development in the past, provided that the present state of the evolution is
given. We can formally define this conditional independence by introducing
the following notion of a homogeneous Markov chain.

Definition 7.1.1 A sequence Xo,X1,... of E-valued random variables
is called @ homogeneous Markov chain if there exist a stochastic matriz
P = (pij)ijer, called the (one step) transition matriz of {X,}, and a
probability function & = (a1, ...,a¢) on E, called the initial distribution (or
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the initial probability function) of {X,}, such that for each n = 0,1,... and
iOaih'"ai‘n € E;

P(;Yo = io,X1 = 1:1, . ,Xn = ’l:n) = QigPigiy - - - Pin-18n- (712)

Since throughout this chapter only the homogeneous case will be considered,
we briefly speak of Markov chains omitting the term homogeneous. What is
often most important is not the precise state of the Markov chain {X,} itself,
but rather its distribution. In view of (7.1.2), the latter is uniquely determined
by the probability function & and the stochastic matrix P.

Theorem 7.1.1 Let {X,,} be a sequence of E-valued random variables. {X,}
s a Markov chain if and only if there exists a stochastic matriz P = (p;;)
such that, for alln =1,2,... and i9,11,...,in € E,

P(Xn = in I Xn—l = in—l;- . ,Xo = io) = Pin_1in s (713)
whenever P(X,,_; =i,,...,Xo =1dp) > 0.

Proof If { X} is a Markov chain, then (7.1.3) immediately follows from (7.1.2).
Assume now that {X,} satisfies (7.1.3) for some stochastic matrix P = (p;;).
Putting o = P(Xo = 1) for all € E, we have

0 if g, = 0,

P(Xo = 10,4’(1 = 1,1) = { aiopioil lf a"o > O,

i.e. {7.1.2) is proved for n = 1. Suppose that (7.1.2) holds for some n =k —1.
In this case we have P(Xy = ip, X3 = i1,..., Xg = i) = 01 P(Xy = ip, X1 =
il, cen ,)(k—l = ik—l) = U, and

P(Xo =i, X1 =%1,..., Xp =)
= P(Xo=10,X1=141,...,Xp-1 = tg-1)
X P(Xe =ig | Xom1 = %6—1,..-,Xo = ip)
= Qg Pigiy -+ - Pig_zii-1 Pir-arix

if P(Xo = 0, X1 = 11,.--, Xk—1 = ig—1) > 0. Thus, (7.1.2) holds for every
n € IN which completes the proof. m]

Corollary 7.1.1 If {X,.} is a Markov chain, then

P(Xn, - in ‘ Xn—l = in—h- . -1X0 = 7‘0) = P(‘Yn = i‘n | ‘Yﬂ“l = i”"'l) ?
(7.1.4)
whenever P(X,,_; =i,_1,...,Xo =1) > 0.
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Proof 1t suffices to notice that P(Xy_y = i,_3,...,Xo = ip) > 0 implies
P(X,_1 =i,—1) > 0. Now, (7.1.2) yields

P(“ n=tin, Xn1 = in—l) _ Zio,...,in_zeE Qg Pigiy - - - Pig—2in—1Pin_1in
P(Xn_1 =tny) Dior.sin_2€ B XioPigis - - + Pin_zin_
pin—l“n "
Using (7.1.3) this gives (7.1.4). a

The conditional independence property stated in Corollary 7.1.1 is called
the Markov property of {X,}. For n > 1 and ¢,j € E fixed, the product
Piiy Piqig - -+ Pin.,j €an be seen as the probability of the pathi - i; - ... =
in—1 — J. Analogously, the sum

pg;) = Z Piiy Pizin - - - Piaaj (715)
i14eensin—1ER

is interpreted as the probability of the transition from state i to state j in
n steps. In particular, if {X,} is a Markov chain with P(Xy =) > 0, then
pg’) is the n-step transition probability pﬁ;') =P(X, =j| Xo =1) of {X,,}.
In accordance with this, the matrix P\™ = (pﬁ}’) )ij=1,..¢ is called the n-

step transition matriz corresponding to P. We also set P(© = I, where I
is the identity matriz whose entries are equal to 1 on the main diagonal,
and 0 otherwise. From the following lemma we easily conclude that P{™ is a
stochastic matrix.

Lemma 7.1.1 For alln,m =0,1,...,
p™ = pn (7.1.6)

and hence
P(n+m) = P(n) P(m). (7.1.7)

Proof Equation (7.1.6) is an immediate consequence of (7.1.5) and of the
definition of matrix multiplication. m}

The matrix identity (7.1.7) is usually called the Chepman—Kolmogorov
equation. As an immediate consequence, we have the following useful result.

Corollary 7.1.2 We have
(r), (m}

pt™ > pil (7.1.8)
and (r+ntm) (r) (n}_(m)
r+n-tm 7 n
Py 2 Pik Pik Pej - (7.1.9)
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Using Lemma 7.1.1, we get the following representation for the distribution
of the state variable X,. For convenience, we put P(X, =j| Xo =) =0 if
o; =P(Xo=1)=0.

Theorem 7.1.2 If {X,} is a Markov chain with transition matriz P and
initial probability function «, then the distribution o, of X, is given by

a, = aP". (7.1.10)

Proof We have P(Xn = j) = Yicp P(Xn = j | Xo = )i = Tepaiply- It
now suffices to use Lemma, 7.1.1. )

Example Consider a random walk {S,,n =0,1,...} from Chapter 5, where
So=0,S,=Y1+...+Y, forn > 1 and 11, Y5,... is a sequence of independent
and identically distributed integer-valued random variables. Note that the
S1, 82, ... can be defined recursively by

Sp=58n1+Y,. (7.1.11)

By inspection it can be seen that the random walk {S,,n =0,1,...} has the
Markov property:

P(Sn =in I Sn-1 =ip-1,...,5 = iO) =P(Sn =1in l Sp-1 = in—l);
for ip = 0, 41,...,ip, € E and for all n > 1 provided that P(S,-, =

in—1,---y91 = 1) > 0. In Section 7.1.3 we show that a Markov chain with
state space Z is a natural extension of a random walk; instead of adding
successive terms, a more general recursive scheme is considered which is useful

for the simulation of a Markov chain with a given distribution.

7.1.2 Computation of the n-Step Transition Matrix

From (7.1.10) it is seen that the computation of the probability function a, of
the state variable X, is closely related to the computation of the n-th power
of the transition matrix P. In this section we discuss an algebraic method for
computing P™ which makes use of the concept of eigenvalues and eigenvectors.

Assume that A is an arbitrary (not necessarily stochastic) £ x £ matrix,
that ¢ is an {-dimensional vector with at least one component different from
zero, and that @ is a real or complex number. A matrix of any dimension all of
whose entries are 0 is denoted by 0. The transposition of any matrix A = (a;;)
is denoted by AT, i.e. AT = (aj:). If

A¢pT =0¢", (7.1.12)

then 8 is said to be an eigenvalue of A and ¢ is said to be a right eigenvector
corresponding to 8. Writing (7.1.12) as (A — 8I)¢' = 0, from the theory of
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linear algebraic equations we get that the eigenvalues are exactly the solutions
to the characteristic equation

det{A -6I)=0. (7.1.13)
A nonzero vector ¥ which is a solution to
YA =0vy (7.1.14)

is called a left eigenvector corresponding to 8. It is easy to see that for each
eigenvalue 8, a solution ¥ to (7.1.14) always exists because (7.1.13) implies
that det({A —8I)T) = 0, i.e. there exists a nonzero (column) vector ¥ such
that (A — 8I)T4 " = 0, which is equivalent to (7.1.14).

Note that (7.1.13) is an algebraic equation of order ¢, i.e. there are ¢
eigenvalues 81, . ..,8;, which can be complex and some of them can coincide.
We always assume that the eigenvalues 8, ,...,0; are numbered such that

|61l > 162} > ... > 16¢].

Let & = (d)f,...,d);r) be an £ x £ matrix consisting of right (column)
eigenvectors,

L2
= :
Y
an £ x ¢ matrix consisting of left eigenvectors 1p,,...,%,, and @ = (6,,...,6¢)
the vector of eigenvalues. There results the equation
AP = B diag(0), (7.1.15)

where diag(@) denotes the diagonal matrix with diagonal elements 6,,...,8:
and all other elements equal to zero. We make a number of observations.

o If all eigenvectors ¢, ..., ¢, are linearly independent, and this is assumed
to the end of the present section, then @1 exists. In this case, we can put
¥=0l

o A direct consequence of (7.1.15) is A = & diag(0)®~! = ® diag(8)¥ and,
consequently,

A" = ®(diag(0))"® ' = $(diag(9))"¥. (7.1.16)
e From (7.1.16) we get
¥,
A" = (¢],...,¢;)(diag(6))"
¥,

Y,
@rel,....0000) | |
P
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which yields the spectral representation of A", i.e.

L
A" =07 ;. (7.1.17)

=1

Applying this procedure to the transition matrix P, the spectral represen-
tation (7.1.17) gives us a basis for computing the n-step transition matrix
P?. There of course remains the difficulty of computing the eigenvalues
and the eigenvectors of P. However, in many cases this can be done by
means of standard software like MATLAB, MATHEMATICA or MAPLE.
An important advantage of the method of spectral representation, however,
is that the complexity of the numerical computations does not grow with n
because, once the eigenvalues and eigenvectors of P are computed, it is easy
to compute P" by (7.1.17).

The crucial assumption for the validity of (7.1.17) is that the eigenvectors
$4,...,¢, are linearly independent. The following lemma gives a simple
sufficient condition.

Lemma 7.1.2 If the eigenvalues 0y, ...,0; are distinct, then ¢,,...,¢; are
linearly independent. Moreover, if the left eigenvectors v, ,...,%, are defined
via ¥ = &7, then

ifi#j.

Proof We show the asserted independence property by induction. Because the
exgenvector ¢, has at least one component different from 0, the only solution
to a1¢1 = 0 is a; = 0. Assume now that 8;,...,0; are all distinct and that
¢y, ..., ¢, are linearly independent for some k < £. In order to prove that
also the eigenvectors ¢,,..., ¢, are linearly independent, we have to show
that

6] = { (1) ifi=J, (7.1.18)

k
> a;¢] =0 (7.1.19)
j=1

implies a1 = ... = a; = 0. If {7.1.19) holds, then
k
0=A0= Za]AdJJ D a;0;0;.
i=1 j=1

On the other hand, 0 = 6,0 = 8 T, 8, = Y.5_, 6xa;p, . This gives
0= zk (- Hj)a,-quT and, consequently,

(Br —61)ay = (O —O3)az = ... = (O — Or—1)ar—1 = 0.
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Hence a; = az = ... = ax_1 = 0, because 6 # §; for 1 < j < k-1.
This implies ax = 0 by (7.1.19), and so (7.1.18) is a direct consequence of
=3 o

We still need another application of the concept of eigenvalues which is
related to the spectral representation (7.1.17) and which will be used in later
sections.

Lemma 7.1.3 Let A be an arbitrary £ x £ matriz. Then there ezisis a
nonsingular matriz C such that CAC™" is an upper triangular matriz with
the etgenvelues of A along the main diagonal.

Proof We use induction on £ and suppose that the lemma is true for each
(€ — 1) x (£ — 1) matrix. Let 8 be an eigenvalue of A, and let ¢ be the right
eigenvector corresponding to 8, i.e. A¢p' = 6¢'. Let V be any nonsingular
matrix such that ¢T is the first column of V. If D (yy denotes the first column
of the matrix D, then

(V7'av), = (VA)Vy =VT'A¢T =0vTigT
= VIVy=6(V'V), =0e],
where e; = (1,0,...,0). Thus

i, (0 B
VAV——'(O Al)y

where A' and B are (£ — 1) x (£ — 1) and 1 x £ — 1 matrices, respectively. By

the induction hypothesis, there exists a nonsingular (£ — 1) x (£ — 1) matrix
W such that W™ A’W is upper triangular. Put C = VW', where

! 1 0
W= ( 0 W )
Then C is nonsingular and CAC™" is an upper triangular matrix. Since
¢
det (CAC™') = det(A) = ] #:,
i=1

CAC™! has the eigenvalues of A along the main diagonal. ]

7.1.3 Recursive Stochastic Equations

Here we show that each sequence of random variables fulfilling a certain
recursive stochastic equation is a Markov chain. However, it is also possible
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to show the reverse statement, namely that each Markov chain can be seen
as a solution to a recursive stochastic equation.

Let Y;,Y2,... be independent and identically distributed integer-valued
random variables. Let Xp : @ — Z be independent of Y7,Y¥2,... and let the
random variables X, X5, ... be defined by the recursive stochastic equation

Xn=Xn-1,Yn), (7.1.20)
where ¢ : Z x Z — Z is an arbitrary function.
Theorem 7.1.3 For alln > 1 and ip,%1,...,i, € &,
P(Xp =1in | Xn-1 =in-1,...,Xo =1p) = P(Xp =i, | Xn-1 = tn-1),
whenever P(Xp, 1 =in_1,...,X0 =) > 0.
Proof From (7.1.20) we get

P(Xn =i, I Xno1 =tn-1,...,X0 = 'iO)

= P(P(in-1,Yn) =in | Xn—1t =tn-1,..., X0 = ig)
P(@(in-1,Yn) = in) (7.1.21)
= P(¢(in—len) =in I Xn-1 = in—l) = P(Xn =1ip I Xn-1= in—l) s

where in (7.1.21) we used the fact that the random variables Xy,...,X,_,
defined by Yi,...,Y,_1, are independent of ¢(in_1, Yn). O

From the proof of Theorem 7.1.3 we see that the conditional probability
pij = P(X,, = j | Xn_1 = 1) is given by pi; = P(¢(i, Ys) = j). Thus p;; does
not depend on n, because the Y, s are identically distributed. Moreover, the
joint probability P(Xy = 19, X1 = 11,-.., Xn = i,) can be given by

P(Xo = io,Xl = il, PN ,X,-, = in) = a,—opio,-, .. 'pin—lin , (7.1.22)

where a;, = P(X, = ip). These properties of the stochastic process {X,}
given by (7.1.20) are basic for the notion of a homogeneous Markov chain as
introduced in Section 7.1.1.

We tackle the reverse problem. Suppose that X, X1,... is a Markov chain
on the finite set F = {1,2,..., £}, with initial distribution & = (a3,..., )
and transition matrix P = (p,;). Starting from a recursive equation of type
(7.1.20), we want to construct a Markov chain {X]} with the same initial
distribution and transition matrix, i.e. such that for each n = 0,1,...,

P(XD = 1;0)" -:Xn = 1'11-) = P(X(') = 7:07'"1X1,7, = in) ] (7123)

for all 4g,...,i, € E. Two stochastic processes {X;} and {X]} for which
(7.1.23) holds for all n = 0, 1,... are called stochastically equivalent.
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Take {Z,,n € IN} a sequence of independent random variables, uniformly
distributed on [0,1]. We define an E-valued random variable X} with
probability function @ = (o, ..., ;) by the statement

k
Xo=k ifandonly if Zg¢€ (Z a.,Zai] ,

i=1 =]

for all k =1,...,¢, or explicitly by

X, = Zkl(z @i < Zo < Ea,) . (7.1.24)

i=1

The random variables X}, X3, ... are then defined recursively. Let the function
¢: E x [0,1] = E be defined by

(i, 2) Z (Zp., <z< Zp,,) (7.1.25)

k=1 j=1

and put
X=X} _1,2n). (7.1.26)

It is easily seen that for the sequence {X,,} defined in (7.1.24)—(7.1.26), the
joint probabilities P(Xy = i9, X{ = ¢1,..., X, = in) are given by (7.1.2),
i.e. {X}} is a Markov chain with initial distribution & and transition matrix
p.

The construction described above can be used to simulate a Markov
chain with given initial distribution and transition matrix. Note that this
construction remains valid for Markov chains with countably infinite state
space.

7.1.4 Bonus-Malus Systems

As a first illustration of the use of Markov chains in insurance, we show how an
automobile insurance problem can be modelled by the use of Markov chains.
Up to minor modifications, most automobile insurances employ the following
bonus-malus system. There is a finite number ¢ of classes (tariff groups) and
the premium depends on the class to which the policy-holder belongs. Each
year the class of a policy-holder is determined on the basis of the class of the
previous year and on the number of reported claims during that year. If no
claim has been reported, then the policy-holder gets a bonus expressed in the
lowering to a class with a possibly lower premium. Depending on the number
of reported claims, the policy-holder gets maluses, expressed by a shift to a
higher class. Formally, we need the following ingredients:
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e / classes numbered by 1,...,¢; we call class 1 superbonus and class £
supermalus; the annual premium depends on the number of the actual class
and is computed from a given scale;

e a premium scale b = (by, ba,...,be), where we assume by < by < ... < by;

e transition rules which say how the transfer from one class to another is
determined once the number of claims is known; once k claims are reported,
let

tii(k) = 1 if the policy gets transferred from class ¢ to class j,
WAV T 0 otherwise;

e an initial class ig for a new policy holder entering the system.

Let T(k) = (tij(k))ij=1,...... Thus each T'(k) is a 0-1 matrix having in each
row exactly one 1. Suppose that for a policy-holder the numbers of yearly
reported claims form an IN-valued sequence Y1, Y3, ... of independent random
variables with common probability function {gc}. Denote by Xj, X;,... the
year-by-year classes for the policy-holder. Since we assume that the class for
the next vear is uniquely determined by the class of the preceding vear and
by the number of claims reported during that year, we can express {X,}
by the recursive equation X, = ¢{(X,-1,Y,), where ¢(i, k) = 7 if and only
if t;;(k) = 1. Thus, in view of the results given in Section 7.1.3, {X,.} is a
Markov chain. The transition probability p;; that the policy passes from class
@ to class j is pij = 3 peo @ktij (k). In practice, one usually assumes that the
number of claims reported by the policy-holder follows a Poisson distribution
with parameter A, possibly depending on the policy-holder. Explicitly,

oo Ak A
Py =pi(N) =Y _ e (k). (7.1.27)
k=0

For the analysis of bonus-malus systems it is interesting to study the following
characteristics:

e the probability that in the n-th year the policy-holder is in class j;
e the expected accumulated (total) premium paid by the policy-holder over
the period of n years.

At least two variants are possible for the computation of the accumulated
premium: undiscounted or discounted premiums. We will discuss both of them
later in Section 7.3.2. Another crucial issue is whether it is profitable for
a policy-holder not to report small claims in order to avoid an increase in
premium, a behaviour called hunger for bonus. Formally, we can define a
strategy for the policy-holder by a vector & = (x,,...,x¢), where z; is the
retention limit for class i, i.e. the cost of any accident of amount less than
z; is borne by the policy-holder; the claims connected with higher costs are
reported. The problem is to determine an optimal value of .
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Example Table 7.1.1 presents as an example the German bonus-malus
system. There are 18 bonus classes labelled from 1 to 18; new policies are
placed in class 15. The bonus rules and the premium scale are given in the
adjoining table. The transition probabilities p;; in (7.1.27) can be given by
Table 7.1.2 where {k} = (\*/kl)e™ .

Class Premium scale Class after one year (per no. of claims)
0 1 2 3 4,5,...
18 200 13 18 18 18 18
17 200 13 18 18 18 18
16 175 13 17 18 18 18
15 175 13 16 17 18 18
14 125 13 16 17 18 18
13 100 12 14 16 17 18
12 85 11 13 14 16 18
11 70 10 13 14 16 18
10 65 9 12 13 14 18
9 60 8 11 13 14 18
8 55 7 11 13 14 18
7 50 6 11 13 14 18
6 45 5 11 13 14 18
) 40 4 10 12 13 18
4 40 3 9 1 13 18
3 40 2 8 11 13 18
2 40 1 7 11 13 18
1 40 1 7 11 13 18

Table 7.1.1 German bonus-malus system

Bibliographical Notes. Further elementary properties of Markov chains
with finitely or countably infinitely many states can be found in Berger (1993),
Chung (1967), Feller (1968), losifescu (1980), Kemeny and Snell (1990) and
Krengel (1991), for example. For more details on simulation of Markov
chains, see Ross (1997b) and Winkler (1995), for example. The German
bonus-malus system is discussed in Boos (1991), where the bonus-malus
systems of further European countries are given as well. The Danish and
Finnish bonus-malus systems are considered in Vepsildinen (1972). Other
references where bonus-malus systems are modelled by Markov chains are
Dufresne (1984), Lemaire (1985,1995) and Loimaranta (1972). Strategies for
the claim behaviour of a policy-holder have been investigated in Dellaert,
Frenk and van Rijsoort (1993), where it is shown that it is optimal to claim
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
O O N O B &) 457
o} . . . . . {1} . . . {2 . 3 4,5}
3|0y . . . . .} . . {2 . {3 {4,5,.}
4 ) SR ) ST O S () {4,5,.}
5 S0y . . ..y L {23 . {4,5,.}
6 () SRR ) SR O3 S ¢ U {4,5,.}
7 S . . . .1} . {2} {3} . {4.5,.}
8 S0y .. . {1} . {233} . {4,5,.}
of . . . . . . U{oy . . {1} . {g{3} . {4,5,.}
0. . . . . . . ey . . ar{er{s . . {4,5,.}
.. . . ey . {8 . {4,5.)
I I (1 S ¢ 0 0 SN £} SN -8 |
1Bl .. .o ). {2} {3y {4,5.)
74 RN () SRURT 0§ 3 ) O £ 30 WS
15 . . ..oy . {13 {2} {3,4,)
) I U () DR {1} {2,3,}
1 Y (1) SEPP {1,2,.}
8. . . ... {e} {1,2,.}

Table 7.1.2 Transition probabilities for the German bonus-malus system

for damages only if its amount exceeds a certain retention limit. Further
related results can be found, for instance, in Bonsdorfl (1992), Islam and
Consul {1992) and Szynal and Teugels (1993).

7.2 STATIONARY MARKOV CHAINS

7.2.1 Long-Run Behaviour

For large n, it may be difficult to compute the probability function e, =
(agn), ,ae")) of X, using (7.1.10). One way out is to find conditions under
which the a,, converge to a limit, say 7 = lim, o @,, and then to use 7 as
an approximation to «,,. This method is of practical importance because in
many cases the computation of 7 is much easier than that of a,,. We begin

with a simple example.

Example Let
_(1-p p
P“( 4 l—zf)

with 0 < p,p’ < 1. In this case, it is not difficult to show that the n-step
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transition matrix P{™ = P" is given by

pr= 1 (p' p)+(1-P—P')"( P —p)
p+p \ P p p+rp - )

Assume that p + p’ < 2; then we have

/
lim P" = —— (p P)

n—oo p+p’ p’ 14
and, by (7.1.10),
. i P
T = ,,llfloloa" = (p_+p’ , p__+p')' (7.2.1)

However, if p + p' = 2, then

pr = P ifnis odd,
1 I ifniseven.

Note that the limit distribution 7 in (7.2.1) does not depend on the choice
of the initial distribution a = ay. This invariance property of 7 is connected
with the notion of ergodicity of Markov chains.

Definition 7.2.1 A Markov chain {X,} with transition matriz P = (p;;) i3
said to be ergodic if
(a) the following limits exist for each j € E:

N (n)
= lim p;;", (7.2.2)
(b) the w; are strictly posstive and independent of i and,

(c) (=;) is a probability function, i.e. Zje g% =1

The ergodicity of Markov chains will be characterized by a concept from
matrix theory. An £ x £ matrix A = (a;;) is called nonnegative if all entries
a;; are nonnegative. A nonnegative matrix A is called regular if there exists
some ng > 1 such that all entries of A™ are strictly positive.

Theorem 7.2.1 A Markov chain {X,} with transition matriz P is ergodic
if and only if P is regular.

Proof We first show that the condition

. {ng)
Jnin pi;™ >0 (7.2.3)
is sufficient for ergodicity. Let mg n =
g = Ekegptkpij) and, consequently,

(?) — i)
J ¥

= min;cg p,] ) and M(") = ma,x,e;;pﬁJ 3

From (7.1.7) we have p,

m§"+l) = mmp( ntl) mmZp,;,pk]) > mmZp,k mmp
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ie. mg") < m.;"“) for all n > 1. Analogously, we get M}") >M }nﬂ) for all
n > 1. Thus, to prove (7.2.2), it suffices to show that

lim (M™ -m{™) =0 (7.2.4)

n—roa

foreach j€ E. Let a = min,,,egp” m) 5 0. Then,
Pt = YRty = Z(p‘"“ ape )Pl + azpﬁﬁ)pg}’
k
2
- Z@EL‘” ap,k))P(“) + apZ,

Since p("°) - apg',:) > 0, this gives

o (no+n) > ,m(ﬂ) Z(p(no) aka)) + apgn) gﬁ)(l a) + ap(3ﬂ) .

Thus, m ("°+") > m(")(l a) + apjz") Analogously, we have M;""M) <

MJ(")(I a)+ap§';“). Consequently, f}"°+")—m§"°+") < (M}n)—mg-"))(l—a),
and by induction

(kno+n) {kno+n) (n) (n) k
M; no+n - my nornl < (M;™ —m; X1 -a)*, (7.2.5)
for each k > 1. This means that there is a sequence nj,ns,... of natural
numbers tending to infinity such that
lim (M{™ —m{™) =0 (7.2.6)
k—00

for each j € E. Since the differences Mjg") - mg.") are monotone in n, (7.2.6)
holds for each sequence n;,ns,... of natural numbers tending to infinity,
i.e. (7.2.4) is proved. The limits 7; are positive because

(n) ; (n) (no)
™= Jm gy 2 lim m)™ 2 m™ > 6 >0

Moreover, 3", g = 3 c g liMasoo p” = limpsoo X jep p(;') = 1 because
interchanging of limit and finite sum is always allowed On the other hand,
the necessity of (7.2.3) is an immediate consequence of minjcg7; > 0 and
(7.2.2) having in mind that E is finite. o

As the limits m; = lim, o0 pg-') do not depend on i, (7.1.6) and (7.1.10)

imply that limy, o @y = alim, P™ = x. Note that one can prove an
even stronger result than (7.2.2). Indeed, (7.2.5) gives

oty =il < MY = m{™ < (1 - g)ln/mol, (7.2.7)

which is a geometric bound for the rate of convergence in (7.2.2).
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Corollary 7.2.1 If the Markov chain {X,} is ergodic, then ® = (my,...,m)
is the unique probabilistic solution to the system of linear equations

= Z mpij, JEE. (7.2.8)
ick

Proof From (7.1.7) and (7.2.2) we get, interchanging limit and summation,

7 = lim p,r = hm Zp(" l)p,j =Z lim p(" 1)p,j = Z?l’ipij.

n—o0 n—o0
i€k i€k i€E
Suppose now that there exists another probability function ®' = (x{,..., )
such that 7} = 3. pmp;; for j € E. By induction we can show that
( .
=Y mp, jEE, (7.2.9)
i€E

for all n = 1,2,.... Thus, letting n tend to infinity in (7.2.9), we get

T 1 (n) _ (n) .
= 2 mipg” = 3w Jim g = . o
i€E i€E

In matrix notation, (7.2.8) can be written as # = «wP. This equation is
called the balence equation for P. It yields a useful tool when computing the
limiting probability function 7 = limp, o 5. In Section 7.2.4 we will discuss
this problem in detail.

7.2.2 Application of the Perron—Frobenius Theorem

Let A be any nonnegative ¢ x £ matrix. Remember that the eigenvalues
6y,...,8, of A are numbered so that |6;] > ... > |@]. Let e = (1,...,1)
be the £-dimensional vector with all components equal to 1 and F the ¢ x £
matrix all of whose entries are 1, i.e. consisting of £ (row) vectors e. Moreover,
by e; we denote the £-dimensional (row) vector having zeros at all components
with the exception of the i¢-th component, which is equal to 1, i.e.

e; =(0,...,0,1,0,...).
N, e’
i-1

Furthermore, let P be a regular stochastic £ x £ matrix, and 7 the probability
function given by the limits (7.2.2) or, equivalently, by (7.2.8). By I1 we denote
the £ x £ matrix consisting of £ (row) vectors .

Besides the geometric bound (7.2.7) for the rate of convergence in (7.2.2),
one can give further bounds using concepts of matrix algebra. These bounds
are obtained from the following important result, called the Perron-Frobenius
theorem for regular matrices.
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Theorem 7.2.2 If A is regular, then

(a‘) l01| > |01| for-i: 2:"'16;

(b) the eigenvalue 6, is real and strictly positive;

(c) the right and left eigenvectors ¢,, v, have all components strictly positive
and are unique up to constant multiples.

The proof of Theorem 7.2.2 goes beyond the scope of this book. It can be
found, for example, in Chapter 1 of Seneta (1981). The eigenvalue #; of a
regular matrix A is called the Perron-Frobenius eigenvalue.

Corollary 7.2.2 If P is a regular stochastic matriz, then
(a) 6 =1,¢ =e and ¢, = m;
(by il <1 fori=2,...,L

Proof By inspection we get that Pe' = e', and from (7.2.8) we have
wP = w. Hence 1 is an eigenvalue of P and e,w are right and left
eigenvectors for this eigenvalue, respectively. Also, #; = 1, i.e. 1 is the
eigenvalue with the largest modulus. Namely, let 8 be some eigenvalue of
P, and ¢ = (¢1,...,¢¢) the corresponding right eigenvector. Then, (7.1.12)
gives |0]|¢:] < Z§=1pij|¢jl < maxjeg |¢;} for each ¢ € E. Hence |8} < 1.
Thus, Theorem 7.2.2 gives that |6;] <1fori=2,...,¢ a

Moreover, if P is a regular stochastic matrix with distinct eigenvalues, then
Theorem 7.2.2 leads to the following bound for the rate of convergence in
(7.2.2).

Corollary 7.2.3 If all eigenvalues 6,,...,0; of P are distinct, then
I’ — w5l = O(162I"),  n— o0, (7.2.10)

Proof From Corollary 7.2.2 it follows that lim,, Zfﬂ 07 9, = 0 since
|6:] < 1fori=2,...,¢ Moreover, also by Corollary 7.2.2, we have 6; = 1 and
¢, = (1,...,1},%, = 7 for the right and left eigenvectors corresponding to

6,. Using the spectral representation (7.1.17) of P", we arrive at (7.2.10). O

There exists a slightly different variant of (7.2.10}, which is still true when
not all eigenvalues are distinct. This variant can be obtained from the theory
of nonnegative matrices. By the algebraic multiplicity of an eigenvalue, one
understands its multiplicity as a root of the characteristic equation (7.1.13).

Theorem 7.2.3 Assume that A i3 regular. Further, assume that if |62| = 03],
the algebraic multiplicity mo of 0> is not smaller then that of 83, nor of any
other eigenvalue having the same modulus as 0;. Then,

(a) for 82 #0 and n — oo,

A" = 07¢; %, +O0(n™ 7 6y") ; (7.2.11)
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(b) for=0andn>£-1,

=00g] ¥, . (7.2.12)

The proof of this theorem can also be found in Chapter 1 of Seneta (1981).
Moreover, proceeding in the same way as in the proof of Corollary 7.2.3 we
arrive at the following result.

Corollary 7.2.4 Assume thet P is a regular stochastic mairiz satisfying the
conditions of Theorem 7.2.3. Then, for c > |0,],

[p(") -1 =0(c"), n-x. (7.2.13)

7.2.3 Irreducibility and Aperiodicity

In this section we study another type of ergodicity condition which
is sometimes easier to verify than (7.2.3) thanks to its probabilistic
interpretation. Let 7; = min{n > 0 : X,, = j} denote the step when {X,}
is in state j € E for the first time; we put 7; = o0 if X, # j for all n € IN.
For i,j € E we say that state j is accessible from ¢ and write i — j, if
P(rj <oo| Xp =14) > 0.

Theorem 7.2.4 State j is accessible from i if and only if pS") > 0 for some
n>0.

Proof Sufficiency is easy to see, because {X, = j} C {r; < n} C {r; < o0}
and, consequently, 0 < p(") < P(1; < 00 | Xo = i). Conversely, if pg;') = 0 for
all n € IN, then

P(Tj(OO!X(]:i):nl;ugoloP(Tj<'n|Xo==i)

= lim P(U{X,c = j} | Xo =i

n—o

—1

lim ZP (Xk=j|Xo=1%)= lun Zp(k)

R—=00 ()
k=0

IA

Note that the relation of accessibility is transitive, i.e. i = kand k — j
imply ¢ — j. This is an easy consequence of Theorem 7.2.4 and Corollary 7.1.2.
If i - j and j — i, then we say that states ¢ and j communicate, and we
write ¢ ¢+ j. Communication is an equivelence relation which means that

o i & i (reflexivity),
e i ¢ j if and only if j ¢ ¢ (symmetry),
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e i & k and k & j imply 1 & j (transitivity).

Consequently, the state space E can be partitioned into (disjoint and
exhaustive) equivalence classes with respect to the relation of communication.
A Markov chain {X,} or, equivalently, its transition matrix P = (pj;), is
called irreducible if E consists of only one class, that is ¢ & j for all ¢,j € E.

Example It is easy to see that the matrices

ne () me ()

are irreducible, whereas the 4 x 4 matrix P having the block structure
(P O
P=(7" 7,)

Besides irreducibility, there is still another property of the states which is
important for ergodicity. Define the period d; = ged{n > 1: pf:‘ UBS 0} of state

i, where ged means the greatest common divisor. We put d; = oo if pf? ) =0
for all n > 1. A state 1 € E with d; = 1 is called aperiodic. If all states are
aperiodic, then the Markov chain {X,} or, equivalently, its transition matrix
P = (p;;) is called aperiodic. The next theorem shows that the periods d;,d;
coincide if 1, j belong to the same equivalence class of communicating states.

We will use the notation i — j[n] if pg‘) > 0.

is not irreducible.

Theorem 7.2.5 If states i,j € E communicate, then d; = d;.

Proof If j — j[n], ¢ — j[k] and j — i[m] for some k,m,n > 1, then using
Corollary 7.1.2 i — ik + m] and ¢ — i[k + m + n]. This means that d; divides
k +m and k + m + n. Thus, d; also divides n = (k + m + n) — (k + m).

Consequently, d; is a common divisor of all n such that pﬁ?) > 0,ie. d; <d;.
By symmetry we also get d; < d;. ]

Corollary 7.2.5 All states of an irreducible Markov chain have the same
pertod.

The remaining part of this section is devoted to the proof that condition
(7.2.3) is fulfilled if and only if the Markov chain is irreducible and aperiodic.
For this purpose we need an elementary result from number theory.

Lemma 7.2.1 Let k=1,2,.... Then, for someng > 1,

I={nk+n2k+1); ni,ns €eIN} D{ng.no+1,n0+2,...}.
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Proof Ifn > k% thenn—k? = mk +d for somem € IN and 0 < d < k. Thus
n=(k—-d+m)k+d(k+1) €l ie. wecan take ng = k2. 0

Theorem 7.2.6 P is an irreducible and aperiodic stochastic matriz if and
only if P is regular.

Proof Assume that P is irreducible and aperiodic. Consider the set of integers
JE)={n>1: p(") > 0} for each i € E and note that, by the aperiodicity
of P, the greatest common divisor of J(i) is equal to one. Moreover, from
Corollary 7.1.2, one gets that n,m € J(i) implies n+m € J(i). Next we show
that J(#) contains two consecutive numbers. For then, Lemma 7.2.1 implies

J@) D {n(i),n{) +1,..} (7.2.14)

for some n(:) > 1. So, assume that J(i) does not contain two consecutive
numbers. Then there is a minimal difference k > 2 between any two integers
of J(i). Consequently, for some m = 0,1,... and d = 1,...,k — 1, we
have n = mk + d € J(i) because otherwise, for all n € J(i), we would
have n = mk, in contradiction to our assumption that ged(J(i)) = 1. Let
ny, 1 + k € J(i). We show that there exist a,b € IN such that the difference
between a(n; + k) € J(¢) and n + bny € J(i) is strictly less than k. Namely,
a(ny+k)—n—bn; = (a—bn;+ (a—m)k—dand, if a =b=m+1, then the
difference is ¥ — d < k. Therefore J(i) contains two consecutive numbers and
(7.2.14) holds for all ¢ € E. Now, from (7.1.9) and the irreducibility of P, we
also get that J(ij) = {n >0: p(") > 0} D {n(ij),n(zj) +1,...}. Hence P is
regular. The proof of the converse statement is left to the reader. m]

7.2.4 Stationary Initial Distributions

In Corollary 7.2.1, we showed that the limit distribution @ = limp,_o0 a5 Of
an ergodic Markov chain {X,} with transition matrix P = (p;;) satisfies the
balance equation

a=aP. (7.2.15)

Moreover, under the assumption of ergodicity, = is the only probability
solution to (7.2.15).

If we do not assume ergodicity, then (7.2.15) can have more than one
probability solution. However, if the initial distribution e of {X,,} is equal to
any probability solution to (7.2.15), then (7.2.15) implies that a; = apP =
op and, by iteration, a; = ag for all & > 0. Because of this invariance
property, each probability solution e to (7.2.15) is called a stationary initial
distribution of {X,}. Note that, besides the invariance property g = a3 =

., a Markov chain {X,} with a stationary initial distribution possesses an
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even stronger invariance property. In this connection, it is worth considering
the notion of a (strictly) stationary sequence of random variables.

Definition 7.2.2 A sequence of E-valued random variables Xo,X,,... is
stationary if for all k,n € IN and ip,...,i, € E,

P(Xk =i07‘¥k+1 =i17"'3Xk+n =zn) =P(X =i07X1 =‘i11'-'7Xn =in)-

Theorem 7.2.7 A Markov chain {X,} with a stationary initial distribution
is stationary in the above sense.

The proof of this fact is left to the reader.

We finish this section with a brief discussion of three methods to solve the
balance equation (7.2.15). The first two methods are called direct methods, in
contrast to an iterative method that will be discussed later on.

Theorem 7.2.8 Assume that the stochastic matriz P is regular. Then the
matric I — P + FE is invertible and the solution to (7.2.13) is given by

w=e(I-P+E)" (7.2.16)

Proof First we verify that I — P+ E is invertible. We do this by showing that
(I-P+ E)z" =0 implies ' = 0. From (7.2.15) we have n(I — P) = 0.
Thus, (I — P + E)z" = 0 implies that 0 = w(I - P+ E)z” =0+ nEz",
ie. TEx' = 0. On the other hand, 7E = e. Thus, ex’ = 0, which implies
Ex™ = 0. Consequently, (I — P)x” = 0, which means that Pz7 = z7.
This implies for any n > 1 that ' = P"z". From Theorem 7.2.1 we have
P"* 5 I1. Thus,asn 2 00, &' = P27 - Iz, jie. z; = Z;__:l mjz; for all
i = 1,..., £ Because the right-hand side of these equations does not depend on
i, we have ¢ = ce for some c € R. Since we also have 0 = ez = cee’ = ¢/,
we get ¢ = 0. Thus, I — P+ E is invertible. Furthermore, since w(I — P) = 0,
we have w(I — P + E) = wE = e. This proves (7.2.16). u]

If the number £ of states is small, the matrix I — P+ F can easily be inverted.
For larger £, numerical methods have to be used like the Gaussian elimination
algorithm. Another possibility for solving (7.2.15) is to transform this equation
in a way slightly different from that used in the proof of Theorem 7.2.8. The
inversion of this transformed version of (7.2.15) is facilitated by the next result.

Lemma 7.2.2 Let A be an £ x £ matriz such that A™ = 0 as n — oc. Then
I — A is invertible and, for eachn =1,2,...,

I+A+. . .+ A ' =(I-A)"YI-A". (7.2.17)
Proof Note that

I-A)T+A+...+ A I+A+... +A"1-A-. . . -A"

I-A™
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Since A™ — 0, the matrix I — A" is nonsingular for sufficiently large n. Hence
det((I-A)(I+A+...+A™ 1)) =det(J— A)det(T+ A+...+ A™ 1) £0,
where det means determma.nt Thus, I — A is invertible and (7 2.17) follows.

a

As 7 satisfies (7.2.15), so does cmr for each ¢ > 0. Hence we put #; = 1 and
solve the transformed equation

#(I-P)=b, (7.2.18)

where P = (Pij)ij=1,...e-1 and ®& = (&y,...,%e-1),b = (Per,-..,Pee-1).
Then, the originally requlred solution is given by m=ffcfori=1,...,¢
where ¢ = ) + ... + %,. Note that the matrix I — P in (7.2.18) is invertible.
This follows from the following result.

Lemma 7.2.3 If the stochastic matriz P is regular, then P" 5 0asn— 0.
Hence I — P is invertible and (I - P)~1 = ¥  P".

Proof In view of Lemma 7.2.2, it suffices to show that P" 5 0. Since
P is regular, there exists a patural number ng > 1 such that § =
max;. o ZJGEpg“’) < 1, where F = {1,...,£—1}. Note that

2 T4
(P )i = Z Diiy Pirig + - Piaoyj S Z Pii Piria - - - Pinoyj = (P™)ij
feeenin_1€E Nyenin-1€F

and consequently 0 < (P Yij S (P")y; = p”) <1lforalln > ng; i je€E.
Thus, using the representation n = kng + m for some k,m € IN with
0 < m < ng, we have

~ ES AT ~ N L% 713
P = Y (PP )i (P (P
i1,k €E
) )
<X ARE A
£, ,MEE
(
= Z pzﬁ")pi:‘:;). pg.loltk 1(2 Piye m)
i;,...,i;,_;eE l;,EE
<6 Y AR A
fl’---vib—les
< o,

provided that n > ng. This gives limn_.oo(i-’n),'j < limgyoo 6% = 0. o
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Lemma 7.2.3 implies that one possible method for solving (7.2.18) is the
Gaussian elimination algorithm. The computational effort of this method is
proportional to £3. It requires that the whole coefficient matrix is stored, since
this matrix must be updated at each step of the algorithm. In general, one
cannot use sparse matrix storage techniques, since these procedures suffer
from computer memory problems when ¢ gets large. Moreover, in some cases,
the method tends to be numerically unstable due to the subtractions involved.

The following sterative method is well suited for sparse matrix computations.
It can also be used for larger £ as the method works only with the original
coefficient matrix. However, the rate of convergence may be slow. The
coefficient matrix I — P in (7.2.18) is invertible and the inverse (I — P)~1 can

be written in the form (I — P)~! = 3°°°  P". Hence, we have

[»¢]
#=by P", (7.2.19)

n=0

which is the basis for computing # iteratively. Start by defining by = b; then
put bpy1 = b, P for n > 0. As such, (7.2.19) can be written as

[=.¢}
=) by (7.2.20)
n=0
and, for some nyg = 1,2,..., the quantity Zx‘;o b, can be used as an

approximation to #. In practice, one needs to estimate the error that occurs
by using only a finite number of terms in (7.2.20).

Bibliographical Notes. More material on the long-run behaviour of
Markov chains can be found in Berger (1993) and Chung (1967), for
example. A detailed treatment of Perron-Frobenius-type theorems is given
in Seneta (1981). Theorem 7.2.8 is taken from Resnick (1992). For further
numerical aspects in solving the balance equation (7.2.15) we refer to
Kulkarni (1995) and Tijms (1994).

7.3 MARKOV CHAINS WITH REWARDS

7.3.1 Interest and Discounting

We begin with the primary case of a deterministic interest and discounting.
Suppose that r > 0 is the interest rate (or rate of return), i.e. investing
one unit (of a currency) at time £ = 0 we get 1 + r at k = 1. If we make
investments of one unit at times k = 0,1,...,n — 1, then the accumulated
value y, immediately before time nisy, = (1+7)+ (1 +7)2 +...+ (1 +1r)"
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Conversely, we ask for the present value v at time k = 0 of the unit invested
at k = 1. It is easily seen that v is the solution to (1 + r)v = 1. The quantity
v =(1+7)"! is called the discount factor. If investments of one currency unit
are made at £k = 1,2,...,n, then the discounted value at k& = 0 is equal to
v+ v% + ...+ o™ We can also add the unit investment at 0 with discounted
value 1. The accumulated discounted value is 1 + v + ... + v™ and converges
to (1 —v)~! as n — co. This elementary model can be generalized in at least
two ways.

¢ The interest rate can be different in each time interval, say r; in [k — 1, k).
Denote the corresponding discount factor by vi. If investments are of unit
value then the accumulated value y, at time n is

(Q+r)+ A 4+r)Q+rp)+oc+ L +ry) ... (1+71)
(l +rn)(1 +yn_1),

Yn

forn = 1,2,... and yo = 0. The discounted accumulated value, including
the investment at time 0, is given by 1+ vy + v1v2 + ... + vy ... vy, where
v = (14+71) "L

¢ If the interest rates are constant and equal to r, but the value invested at
kis z; for k = 0,1,...,n — 1, then the accumulated value y, at time n
isy, = Zf‘__'ol 2;{1 + r)"~*. Moreover, if investments are made at 1,...,n,
then the discounted value at time zero is Y p_; zxv*, where v = (1+r)71.
If we also take into account the investment at time 0, then the discounted
value at 0 is Y p_g zxv*.

7.3.2 Discounted and Undiscounted Rewards

Next we combine the concepts of interest and discounting with that of a
Markov chain. Let the state space be E = {1,...,£} and consider a Markov
chain Xj, X};,... on E with transition matrix P. We suppose that when the
Markov chain {X,} is visiting state 1, a fixed reward 3; is obtained, where 5;
can be any real number. Let 8 = (4, ...,08:) denote the vector of rewards.
Note that the components of B can have other interpretations than rewards.
For example, they can describe costs, or premiums as in the bonus-malus
systems considered in Section 7.1.4.

The accumulated discounted reward RS at 0 obtained from visits at times
0,...,n—1is RS = Yp72 v*3x,, where v is the constant discount factor.
Since the state space is finite, this reward converges with probability 1 when
n — oo to the infinite-horizon discounted reward

Re =)o, (7.3.1)

=0
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We call this the total discounted reward. We can also consider the undiscounted
reward R! for visits at times 0,...,n—1 and given by R} = Zk;é Bx, . If we
want to emphasize that {X,} has the initial probability function «, then we
denote the undiscounted reward for visits at times 0,...,n — 1 by Ri(a).

We are interested in computing the expected rewards E RS, E RY and ERY,
where the existence of these expectations follows from the finiteness of E. For
this purpose, remember that e; denotes the £-dimensional (row) vector having
zeros at all components with the exception of the ith component, which is
equal to 1.

Theorem 7.3.1 Assume that the Markov chain {X,} starts at timen =0
from state ig, i.e. Xo = ip. Then,

ER: = e (I-vP) ' (I-v"P")8", (7.3.2)

ER! = e,(I-vP)7'87, (7.3.3)
n—1

ER: = e,y P‘g". (7.3.4)
k=0

Proof To show (7.3.2}, note that

-1 -1
ER: = E :V_:v",@x,, = "Zuklwx,,
k=0 k=0
n—-1 - n—1
= Y vte, P87 = ey (Y (vP))B".
k=0 k=0

Since v"P™ — 0 as n — 0o, Lemma 7.2.2 implies that I — vP is invertible.
Thus we get (7.3.2) from (7.2.17), and (7.3.3) immediately follows from (7.3.2).
The proof of (7.3.4) is similar to the first part of the proof of (7.3.2). (|

Note, however, that in (7.3.4) we cannot use the summation formula (7.2.17)
since I — P can be singular. In the rest of this section, we work out asymptotic
formulae for the expectation and variance of the undiscounted reward R as
n - 00.

Assume that the transition matrix P is regular. As usual, let 7 denote the
uniquely determined stationary initial distribution corresponding to P, and
IT the £ x £ matrix consisting of £ vectors .

Lemma 7.3.1 If P is regular, then
(P-IN"=P"-11 (7.3.3)

forn>1, and
lim (P-1I)"=0. (7.3.6)
n—o0
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Proof Clearly, (7.3.5) is obvious for n = 1. Assume now that (7.3.5) holds for
n=k—1; k>1 Then,
(P - 1) (P-ID* (P -TI) = (P*’ —II}(P - )
= P*-NIP-P*'II+1I% = P* - 11,
because IIP = PII = II = I12. Hence, by Theorem 7.2.1 we have (P-ID)* —
0 asn — oo, a

Il

Since (P — II)* — 0 as n — 00, Lemma 7.2.2 implies that the matrix
I — (P —I0) is invertible. The inverse Z = (I — (P — II))~! is called the
fundamental matriz of P.

Lemma 7.3.2 For the fundamental matriz Z = (I — (P —1TII))™! of a regular
stochastic matriz P,

00
Z=I1+) (P*-m) (7.3.7)
k=1
and, alternatively,
n—1 n—k
Z=1I+ lim (P*—1I). (7.3.8)
n—oc Fe=1 n

Proof Using Lemmas 7.2.2 and 7.3.1 we get (7.3.7). To prove (7.3.8), we note
that

n n—1 n n
Y -m-) ’i-;l(P'f -I) = Z%(P" ~I) = %Zk(P—l’I)".
k=1 k=1 k=1 k=1

We show that the last expression tends to 0 as n — 0. Any matrix A satisfies
the identity (I — A) "r_, kA* = Yp_ A¥ —nA™! and hence

1 ¢ k_1,< k nti
Hkglk(zﬂ—m _nzk;(P my* — Z(P — )™+

Thus, limueon ™! Y 5., k(P — II)* = 0. This gives (7.3.8). o

We turn to the expected undiscounted reward E R;;. We assume that the
Markov chain {X,} has the regular transition matrix P and an arbitrary
initial distribution c. Define the stationary reward rate, § = x8", ie. the
stationary expected reward per step, and a = aZ ﬂT — 3, which sometimes is
called the ezcess reward regarding the initial distribution a.

Theorem 7.3.2 If P is reqular, then the expected undiscounted reward E R}

is
ER: =nB+a+en, (7.3.9)

where e,, is some remainder term with e, = 0 a8 n = oo.
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Proof From (7.3.7) we get

n—1
af +a Jlim Y (PF-maT
k=1

af” + lim (a (nf P")ﬂT —(n— l)aI'IﬁT) .
k=1

I

aZ,BT

Thus, for some e,, = 0 as n — o0,
n—1
a=af’ +a(§: P")ﬂT —nnfB —e,=ERY - nwB’ —en,
k=1
where we used a slight generalization of (7.3.4) in that, for an arbitrary initial

distribution e, ERY% = a5 P*B". This gives (7.3.9). o

An immediate consequence of Theorem 7.3.2 is that limy o n'ER! = 8.
Moreover, the reader can show that lim, ., n~' R = 3. Next we investigate
the asymptotic behaviour of Var R}, as n — oo.

Theorem 7.3.3 Suppose P is regular. Then, for any initial distribution o,

lim n~'Var RY = 52 + 2x diag(8)(Z - I)3", (7.3.10)

n—o0
where 63 = Z§=1 7;(8; — B)? and Z is the fundamental matriz of P.
Proof We have

VarRy = E(}Eﬂxh) (Z":Eﬁxk)
k=1

k=1
n n
= ZEﬁxhi—Q Y EB8x0x, - (ZEﬁxk)2.
=] 1<k<i<n k=1

First we prove (7.3.10) under the additional assumption that the initial
distribution « is equal to the stationary distribution w. Then

(X E8x) = 0d?, ZEﬂxk —nY w8,
k=1

i=1
By the stationarity of {X,}, we have

n—1

Y EBxuBx =Y (n—KEpx,5x, (7.3.11)

1<k<i<n k=1
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and E fx,8x, = Yty X5y miBiply B = m diag(8)P*BT . Hence,

Var (Y 6x,) = S 7,6 + 2 cing(9) Z R KptgT a2
k=1 j=1
_2 . - n—k
= 05+ 2 dlag(ﬂ) (Z —n—
k=1
n—1
= &% + 2 diag(B) (Z n

k=1

n—1
PkﬂT _ TnﬁT)

-m)AT,

where in the second equality we used that 32 = wdiag(8)II8 . Using
(7.3.8), this gives (7.3.10) for &« = =. It is not difficult to show that
limp 0 7! (Var (RE(ax)) — Var (R%(w))) = 0, where R!(ax) is the undis-
counted reward for visits at times 0,...,n — 1 when {X,} has the initial
distribution a. Thus, (7.3.10) holds for arbitrary o as well, O

7.3.3 Efficiency of Bonus-Malus Systems

In this section we discuss one possible efficiency concept for bonus-malus
systems. Let P(}) = (pi;(})), j=1.,...,¢ be the transition matrix of such a system
given in (7.1.27), where A > 0 is the rate of reported claims by the policy-
holder. Assume that P()) is regular. The main idea of introducing bonus-
malus systems is to reduce the premium for good drivers while increasing it
for bad ones. Remember that the system is modelled by the vector of premiums
B8 = (B1,...,8¢), where B = constb and b is the underlying premium scale.
Furthermore, in the undiscounted case we consider the stationary premium
rate 3(A) = w(\)B".

Suppose that consecutive claims are independent and identically distributed
with mean EU. Then the net premium is AE U. Suppose also that the scale
of B is the same as for claim amounts. Ideally, we would like to have that

B3(A) = AEU. Typically, 6(/\) is not linear in A but, under some additional
assumptions, the function B()) is continuous and increasing from 8; to 3, as
will be proved later in Theorem 7.4.6.

For simplicity, we take EU = 1. The deviation of 3()\) from linearity can

be measured as follows. If 3()\) were linear, then we would have

log 3(\) = logc + log A (7.3.12)
for some constant ¢ > 0. Taking derivatives on both sides of (7.3.12) we get

dﬂ(’\) BN 505 = 1/,
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or, equivalently, ) .
4B /BN _
da A )

Thus, the efficiency of a bonus-malus system might be measured by

n(A) = d—%& é% , (7.3.13)

where the system is perfectly efficient for the arrival rate X if
n(A)=1. (7.3.14)

As we have already noticed, n(\) = 1 (A > 0) is atypical. It is therefore
desirable that n(A) takes values close to 1 for all A restricted to a certain key
interval (¢, ;) of interesting claim arrival rates. So,

B(Xo) = NEU (= Xo) (7.3.15)

for some Ag € (c1.cz). The upcoming representation formula for 3(\) implies
that, if the function n()) takes values close to 1 for all A € (cy,cz), then B(\)
does not deviate too much from the expected risk X for all A € (¢, cz). There
results that the average premium 3()\), paid by a policy-holder with any given
claim arrival rate A € (1, ¢2), is nearly fair under the net premium calculation
principle.

Theorem 7.3.4 Let Ao be a solution to (7.3.15). Then
Ao

BN = xexp( [

(1-n(z)z™?! d:c) . (7.3.16)
A

Proof Definition (7.3.13) implies that

Ao

Ao
[Tnareias = [T os) e
= log B(X) — log B(A) = log Ao — log B(})

bY
= / z7ldz +log A —log B(N).
A

Thus, log A(A) = [;°(1 — 7(z))z~" dz + log A and (7.3.16) follows. o

In order to compute the efficiency 5n()), we need to know the stationary
distribution () corresponding to P()) and its derivative dw())/dA. Meth-
ods for computing w(A) have been discussed in Section 7.2.4. Moreover,
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(7.2.15) implies that the vector dw(A)/d) = (dm(X)/dA,..., dm(X)/dN)
is the solution to the following system of linear algebraic equations

de(}) _ dw(})

o P(X) +c()), (7.3.17)
where
]
dﬂi(A) _
2. o =0 (7.3.18)

and ¢(A) = w(A)dP())/dA. These equations can be solved by the same
methods as discussed in Section 7.2.4. For example, proceeding similarly as in
the proof of Theorem 7.2.8, from (7.3.17) we have daw(\)/ dA(I-P(A)) = ¢()\)
and, by using (7.3.18), dw(A\}/dA(I — P()\) + E) = ¢(A). Thus, da(X)/dX =
c\)(I - P())+E)" L

Bibliographical Notes. The concept of efficiency 7(\) was introduced by
Loimaranta (1972); see also Lemaire (1985), where in the case of discounting
the notion of the efficiency n9()\) was proposed. A credibility theory for the
evaluation of bonus-malus systems is given in Norberg (1976) and generalized
in Borgan, Hoem and Norberg (1981).

7.4 MONOTONICITY AND STOCHASTIC ORDERING

7.4.1 Monotone Transition Matrices

In this section we assume that the state space F is countably infinite, say
E = {1,2,...}, but finite state Markov chains are included as well. Let
a = (a;,az,...) and ' = (ai,as,...) be two probability functions and P a
stochastic matrix on E. We ask for conditions on P such that the following
implication holds:

(a <o ') = (aP <4 @' P), (7.4.1)

where the inequality &« < @’ between two probability functions a,a’ on E

means that
o oo
Y ai<) af (7.4.2)

i=k i=k

for all k& > 1 and, equivalently, af ' < a'f" for each increasing sequence
f=1{f,f2,-.-}. (7.4.1) is fulfilled then P is called a stochastically monotone
transition matriz. In the following theorem we give four equivalent versions of
this monotonicity property, where the probability function p; = (pa, pia, - --)
denotes the i-th row of P.
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Theorem 7.4.1 Let P be a stochastic matriz on E. The following statements
are equivalent:

(a) P is stochastically monotone,

(b) (i <) = (P; < P;),

(c) for each increasing sequence f = (f1, f2....) of real numbers, the sequence
Pf7 is increasing,

(@) (@<L @) = (P < &' P” foralln=1,2,...).

Proof (a)=>(b) Take o =e; and o' =e;.
(b)=(c) Note that
Pl.fT
PfT=| mf"

and that, in view of Theorem 3.2.1, p; < p; means that p; fr < P; fT for
each increasing sequence f = (f1, f2,...)-

(c)=(d) By induction we have that P*f' 1s an mcreasmg sequence for all
n=1,2,... Thus, a < o yields (aP")fT = a(P"f") < &'(P"f7) =
(o P”)f for each increasing sequence f = (f1, f2,...), i.e. aP™ <4 o' P".
(d)=(a) This step is obvious. O

Let ¢ : E x [0,1] — E be the function introduced in (7.1.25). The definition
of ¢, given in Section 7.1.3 for finite E, can easily be extended to a countably
infinite state space. Explicitly,

o0 m=—1 m

$i,2)= Y ml(z bk <z< Y p.-,,) . (7.4.3)
m=1 k=1 k=1

Here is a further equivalent version of {7.4.1), but now in terms of ¢.

Corollary 7.4.1 The transition matriz P is stochastically monotone if and
only if (i < j) = (8(t,2) < ¢(J, 2) for all z € [0, 1]).

Proof Suppose that P is stochastically monotone. Then statement (b) of
Theorem 7.4.1 gives Y_;; pit = Yy, Pjk for all i < j and m > 1. Thus if
m; and my; are defined by

m;—1 m;—1

Epzk<5<zplka Zp)k<z<2pﬂ¢.

then m; < m;. Hence ¢(i,z) < ¢(4,2) for ¢ < j. The proof of the reverse
statement is analogous and is left to the reader. m]

An immediate consequence of (d) in Theorem 7.4.1 is the following
result. Let Xo, X;,... and X3, X{,... be two Markov chains with the same
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stochastically monotone transition matrix P and with initial distribution «
and o, respectively. If o <q @', then X,, < X/ for all n > 0; moreover,
the following stronger statement on so-called monotone coupling of Markov
chains is true.

Theorem 7.4.2 Let P be stochastically monotone and o0 <4 «'. Then there
exist a probability space (2, F,P) and Markov chains {X,},{ X, } defined on
(2, F,P) having the same transition matriz P and the initial distribution o
and o, respectively, such that for alln=0,1,2,... andw € Q,

Xa(w) € Xh(w). (7.4.4)

Proof From probability theory (see Kolmogorov’s extension theorem stated in
Section 9.2.2) we know that one can construct a probability space (', 7', P’)
which carries a sequence Zj, Zj, ... of independent and uniformly (on {0, 1}])
distributed random variables. Moreover, Theorem 3.1.2 implies that there
exist a probability space (", F",P”) and E-valued random variables X"
and Y with probability functions « and o, respectively, such that X''(w) <
Y"(w) for all w € Q”. Define now Q= Q' x @', F=F x F" P =P x P",
Zp(w) = Zj(w') with w = (',0") € ' x Q. Put Xo(w) = X"(w") and
Xpt1(w) = ¢(Xn(w),Z,(w)) for n = 0,1,..., where the function ¢(i,z)
defined in (7.4.3) is monotone in the variable i. Analogously, put Xj(w) =
Y"(w") and X, (w) = &(X] (W), Zn(w)) for n = 0,1,.... Clearly, using
arguments given in Section 7.1.3, we have that the sequences {X,} and {X}
are Markov chains and (7.4.4) holds. a

Examples 1. Note that all results given in this section can be analogously
stated and proved for Markov chains with an arbitrary countably infinite
state space E which is linearly ordered, in particular for E = Z. As such, each
random walk on Z is a Markov chain with stochastically monotone transition
matrix. Indeed, from (7.1.11) one easily gets that in this case, for all i < j
and m € Z,

Y opa=Pli+Y2m)<PG+Y2m) = pis.

k=m k=m

2. In a completely analogous way one can show that the transition matrix of
the following Markov chain is stochastically monotone. Let {Y;,n > 1} be
a sequence of independent and identically distributed random variables with
values in IN; px = P(Y;, = k). For some fixed £,€ > 1 with £ < ¢, let

X, = (Xn—l +1- Yn)+ if 0 < Xn-1 £ el,
"7 (Xa - Ya)s ifl < Xn1 <4,
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where X, is independent of {Y,} and takes values in E = {1,...,£}. Then
{X,} is a Markov chain with stochastically monotone transition matrix.
The sequence {X,} can be interpreted as a discrete-time risk process with
state-dependent increments where premiums are added to the portfolio only
when the risk reserve process is below the critical level £'. Furthermore, any
downcrossing below the zero level is compensated immediately.

7.4.2 Comparison of Markov Chains

We continue our comparison of two Markov chains {X,} and {X} with
state space E = {1,2,...}, initial probability functions o, ' and transition
matrices P, P', respectively. We search for further conditions to have X, <g
X! foralln =0,1,.... Clearly, @ <y o' is necessary for this. Let ¢ and ¢' be
the functions induced by P and P’ via (7.4.3). The proof of Corollary 7.4.1
indicates that a further condition

(i <35) = (8(i,z) < ¢'(j, 2) for all z € [0, 1]) (7.4.5)

is needed. The next theorem rewrites this condition in terms of p; and pj, the
i-th and j-th row of P and P’, respectively.

Theorem 7.4.3 Condition {7.4.5) holds if and only if

(6 <) = (pi <ot D)) (7.4.6)

As the proof is analogous to that of Corollary 7.4.1, we leave it to the reader.

If (7.4.6) holds for two stochastic matrices P and P', we say that P is
stochastically smeller than P’ and write P <, P’. With this notation we are
in a position to state the following extension to Theorem 7.4.2.

Theorem 7.4.4 Let o <4 @' and P <5, P'. Then there ezist a probability
space (Q, F,P) and Markov chains {X,}, {X,} defined on (Q,F,P) with
initial probability function a,a' and transition matriz P, P’, respectively,
such that Xp(w) < Xi(w) for allw e @ andn =0,1,....

The proof is omitted as it is similar to the proof of Theorem 7.4.2 if the
equivalence of P <,, P’ and (7.4.5) is taken into account.

7.4.3 Application to Bonus-Malus Systems

Consider a bonus-malus system as defined in Section 7.1.4. A bonus-malus
system is called regular if the stochastic matrix P(A) = (p;;())) given in
(7.1.27) is regular for some ) > 0. Note that the regularity of P(X) for one
specific A > 0 implies the regularity of P(A) for all A > 0. Recall that the
matrix T(k) (k = 0,1,...) describes transitions of policies in the next year
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after k claims and that ¢;(k) is the i-th row of T'(k). Since in each row there is
only one 1, each of the matrices T'(k) is stochastic. Suppose that v;(k) denotes
the position of 1 in the vector ¢;(k). It is reasonable to postulate that for i < j
we have v;(k) < v;(k) for all £ =0,1,.... In matrix notation, the assumption
translates into the condition that

(A) for each k= 0,1,..., the matrix T(k) is stochastically monotone.

Similarly, it is natural to assume that a policy with more claims gets
transferred to a worse class, that is for k¥ < k' we have v;(k) < v;(k') for
all i = 0,1,..., £ In matrix notation, this means that

(B) T(0) <ot T(1) <ot T(2) st -

Note that, if postulate (B) holds, then there exists a natural number kg
such that T(k) = T(ke) for all k¥ > k¢. In real bonus-malus systems it is
assumed that a policy-holder reaches class 1 if they do not report claims
during sufficiently many successive years; similarly, they will get in class £ if
they report at least one claim in a sufficiently long series of years. This leads
to the assumption that

(C)forallk=1,2,..., 85 n — 00,

10 ..0 00 ...1
10 ..0 0 0 1
TO) | . . . .|, TMk)- :
10 ..0 00 ... 1

Theorem 7.4.5 Let Y (A) be a Poisson distributed random variable with mean
A > 0. Then, for the stochastic matriz P()\) defined in (7.1.27), the following
statements hold:

(a) P(\) =ET(Y());

(b) P()) is stochastically monotone, provided that (A) ts satisfied;

(c) P(\) <st P(X') for A < X, provided that (B) holds.

Proof Statement (a) directly follows from the definition (7.1.27) of P(}).
Furthermore, note that (b) is an immediate consequence of the fact that P(X)
is a mixture of the monotone matrices T(0), T'(1), .. .. In order to prove (c) we
use the fact that for the Poisson distributed random variables Y'()), Y'()'), we
have Y(A) <& Y()\') whenever A < X, where the proof of this monotonicity
property is left to the reader as an exercise. Thus, Theorem 3.2.1 implies that
the random variables Y ()) and Y (') can be defined on a common probability
space (2, F,P) such that Y(\,w) < Y(X,w) for almost all w € (1. Now
P()) <g P(XN) follows. =]

In the rest of this section we assume that postulates (A), (B) and (C) are
fulfilled. Furthermore, we assume that the bonus-malus system is regular and
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that m(}) is the stationary probability function for P()). We set P(0) = T'(0).
Then, it is not difficult to show that the matrix function A — P(}A) is
continuous for A > 0. Putting w(0) = e;, we also have that the vector function
A+ () is continuous for A > 0. Note that the case A = 0 has to be treated
separately because P(0) is not regular.

Remember that 3()) = w(A)B8" is the expected stationary premium per
year in the undiscounted case while B%(X) = ei,(A) onep v P(A)"Q" is the
expected total discounted premium (at zero), where ig is the initial class of
policy-holders entering the system.

Theorem 7.4.6 The functions 3(\) and 3%()\) are continuous and increasing.
Moreover,

lim B(\) = b1, Jim BN =B, (74.7)
and in the discounted case 1/(1 — v)3; < B4(N) < 1/(1 - v)Be.

Proof The proof of the continuity of 3(A) and 34(X) uses the continuity of
P(}) and 7(\) and is left to the reader. The monotonicity of 3(\) and 3%())
is obtained from statements (b} and (c¢) of Theorem 7.4.5, where we use the
fact that 7()\) <g 7(N') whenever A < . The limit behaviour of 3()), that
is (7.4.7), follows from postulates (B) and (C). The bounds for 3%(\) are
obtained from

10 0 00 ...1
10 0 00 ..1
co S PN S}
10 ..0 00 ... 1 0

Bibliographical Notes. For stochastic monotonicity and comparability of
Markov chaing, see Stoyan (1983). Results for monotone and ordered Markov
chains on abstract state spaces, in particular the monotone coupling of Markov
chains, can be found in Lindvall (1992), for example.

7.5 AN ACTUARIAL APPLICATION OF BRANCHING
PROCESSES

Assume that a very valuable item (like an airplane) has to be insured but
that the value is so large that one single company can hardly underwrite an
insurance policy for the item. Start out at time 0 with the first line insurer.
As part of the necessary administrative paper work, this company starts
negotiations with a number of second line insurance companies to which it
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sells part of the original policy. Each of these second line companies acts in
a similar way, itself ending up with a number of third line companies, etc.
The subsequent sequence of reinsurers makes up an {oversimplified) model of
a reinsurance chain. In this section we are only interested in the expected
number of companies involved in the coverage of the original policy in the
n-th link or at any specific time point.

We assume that each company in the chain takes a random administrative
time with distribution F before it simultaneously signs all its reinsurance
contracts. The number of such reinsurance companies is assumed to be
randomly distributed with a probability function {px, k € IN}. Each company
starts its own subsidiary chain, independently of the stochastic history of other
companies acting prior or simultaneously with it. Also all of the administrative
times are independent and follow the same distribution F.

The sequence of random variables {X,} counting the number of companies
in each link of the chain is called a Galton-Watson-Bienaymé branching
process. We do not need the knowledge of F' when calculating the probability
function of X,,. Let R, ; be the number of subsidiary companies of the i-th
company in the n-th link. We assume that all the R, ; are independent and
identically distributed with the same probability function {px, k € IN}. We
also write Ry 1 = R. We leave it to the reader to show that {Xy} is a Markov
chain with state space IN, where

Xn
Xi=1, Xnu=) Rui. (7.5.1)

i=1

Let gx,(s) be the generating function of the number of companies X, in
the n-th link and §r(s) the common generating function of the number of
subsidiary companies of any company. Clearly, (7.5.1) immediately gives that
dx,(8) = s. Furthermore, the following formulae hold.

Theorem 7.5.1 Forn=1,2,... and |s| < 1,

X (8) = Gx,(GR(3)) = Gr(9x.(5)) (7.5.2)
and consequently
9%, (8) = Gr(GR(---§r(s)...)). (7.5.3)
N e
n times

Proof In view of our assumptions, equation (7.5.1) implies that

Bt = SOF (SZ.?‘."I Rui | X, = j) P(Xn = j) = 4x, (4r(s))

=0

This gives the first equation in (7.5.2), and (7.5.3) follows by iteration. The
second equation in (7.5.2) is now straightforward. a
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The following corollary is an easy consequence of Theorem 7.5.1. We leave
it to the reader to show this as an exercise.

Corollary 7.5.1 For eachn = 1,2,... we have EX,, = (ur)" and

n—-1¢ n
_ ﬁ&__(li__l_).VaIR ;f R # 1,
nVar R if ug = 1.

The process { X (¢)} counting the number of companies involved as a function
of time is called an age-dependent branching process or a Bellman-Harris
process and is much less trivial to analyse. We can formally introduce this
process as follows. Let X, ;(t) be the number of subsidiary companies of the
i-th one in the n-th line that are involved in the reinsurance chain, ¢ units
after signing its contract. Let T' = T} ; be the administrative time for the first
line company. We assume that T and all X, ;(¢),n =2,3,...,andi=1,2,...,
are independent. Carefully considering the generation tree of the reinsurance
chain, we notice that for each company the stochastic mechanism is exactly
the same as if the process took its start with the initial company. This yields

ift<T,

X = {2‘_ Xoi(t-T) ¢>T. (7:54)

Let u(t) = E X(t) denote the expected number of companies involved at time
t. Applying a conditioning on T we derive an integral equation for the function
().

Lemma 7.5.1 For allt > 0,

¢
u(t) =F@) + ug/(; u(t —v)dF(v). (7.5.5)

Proof Starting from (7.5.4) and considering T as a kind of a renewal point,
we condition both on the length T of the first administrative time and on the
number R of its subsidiary companies. We begin by conditioning on T. Then

il

W = BEXOIT)= [ TEX(®)| T = v)dF(v)

/tE(X(t) iT:v)dF(v)-t—/ooE(X(t) |T =v)dF(v) .
0 t

The second integral is easy since at time ¢ only the first company is active and
hence E (X(t) | T = v) = 1 in this case. For the first integral we condition
additionally on R. Then E(X(t) | T =v) = L3224 pE(X(®) | T =v, R=)
and we again rewrite the remaining conditional expectation. Since at time v
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the first company underwrites j contracts, each one of these j descendants
starts its own reinsurance chain. The total number of companies within that
chain at time ¢ consists of the sum of these j populations that had a time slot
from v to ¢ to deal with the administrative duties. Hence

J
EX®|T=uv, R=j)=E(ZXz,i(t—v)|T=v, R=i)

i=1
and by our independence assumptions we are allowed to write
E(Xz:(t-v) [T =v, R=j) = p(t - ).
Combining all of the above and using pr = Y 5o, kpx we get (7.5.5). o

Notice that the integral equation in Lemma 7.5.1 is more general than
(6.1.18). Depending on the value of up we have to treat three different cases
in order to analyse the asymptotic behaviour of u(t) as t — oo.

Theorem 7.5.2 Assume that F i3 nondefective and nonlattice.
(@) Ifur =1, then u(t) =1 for allt > 0.
(b) If ur > 1, then
t -1
i B = e 759
i g iz (I
where - is the positive solution to equation iT('y) = p‘,}l (which elways exists).
(€) If ur < 1 and if there erists a positive solution vy to mr(vy) = u;l, then

im 20 _ aci (_1)1 (7.5.7)

% €T g (7)
provided that ﬁ:,r(rl) (7) < o©. Otherwise the limit in (7.5.7) is zero.

Proof (a) Only in the case ug = 1 is (7.5.5) a genuine renewal equation with
a nondefective distribution F. It can be checked by inspection that p(t) =1
is a solution to (7.5.5) and the uniqueness follows from Lemma 6.1.2.

(b) The main problem with equation (7.5.5) is that we need to rewrite it in
such a form that it becomes a genuine renewal equation. This can be done
by using the concept of associated distribution introduced in Section 2.3. For
this define the positive quantity v by the equation Ir(y) = u,'{l. Then the
associated distribution F_, is introduced by the integral

x
Foo@) =in [ eV aFG);
)
see also (2.3.6). Multiplying (7.5.5) by e™"* we obtain

t “
e~ u(t) = e " F(t) + un/ e” =Yyt — v)e " dF(v),
)
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which leads to a renewal equation for the allied function g(¢) = e~ x(t). Thus,
g(t) = e "' F(t)+ [ g(t —v) dF_,(v) and, using the notation z(t) = e~ F(t),
we arrive at the renewal equation (6.1.18) with F replaced by F_.,. We now
apply the key renewal theorem (see Theorem 6.1.11). Notice that Lemma 6.1.4
can be applied with z;(z) = 1, z2(z) = e~ 7® and next z(z) = F(t),
zo(z) = e~7%, using the fact that the difference of two directly Riemann
integrable functions is directly Riemann integrable. We then find that

o0
. e ~1 . -
Jim o(t) = (i)™ [ " 2@) dx (7.5.8)
where ji_. is the mean of F_., and hence
® i(1) (1)
iy = MR /0 ye Y dF(y) = —pgrly’(v) = pa i7" (V]

For the numerator in (7.5.8) we have by integration by parts

% e — * -z _l _i _”R_l
/0 z(ar:)d.::--/0 e F(z)dw—7(1 Ir(y)) = o

Thus we have proved part (b) for the case ug > 1.
(c) Similarly as in the proof of Theorem 6.5.7 we can rewrite (7.5.5) to get

_ t _ t
u(t) = F(t) + pn /0 u(t — v)dF(v) = F(t) + /0 uit - v) dF'(v),

where now F'(t) = urF(t) is a defective distribution function. However, since
we assume that a positive solution v to /mz(y) = pg' exists, we can define
the associated distribution £ (t) = [} e dF(v)(r(7))! = f§ e dF'(t) as
before and proceed in the same way as in the previous case. Rewrite (7.5.5)
in the form

e’tu(t) = e"F(t) + /t ") u(t — vy dF, (v) (7.5.9)
0
and with z(t) = e"F(t) and g(t) = e"*u(t), the equation
t -~
o)) =20+ [ g(t=v)aF,
0

is again a genuine renewal equation. Putting z,(z) = e and z3(z) = F(z),
Lemma 6.1.4 implies that z(¢) is directly Riemann integrable. Thus, using
Theorem 6.1.11, statement (c) follows. m]
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The result in part (b) of Theorem 7.5.2 shows that the average number
of companies increases exponentially fast in time. The crucial quantity 7
that measures the scale of increase is called the Malthusian parameter in
demography. Note that its actual value is intrinsically dependent on all
ingredients of the process. The case ur < 1is not very realistic in the insurance
context; however it is included for completeness.

Bibliographical Notes. For more details on branching processes we refer to
the books by Athreya and Ney (1972), Harris (1963) and Sevastyanov (1973).
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CHAPTER 8

Continuous-Time Markov
Models

In the previous chapter we studied sequences of random variables, called
Markov chains, describing evolutions (of prices, premiums, exchange rates,
etc.) in discrete time periods. It is sometimes convenient to have a model
describing situations where states change at arbitrary time points. This is
achieved by considering a collection of random variables {X(t), ¢ > 0},
where the parameter ¢ runs over the whole nonnegative half-line R.,.. For the
time parameter t, other continuous sets like [0, 1], R, etc. are also possible.
Recall that such a nondenumerable collection of random variables is called
a stochastic process. A continuous-time counterpart for the class of Markov
chains considered in Chapter 7 are Markov processes in continuous time with
a denumerable state space. In order to avoid technical difficulties we begin
this chapter with the case of a finite state space E = {1,2,...,£}.

8.1 HOMOGENEOUS MARKOV PROCESSES

8.1.1 Matrix Transition Function

Markov chains in Section 7.1 were defined by a probability function a and a
one-step transition matrix P, or equivalently by the probability function o
and the family of n-step transition matrices P . n =1,2,.... Recall that
the P™ fulfil the Chapman-Kolmogorov equation (7.1.7). In continuous time
we also consider a probability function & = (@, a3,...,a/) and a family of
stochastic matrices P(h) = (pij(h))i jer, where h > 0. We assume that

P(hy + he) = P(hy)P{hs) (8.1.1)

for all hy, hy > 0. The matrix identity (8.1.1) is called the (continuous-time)
Chapman-Kolmogorov equation. We also assume continuity at zero, that is

lim P(h) = P(0) =1 (8.1.2)
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We leave it to the reader to show as an exercise that then P{h) is uniformly
continuous in h > 0. A family of stochastic matrices {P(h), h > 0} fulfilling
(8.1.1) and (8.1.2) is called a matriz transition function.

Definition 8.1.1 An E-valued stochastic process {X(t),t > 0} is called
a homogeneous Markov process if there exist ¢ matriz transition function
{P(h),h > 0} and a probability function a on E such that

P(X(0) = ig, X (1) = i1, .., X(tn) = in)
= QipPigiy (81)Piyin (B2 = 1)+ - Pin_yin (tn — tn-1) s (8.1.3)

foralln=0,1,..., ip.%1,...,in € E, 0<t; ... < £y,

We interpret «; as the probability that the evolution starts at time 0 in state
i € E, and p;;(h) as the probability that, in time k, the evolution moves from
state i to state j. The probability function @ = (a,aq,...,a.) is called an
initial distribution. In the sequel we will omit the phrase “homogeneous” if
this does not lead to confusion. Note that, for each fixed h > 0, the matrix
P = P(h) is the transition matrix of the Markov chain {X,,n € IN} with
X, = X(nh). In accordance with this it is not surprising that continuous-time
Markov processes have the following conditional independence property.

Theorem 8.1.1 An E-valued stochastic process {X ()} is a Markov process
if and only if there erists a matriz transition function {P(h),h > 0} such
that, for alln > 1, i0,%1,...,in € Eand 0<t; < ... < Ly,
P(X(tp) =in | X(tn-1) = tn-1,..., X (t1) = i1, X (0) = ip)
pin-l’in (tn - tn-l) 1) (8'1'4)

whenever P(X (tp_1) = in-1,...,X(t1) =11, X(0) = i) > 0.

The proof of Theorem 8.1.1 is analogous to the proof of Theorem 7.1.1.
Moreover, analogous to Corollary 7.1.1, the following conditional indepen-
dence property of continuous-time Markov processes is obtained.

Corollary 8.1.1 If {X(t)} is a Markov process, then
P(X(tn) = ‘l:n | .X(tﬂ_l) = in—l,- . ,X(tl) = Zl,X(O) = ‘io)
= P(X(tn) =in | X(th-1) = in-1), (8.1.5)
whenever P(X (tp—1) = in-y,...,X({t1) =11, X(0) = ip) > 0.

We turn to the study of the main property of the trensition functions
pij(h), h > 0, i.e. the existence of the transition intensities. Let 6;; = 1 if
i = j and 0 otherwise.
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Theorem 8.1.2 If {P(h),h > 0} is a matriz transition function, then the
following limits exist and are finite:

q; = l}ﬁ%h l(pt] (h) lj) . (816)

Proof Without loss of generality we can assume that P(X(0) = ¢} > 0 for all
i € E. First we show (8.1.6) for i # j. Define pi_(h) = 1 and

Pl ()
f5(h)
Then, by (8.1.1),

P(X(vh) = §; X (kh) # j,1 < k <v| X(0) =),
P(X(vh) = j; X(kh) # j.1 <k <v|X(0) =1).

il

n—1

pii(nh) 2 > ol (W)pi; (R)ps; ((n — v — 1)h) (8.1.7)
v=0
and
pii(vh) = pif (h) + Z I (Wpsi((v — m)h). (8.1.8)

Since Em_l () <1, (8.1.8) gives
P () 2 pia(vh) — max psi((v —m)h). (8.1.9)

Now, by (8.1.2) we obtain that for all ¢ > 0 and i,j € E with ¢ # j there
exists hg > 0 such that

Og}z% pii(h) <e, oé‘i’,‘g”hop“(h) >1-g¢g, osﬂlliié]hopjj(h) >1-¢ (8.1.10)
Hence if nh < hp and v < n, then (8.1.9) lmphes that “’“ (h) > 1—2¢. Inserting
this into (8.1.7) gives py;(nh) > (1-2¢) S=02g pis(R)(1 — ) 2 (1 - 3e)npi; (h)
and, equivalently,
pii(h) o 4 Pii(h)
=t > (1~ 30) (8.1.11)

if nh < hg. Putting aj; = liminf,_,o h"lp,-j(h.), this implies that a;; < oo,
Indeed, if a;; = oo, we would find h arbitrarily small for which p;;(h)/h
and, by (8.1.11), also pij(nh)/nh would be arbitrarily large. On the other
hand, choosing n such that ho/2 < nh < hg, (8.1.10) gives (nh)~'pi;(nh) <
(nh)~'e < hg'2e. Thus, a;; < 00 and it remains to show that

limsup h ™ p;;(h) < ayj. (8.1.12)
h—0
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By the definition of a;; there exists h; < ho such that h'pii(h) < aij + &
Since p;;(h) is continuous, for all sufficiently small ¢o such that by + 2 < ho
we have p;j(t)/t < a;; + € for by — tg < t < hy + to. Now, by (8.1.11), for
any h < tp we can find an integer n, such that by — ty < nph < h +
and (1 — 3e)h~p;;(h) < (nrh) ' pij(nnh) < ay + €. Since € > 0 is arbitrary,
(8.1.12) follows. Thus, the existence of the limits ¢;; in (8.1.6) is proved for
i # j. Since the state space E is finite and the matrix P(h) is stochastic, we
have

. pii(h) -1 . pij(h) . pii(h)
e R — —_—— - —_— 27 - -1.
BT T TR LBt s e G
J# i J#i
This completes the proof. a

The matrix Q = (gij)i, j=1,...,¢ is called the intensity matriz and its entries
gi; transition intensities. The matrix of transition intensities Q is sometimes
called a ¢g-matrix. In the case of a finite state space, @ is the generator of
{P(h),h > 0} in the sense of the theory of transition semigroups. For a more
general state space the concept of the generator requires a stronger definition;
see Chapter 11.

Corollary 8.1.2 For each i # j, q;; > 0 and q;; < 0. Furthermore, Qe' = 0
or, equivalently, for each i € E,

Zq,;j =0. (8.1.14)
JEE
Proof From definition (8.1.6) we immediately get ¢;; > 0 and ¢i; < 0, for
i # j. (8.1.14) follows from (8.1.13). m|

Note that Definition 8.1.1 and Theorem 8.1.1 are completely analogous for
Markov processes on a countably infinite state space, £ = {1,2,...} say.
Also Theorem 8.1.2 remains true in a slightly modified form. In the proof
above, the finiteness of the state space has not been used when showing the
existence and finiteness of g;; for ¢ # j. In the case of a countably infinite state
space, one still can show that the limits g¢;; in (8.1.6) exist, but they may be
infinite; see, for example, Karlin and Taylor (1981), Section 14.1. Moreover,
instead of (8.1.13), one can only prove that ¢q; > — E#i gij for all i € E.
The case when equality prevails is of prime importance. A matrix transition
function {P(h), h > 0}, acting on a countably infinite state space E, is called
conservative if

ZQij =—¢i; <00 (8.1.15)
J#i
for all { € E. Most of the results that are stated and proved in the context of
finite state Markov processes remain valid for conservative matrix transition
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functions on a countably infinite state space. However, the proofs are more
involved.

A state i € E is called absorbing if ¢;; = 0. The motivation for this
terminology will be discussed in Section 8.1.3. The notion of an absorbing
state plays an important role in the definition of the class of phase-type
distributions; see Section 8.2. Alternatively, a state i € F is called stable
if 0 < —gi; < o0, and instantaneous if —¢g; = oo.

Example Let E = IN. The reader can show that any IN-valued
stochastic process with independent and stationary increments, as defined
in Section 5.2.1, is a Markov process. Any compound Poisson process with
IN-valued claim sizes is Markov in the sense of Definition 8.1.1. In particular,
if {X(t),t > 0} is a Poisson process with intensity A > 0, then ap = 1 and

ARy S
pi) =4 ¢ G-p Izt (8.1.16)
0 otherwise.

This implies for g;; = p{; (0+) that

A ifj=i+1,
gi; =4 —-A ifj=i,

0 otherwise.

8.1.2 Kolmogorov Differential Equations

In this section we show that there is a one-to-one correspondence between
matrix transition functions and their intensity matrices. In an extension
to Theorem 8.1.2 we first show that the transition functions p;;(h) are
differentiable for all h > 0.

Theorem 8.1.3 For all i,j € E and h > 0, the transition functions p;;(h)
are differentiable and satisfy the following system of differential equations:
P =Y qupii(h). (8.1.17)
keE
Proof Let k' > 0. From the Chapman-Kolmogorov equation (8.1.1) we get

pij(h+ 1) —pii(h) = Y pa(h)pe;(R) — pis(h)
kEE

> pik (R )pe; () + [pis(h') = Lpi; (h).

k#i

I

Similarly,

pis(h = h') =pij(h) = pi(h=H) =Y pur(h)pe;(h - h')
keE
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= = pulh)ai(h — 1) = [pu(’) — Upis (A — K.
k#t

Dividing by &', letting A’ | 0, and using the continuity of p;;(h) we obtain
(8.1.17) because, by Theorem 8.1.2,

Z plk h )pk] (h) Z thka

mo h! “
and
k#i

The differential equations in (8.1.17) are called the Kolmogorov backward
equations. In matrix notation (8.1.17) takes the form

PY(R) = QP(h) (8.1.18)
for all h > 0. In the same way as (8.1.17) was proved, one can show that
PO(py = P(h)Q (8.1.19)

for all A > 0, which is the matrix notation of the Kolmogorov forward
equations. The initial condition for both Kolmogorov equations is P(0) =

The solution to (8.1.18) and (8.1.19) needs concepts from matrix calculus.
We assume that all matrices considered below have dimension £ x £ and that
vectors have dimension 1 x £. The convergence of sequences of matrices and
vectors is defined entry-wise. For example, if {A,} is a sequence of matrices,
A, — 0 as n — oo means that (A,);; = 0 for all {,j = 1,...,£ We
introduce a norm implying the same topology as described above: for a vector
x = (xy,...,%e), we define ||z|| = Efxl |z:| and, for an £ x £ matrix A = (ayj),
we define ||A|| =3, ._, ,lai;|. Note that for h € R we have |hA|| = |h| || A]|
and that || A|| = 0 if and only if A4 = 0. It is clear that A,, — 0 if and only if
{An|l = 0. Furthermore, for a > 0 and arbitrary matrices A4, B,

A+ Bl <|lAll+|IBll, lIlAB|| <lAllBll, llaAll=allAll. (8.1.20)

Lemma 8.1.1 The series Y . (hA)"/(n!) converges uniformly with respect
to h € [—ho, ho), for each hg > 0.

Proof Let h € [—hg,ho) and m € IN. By a generalized triangle inequality,
deduced from (8.1.20), one has

(hA)" (hA)"
5 ear 3

n!

5,k 5 e

n=m+1 n=m+1

s n
S mlAr

n!

IA

n=m+1l



CONTINUOUS-TIME MARKOV MODELS 315

for each sufficiently large m, uniformly in h € [—hq, ho}. a

The series Y 2 (hA)"/(n!) is therefore a well-defined matrix function
which is continuous with respect to A on the whole real line R. We call this
function the matriz ezponential function and denote it by

n
exp(hA)=IT+hA+... + (h:‘) +

(8.1.21)

Let A(h) be a matrix function such that all entries are differentiable functions
of h. We define the matriz derivative by

AR = Jim BN A(R+ 1) - AR)).

Lemma 8.1.2 The matriz exponential function exp(hA) is differentiable on
the whole real line and

d_e’q&)’%’l‘_‘l_) = Aexp(hA) = exp(hA)A. (8.1.22)
Proof We have

exp((h + h')A) — exp(hA) — (h+h")* — h™ A™
R Z h! n!

00 A" o AP
n—-1 !
E nh F + h n“E_l Tn(h, hl)'n—! y

where
0 < rp(h, k') <n(n - 1)(2R)" (8.1.23)
for |h'} < |h|. The bound (8.1.23) is obtained by a Taylor expansnon of the

function g(z) = (h + z)® — h". This gives g(z) = znh™ 1 + —n(n - h+
6z)"~2, where 0 < 8 < 1. Hence, letting b’ — 0, we get

M). - inhn_lﬁ
n! -’

dh et
Clearly
- = (hA)" = (RA)
Z”hn =A) =§:0 oA o
n=0 n=

Arbitrary £ x £ matrices A, A’ are called commutative when A4A' = A'A
In the next lemma we need that for such commutative matrices

exp(A + A') = exp(A) exp(A'). (8.1.24)

The demonstration of this result is left as an exercise to the reader.
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Lemma 8.1.3 Let Q be an arbitrary £ x £ matriz such that ¢;; > 0 for i # j,
and Qe = 0. Then the matriz ezponential function {exp(hQ),h > 0} is a
matriz transition function which solves the Kolmogorov differential equations
(8.1.18) and (8.1.19).

Proof Note that for @ = 0 the statement is obvious. Assume now that
Q # 0. We first check that exp(hQ) is a stochastic matrix for all A > 0.
Since QeT = 0, we have Q" = 0 for all n = 1,2,... and, moreover,
exp(h@Q)e™ = e'. To prove that all entries of exp(hQ) are nonnegative, let
a=max{—g;:i=1,...,£}. Then, P defined by

P=a'Q+1I (8.1.25)

is a nonnegative matrix and since Pe™ = a~'QeT + Ie” = e", the matrix P
is stochastic. That the entries of exp(hQ) are nonnegative now follows from
the representation

exp(hQ) = exp(ah(P — I)) = E g—qh—);—SE e ok,

n=0

(8.1.26)

In this equality, (8.1.24) has been used together with the fact that
exp(—ahI) = e~**I. Furthermore, (8.1.24) implies that exp(hQ) fulfils the
Chapman-Kolmogorov equation (8.1.1). Now, using (8.1.22) we see that Q is
the intensity matrix of the matrix transition function exp(hQ), i.e. exp(hQ)
is a solution to (8.1.18) and (8.1.19). 0

We are equipped to state the main result of this section.

Theorem 8.1.4 The matriz transition function {P(h),h > 0} can be
represented by its intensity matriz Q via

P(h) = exp(hQ) . (8.1.27)

Proof By Lemma 8.1.3, {P'(h)} = {exp(hQ)} is a solution to the Kolmogorov
backward equation (8.1.18) and fulfils the initial condition P'(0) = I. From
the theory of systems of ordinary linear differential equations we learn that
such a solution is unique. Thus, P’(k) = P(h) for each h > 0. 0

If the eigenvalues 6;,...,8; of Q are distinct, then the spectral representa-
tion (7.1.17) of Q™ can be used to determine the matrix exponential function
P(h) = exp(hQ). In this case we have

[
Ph) =) et ¢y, (8.1.28)

i=1
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where ¢,,4,; are the (right and left) eigenvectors corresponding to 8;. The
proof is analogous to that in Section 7.1.2 and is left to the reader.

Theorem 8.1.4 leads to another interesting conclusion. For each fixed pair
i,J € E, the function h +— p;;(h) is either identically zero or everywhere
positive in (0, 00), as can be easily shown by the reader.

Note that the assumption of a finite state space is essential for the result of
Theorem 8.1.4. If the state space is infinite, E = {1,2,...} say, the situation
is much more complex. There may be many matrix transition functions
corresponding to one intensity matrix.

8.1.3 An Algorithmic Approach

Our goal in this section is to construct a Markov process with state space
E ={1,2,...,¢} and with a given intensity matrix Q@ = (qij}i jep. We first
explain the construction and then show that the obtained process is indeed a
Markov process with the preassigned intensity matrix Q. The construction is
realized in several steps and can be used for simulation of Markov processes.

Suppose the intensity matrix Q is given so that g;; > 0 for ¢ # j, and

Z§=1 gi; = 0. Let a be an initial distribution. Let ¢(i) = 3_;, ¢;; for all

i € E. We define a stochastic matrix P° by setting

o _ aslal) i),
o {0 i (8.1.29)

for all 4,j € E with ¢(f) > 0. When ¢(i) = 0, the corresponding row of
P° is put equal to e;. From (8.1.6) and (8.1.29) follows that P° = (p§;)
is a stochastic matrix. Let {X,,n € IN} be a Markov chain with initial
distribution o and transition matrix P°. Let {Z,,n € IN} be a sequence of
independent random variables with common exponential distribution Exp(1)
and independent of {X,}.

With respect to the Markov process {X(t),t > 0} under construction, the
random variables Xy, X1, ... will play the role of an embedded Markov chain
which describes the state of {X(¢)} in the intervals between its jump epochs.
The random variables Zy, Z, . .. can be interpreted as unscaled sojourn times
in these states. If g(i) = O for some i € E, i.e. the state i is absorbing, then
the sojourn time in this state is infinite. We construct {X(t),¢ > 0} in the
form X(t) = Yoo XnX(0n <t < on41) as follows.

Step 1 Put gy = 0 and 2} = Zp/q(Xo). We interpret Z; as the realized
sojourn time in state Xo which is chosen at time g = 0. Note that
P(Z}, > z|Xo =) =e 9% for all i € E with P(Xo =4) >0; z>0.

Step 2 Put 0y = 0o + Z} and X (t) = Xo for 0o = 0 <t < o1 which defines
the trajectory of {X(¢)} until the first jump epoch o;.
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Step 3 (analogous to Step 1) Put Z] = Z;/q(X,) which will be the sojourn
time of { X (¢)} in state X; chosen at time oy; P(Z] > z|X; = i)} = e~ 90)* for
P(X1 = ’L) > 0.

Step 4 Put 02 = 01 + 2] and X (¢) = X, for oy <t < 03.

Step 2n—1 Suppose that the Z§, Z],...,Z}_;,00,01,...,0, and {X(£),t €
[0,04)} are defined for some n > 1. Then put Z; = Z,/q(X,).

Step 2n Put 0,41 =0, + Z, and X(t) = X,, for 0, <t < Op41-
In this way, we can define the sample paths of {X(¢),t > 0} on R because

P(ﬂl_i_}u;o On=)=1, (8.1.30)

as can be shown by the reader.

Theorem 8.1.5 The stochastic process {X (t),t > 0} constructed above is a
homogeneous Markov process.

For a full proof of Theorem 8.1.5 we refer to Resnick (1992), pp. 378-379. Here
we only remark that the sequence {(on, X»),n € IN} of states X, X;,... and
sojourn times g; — 0g,02 — 0y, . . . in these states has the following properties:
(a) the times in between jumps &; — 09,02 — 01,... are conditionally
independent and exponentially distributed provided that the X, X;,... are
given. Hence, for alln > 1, 4p,...,in—1 € E and z,,...,%, > 0 we have

n

P( ﬂ {om —Om—1 > T} l Xo=1%0,....,Xn-1= in_l)

m=1
= PN {5y > o} Fomion o Kus =)
= PN {7ty > o} | Bomio o Xus =)
- P(ﬂ{ Znct s ,}) = I] & #ton-riem

me - 9(im=1) m=1 ’

(b) the sequence {(o, Xn),n € IN} is a Markov renewal process, i.e. for all
n>1,4%,7144,...,in—1 € E and z,z,,...,Z, > 0 we have

n—1

P(xn+l = j,One1 = On > T ' N {Xm = im} N {Xn = i}

m=0
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n ﬁ {om — Om—1 > a:m})

m=1]

Z n—1
—">zl ﬂ{szim}n{ani}

q(3)
n{ ke Zm})

_ . 2n .
= P(X,,+1—j,q—(-i-)->:can—z)
P(Xn+1=j,an+l_an>zl4 n=i)

[= P (Xner=j| X z)P( :v) = E%e-a(i)z} )

= P(Xn-H =7

q(?)
provided that

(ﬂ{X =im} N {Xp =i}N ﬂ{am_am—l >a:m})>0

m=0

Note that the matrix @ is uniquely determined by the transition matrix
P° = (p§;) of the embedded Markov chain and by the vector of expected
sojourn times (1/¢(1),...,1/q(£)).

We now show that the Markov process {X(t),t > 0} constructed above
is the “right” one, i.e. its intensity matrix equals the preassigned matrix Q.
For that purpose, we need to show that the transition probabilities p;;(h) of
this Markov process can be expressed in terms of the “local” characteristics
{g(i)}ice and P° = (p};)i jcE-

Theorem 8.1.6 For alli,j € E and h > 0,

h
pij(h) = 8,;6790k 4 / q(i)e "D Y " plpr;(h — t)dt. (8.1.31)
o kA

In particular, if i € E is an absorbing state, then p;j(h) = &;;
Proof Without loss of generality we can assume that P(X(0) = ¢) > 0.
Consider the decomposition p;;(h) = I;;(h)+1;(h), where I;;(h) = P(X(h) =
jro1 > h| X(0) = i) and I};(h) = P(X(h) = j,0n < h | X(0) = i). Then,

v _ JP(ZL>h| Xp=i)=e ¥DP ifi=j,

I"(h)'{o if i # j,

and

i PX(h)=j,0'1Edt,X1=k,,¥0=i)
Ik = ;[ e
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k};/ P(X(h) =4 | X(t) = k)P(—(—) € dt)P(X, = k| Xo =1)

/ q(i)e™ "> " poprs(h — t) dt.
0 ki

If i € E is an absorbing state, then the process {X(t),t > 0} constructed
above stays in ¢ once it gets there and hence p;;(h) = d;; for all A > 0. O

Corollary 8.1.3 For alli,j € E,

pq)(0+) = ql.? {Pfgfg()i) 'f! ¢ ] (8132)
Proof Taking the first derivative in (8.1.31) with respect to h and letting
h {0, (8.1.32) follows. a

Comparing (8.1.6) and (8.1.32) we see that the intensity matrix of
the Markov process {X(t),t > 0} constructed in this section equals the
preassigned matrix Q.

Example A Markov process {X(t),t > 0} with state space F = {1,...,¢}
is called a birth-and-death process if p3; , +pj;4; = 1foralll <i < £ and
P32 = pis-; = 1. The products pf;,,q(i) and pg,_,q(i) are called birth rate
and death rate, respectively. Indeed, for the Markov process constructed in
this section, we showed in Corollary 8.1.3 that p,,,q(i) and p§;_,q(i) are
the transition intensities g;;+1 and g¢;;—, for the tramsitions ¢ — ¢ + 1 and
i — 7 — 1 in the sense of (8.1.6).

8.1.4 Monotonicity of Markov Processes

In this section we study monotonicity properties of Markov processes which
are analogous to results given in Theorems 7.4.1 and 7.4.2 for (discrete-time)
Markov chains.

We consider the finite state space E = {1,...,¢} although all definitions
and results given in this section can be formulated (usually under some extra
conditions) for the case of a countable infinite state space too. Let Q@ be an
intensity matrix on E. We say that Q and the underlying Markov process is
stochastically monotone if

Z gix < Zij ) (8.1.33)

k>r k2>r

foralli,j,r € Esuchthati <j,andr<iorr>j.
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The stochastic monotonicity of intensity matrices is easily linked to that
of the corresponding transition matrices. Write f,. = (0,...,0,1,...,1) for a
vector with the first 1 at the r-th component and e; = (0,...,0,1,0,...,0) as
before. Condition (8.1.33) can be rewritten in the following way: forr <i < j
ori<ji<r,

eiQf; <e;Qf;. (8-1.34)

Theorem 8.1.7 The intensity matriz Q is stochastically monotone if and only
if the transition matriz exp(hQ) is stochastically monotone for all h > 0.

Proof Let exp(hQ) be a stochastically monotone matrix. Then
e;exp(hQ)f] < e;exp(hQ)fT (8.1.35)

for all i < j. But e.-,f;r = e,-]",T for r <i < jand i < j < r. Subtract

this equality from (8.1.35), divide by &, and let h — 0 to find (8.1.33). The

converse is left as an exercise. ]

Let now @ be an arbitrary intensity matrix and choose a > 0 such that

a 2> max{—g:} - (8.1.36)

Then Q +al is a nonnegative matrix and P = Q/a+ I is a transition matrix.
Thus for P(h) = exp(hQ), we have

P(h) = i L‘333‘3-“"(113)", (8.1.37)
n=0 :

as in the proof of Lemma 8.1.3. From (8.1.37) we get the following useful
representation of a Markov process { X (£)} with intensity matrix Q and initial
distribution a. Let {N(¢)} be a Poisson process with intensity a and let
{Xn} be a Markov chain with transition matrix P and initial distribution
a. Furthermore, assume that {N(t)} and {X,} are independent. Then it
is easily shown that the stochastic process {X(t)} with X(t) = Xy is a
Markov process with intensity matrix @ and initial distribution a.

The representation of P(h) in (8.1.37) is called a uniform representation.
It is also possible in the case of a countable infinite state space provided
that (8.1.36) holds for some finite @ > 0. Then, the Markov process is called
subordinated. All results, derived in the rest of this section for a finite state
space, extend to the case of a countably infinite state space.

Lemma 8.1.4 The intensity matriz Q is stochastically monotone tf and only if
for some a > 2max;cg{—qii}, the matriz Q/a+1 is a stochastically monotone
transition matriz.
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Proof Assume first that Q is a stochastically monotone intensity matrix and
that a > 2max;cg{—gi;}. Let i,j,r € E withi < j,and r <iorr > j. Then,
using (8.1.33) we have

Yoalgu+Lizr) <) e lgu+ G2, (8.1.38)
k>r k>r

Furthermore, if i < r < j then

r—1
SaTlgw = Y aTlqu - alq <) aTlgn - a7 gu
k=t

k>r ki k2i
< Y algp-a Mg+ g) <D aTlgr+1.
k>r k>r

Thus, using Theorem 7.4.1 we see that the matrix Q/a + I is stochastically
monotone. On the other hand, assuming that Q/a + I is stochastically
monotone for some a > 2max;eg{—¢::}, the monotonicity of Q immediately
follows from (8.1.38). o

Theorem 8.1.8 Let Q be a stochastically monotone intensity matriz and let
« and o' be initial distributions on E such that o <z, . Then there ezist a
probability space (Q,F,P) and Markov processes {X(t)}, {X'(t)} defined on
(Q, F,P), having the same intensity matriz Q and the initial distributions o
and o, respectively, and such that for ellt > 0,

X(t) < X'(t). (8.1.39)

Proof By Lemma 8.1.4 and Theorem 7.4.2 there exist a probability space
(€, 7,P) and Markov chains {X,}, {X,} defined on (92, F,P), having the
same transition matrix P = Q/a + I for some a > 2max;cg{—¢i;} and the
initial distributions @ and o/, respectively, and such that with probability 1

X< X!, (8.1.40)

for all n € IN. Assume now that {N(t)} is a Poisson process with intensity
a such that @ > 2maxcg{—¢ii}, and {N(t)} is independent of {X,} and
{X.}. Then by the uniform representation of Markov processes we can set
X(t) = Xn and X'(t) = X}vm. Clearly (8.1.40) implies (8.1.39). o

Example Let {X(t), > 0} be a birth-and-death process with state space
E = {1,...,¢} and intensity matrix Q, that is ¢;;_1 + qi; + gij+1 = O for
i=2,...,6-1,and g11 +q12 = 0, g¢,e—1 + gee = 0. We leave it to the reader to
show that any birth-and-death process is a stochastically monotone Markov
process.
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8.1.5 Stationary Initial Distributions

We say that a probability function w = (m1,...,m¢) on E = {1,...,£} is
a stationary initial distribution of a Markov process with matrix transition
function {P(h), h > 0} if wP(h) = = for all h > 0. Using the finiteness of
the state space E we have 0 = limy_,o A~ !w(P(h) — I) = wQ. Conversely, if
7Q = 0 then clearly 7Q™ = 0 and hence wP(h) = w3y o (RQ)"/n! = =
for h > 0.

As in the case of (discrete-time) Markov chains considered in Section 7.2,
it is possible to give a characterization of stationary initial distributions as
limit distributions. The situation is even easier for continuous-time Markov
processes since only an irreducibility condition is needed. Notice that without
any additional condition, we have p;;(h) > 0 for all i € E and h > 0 as follows
from (8.1.37). Furthermore, we call the Markov process {X(¢)} with matrix
transition function {P(h), h > 0} irreducible if for all i # j, pi;(h) > O for
all A > 0. This is equivalent to the irreducibility of the intensity matriz Q,
which means that for each pair i,j € E with ¢ # 7 there exists a sequence
f1,...,in € E (i # 1) such that g, gi,ip---@i._,; > 0. We recommend
the reader to prove the equivalence of these two notions of irreducibility.
Irreducibility implies that the stationary initial distribution 7 of {X(t)} is
uniquely determined and satisfies #Q = 0.

Theorem 8.1.9 If the Markov process {X(t)} is irreducible, then for each
1€ E,
lim P(X(¢) =i) =m, (8.1.41)

t—o0

where ™ = (my,...,m¢) is the stationary initial distribution of {X(t)}.

Proof Let {X(t)} be irreducible, which means that the transition matrix
P(h) is regular for each h > 0. Then, from Theorem 7.2.1 we get that
lim,,—, 00 P(nh) = II for each & > 0 where II is the matrix with each row equal
to . It follows from (8.1.1) and (8.1.2) that the matrix transition function
{P(h), h > 0} is uniformly continuous. Thus, for each ¢ > 0 we can find a
(small) number hy > 0 such that for all ¢ > 0 sufficiently large, there is an
n € IN for which [|P(t) — IT}| < ||P(t) — P(nho)l| + ||P(nho) —II}| < 2e. O

Bibliographical Notes. A coherent mathematical theory of Markov process-
es in continuous time was first introduced by Kolmogorov (1931). Important
contributions to this class of stochastic processes were also made by W. Feller,
W. Doeblin, J.L. Doob, P. Levy and others; see Feller (1971). More details on
Markov processes with denumerable state space can be found, for example,
in Chung (1967), Cinlar (1975), Karlin and Taylor (1981), Resnick (1992).
Notice that by some authors, a Markov process with denumerable state space
is called a continuous-time Markov chain. Standard references for the theory
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of systems of ordinary linear differential equations are books like Boyce and
Di Prima (1969) and Simmons (1991). For stochastically monotone Markov
processes, see Massey (1987) and Stoyan (1983).

8.2 PHASE-TYPE DISTRIBUTIONS

In this section we introduce the class of phase-type distributions which
have a useful probabilistic interpretation and are convenient for numerical
computations. We derive useful formulae for ruin functions and we show
that an arbitrary distribution on R.; can be “approximated” by phase-type
distributions. The probabilistic definition of phase-type distributions uses the
theory of Markov processes. As a phase-type distribution can be characterized
as a. matrix exponential distribution, we need to recall some necessary concepts
and results from matrix algebra.

8.2.1 Some Matrix Algebra and Calculus

Unless otherwise stated, we again assume that matrices have dimension £ x ¢
and that vectors have dimension 1 x £. By 8; = 6;(A),i=1,...,£, we denote
the eigenvalues of a matrix A = (aij)ijeg; E = {1,...,£}. As before we
assume that |,] > |62] > ... > |6¢|. The following auxiliary result for linear
transformations of matrices is easily proved.

Lemma 8.2.1 If A' = aA + bI for some constants a,b € R, then
6;(A’) = ab;(A) + b, i=1,...,¢. (8.2.1)

We derive an upper bound for the “largest” eigenvalue ; of a nonnegative
matrix.

Lemma 8.2.2 Let A be nonnegative. Then,
¢ ¢
{61] < mm{xgleabxj;aij ; %aéc;aij} . (8.2.2)

Proof We have 61¢; = Z§=1 a;;¢;,i=1,...,¢, where ¢ = (¢1,...,¢¢). This
gives |61 ]}¢:| < Z;zl a;j maxgep [Pkl, 1 = 1,..., £, and consequently

t
8:| max -<max2a~~max AR
161 i€E l9il < i€E Y keE ||

Thus |6,| < max;ep Z§=1 a;;. The proof that {f;] < maxjer Zle a;; is
similar because A" has the same eigenvalues as A. O
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The bound given in Lemma 8.2.2 can be used to show that, for a certain
class of matrices, the real parts of all eigenvalues are nonpositive. We say that
B = (bi;) is a subintensity matriz if b;; > 0 (¢ # j) and Z§=1 bij < 0, where
for at least one i € E, Ej___l bi; < 0.

Theorem 8.2.1 If B is a subintensity matriz, then 0;(B) = 0 or R(6;(B)) <
0, foreachi=1,...,L.

Proof Let B be a subintensity matrix and ¢ > max;cg(—b;;). Then B’ =
B +cl is a nonnegative matrix. By Lemma 8.2.1, we have 8;(B) = 6;(B') —c.
Furthermore, Lemma 8.2.2 yields |6, (B')| < c. Since |6,(B’)] > |82:(B’)} >
... 2 |6¢(B')|, this completes the proof (see Figure 8.2.1). o

. |

8:(B’) 6:(B)

Figure 8.2.1 The eigenvalues of a nonsingular subintensity matrix

Corollary 8.2.1 A subintensily matriz B is nonsinguler if and only if
R(6:(B)) <0 for eachi =1,...,¢.

Proof 1t suffices to notice that 0 is not an eigenvalue of B if and only if B is
nonsingular. Thus, the statement follows from Theorem 8.2.1.

In the next theorem we give a representation formula for the matrix
expouential function exp(tA) of an arbitrary ¢ x £ matrix A.

Theorem 8.2.2 Let 0,,...,0, be the eigenvalues of A. Then
exp(tA) = ar(t)A; + ... +ac(t) A, (8.2.3)

where ai(t), Ax are given recursively by a;(t) = ¢%t, A; = I end ax(t) =
Jiett=2lqy_1(z)dz, Ax = (A—6T)...(A=b 1) fork=2,...,L



326 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

Proof Suppose first that A = diag(@) with @ = (6;,...,6,) and that all
eigenvalues 8y, . . ., 8, are distinct. Then, by the definition (8.1.21) of exp(tA),
we have exp(tA) = diag(e®?,... %) and (8.2.3) is obvious for £ = 1.
Suppose that (8.2.3) holds for some ¢ = n — 1. Then, the right-hand side
of (8.2.3) can be written as

9,._1t)

= diag (e%f,.. . e 0 )
Py . _ .
S as0s = ( 0 S0 e TS (6 — 00

We have to show that, foralln=1.2,...,

n k-1
ag n—0;) = On . W
Y ai(t) J] (6 — 6:) = €™ (8.2.4)

k=1 =1

For n = 1, (8.2.4) is obvious. Furthermore, for & > 2 we have

t pTi T3
ar(t) = ./0‘/0 .. /(; efrlt=21)  ob2(23-22)gb122 dz,...dzg

3 t
= e""‘f.../ I0<z2<...<2p)
0 0

x elfe-1=00)ze  ol02=bs)23g(01-02)72 gy gy

t t—x2 t—z9
= / ed173¢0k(t—22) (/ / I0<z3<...<Tp)
0 0 0

x e0x-1=0k)T6  o(02—0s)z3 go. dzk) dxg .

Assuming that (8.2.4) holds for some n = j — 1, this gives

J k-1 J k—1
Do) [[6;-00) = ax(t)+ ;61> ax(e) [T 6; - 65)
k=1 i=1 k=2 1=2

t
= q(t)+ (Bj - 91)/ 122005 (t—22) dz,
0

= ehty 695‘(1 — elf1=0)t) = gfst,
Thus, (8.2.4) holds for all n > 1. Consequently, for A = diag(@) and 6,,...,8,
distinct, (8.2.3) is true for all £ > 1. Suppose now that A4 is an arbitrary (not

necessarily diagonal} matrix with distinct eigenvalues 6,...,8¢. Then, it is
not difficult to show that

exp(tA) = ®diag (e, ... ") @7, (8.2.5)
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where & = (¢, ,...,¢; ) is the £ x £ matrix consisting of right (column)
eigenvectors of A. Thus, from the first part of the proof we have

£ k-1
exp(tAd) = @(Z ax(t) [] (diag(8) - 0,—1))@*1
k=1 i=1
[4 k-1
= Y ar(®) [] (@ diag(8)®~" - 9, 887")

k=1 =1

£ k—1
Y a(t) J[f(a-6D).
k=1 =1

If not all eigenvalues of A are distinct, we can proceed as follows. By
Lemma 7.1.3,

A=CDC™, (8.2.6)
where D is (upper) triangular and C nonsingular. Note that

4
[I6:=s) = det(A-sI)=det(CDC™* -sCC™)
i=1

¢
= det(D—sI)= H(dﬁ - 8).
i=1
Thus, the eigenvalues of A and D coincide, i.e. {di1,...,dy} = {61,...,0¢}.
Consider a triangular matrix D’ = (d};) such that d;; = d;; for i # j and, D'
has distinct diagonal elements d}; with |d}; — diy} < e foralli=1,...,£ and
some ¢ > 0. Then, the matrix A’ = CD'C™? also has distinct eigenvalues
and by (8.1.20)

4 - A'll = lc(D - DYC™'| < giCIC e (8.2.7)

Moreover, it is not difficult to show that || exp(tA’) — exp(tA)|| = 0 whenever
|lA’ — A}l - 0. This completes the proof since ¢ > 0 in (8.2.7) can be chosen
arbitrarily small. o

If the eigenvalues #,,...,0; of A are distinct, then (8.2.5) immediately
implies that lim;.,.. e~ exp(tA) = 0 for each s > max;cg R(8:). Indeed,
using (8.2.5) we have

e~ exp(tA) = B diag(e® ... = )®" 50

since le‘-a‘"”‘l = exp(—(s—R(8:))t) = Oast — oo. If the eigenvalues 6;,...,6¢
are not distinct, then the same exponential bound for the matrix exponential
function exp(tA) can be obtained from Theorem 8.2.2, as is pointed out in
the following result.
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Corollary 8.2.2 Let 01,...,0, be the eigenvalues of A. Then, for each
s > max;cg R(6:),

lim e **exp(tA) = 0. (8.2.8)
t—o0
Proof In view of (8.2.3) it suffices to show that
lim e™*|ax(t)| =0, (8.2.9)
t—+00

for each k = 1,...,£ Clearly (8.2.9) is true for k£ = 1. Suppose that (8.2.9)
holds for some k = n — 1 < £. Then, for all v € (0,¢),

v
e *a,(t)] < e("(”")_‘)‘/ le=%%a,_;(z)|dz
0

11
+/ eROn)—a)t-2)g-s2|q (1) dx,
v

where the second integrand becomes arbitrarily small if v is sufficiently large.
Indeed, because of our assumption that (8.2.9) holds for k = n — 1, for each
€ > 0 there exists v > 0 such that e=**|a,,—,(z)| < & for all > v. Thus

¢ t
(R(8,)—8)(t—2) ,— 82 (R(6)—8)(t—2) &
e e an—i1{z)|dx <e [ e dz < .
J enr@dese ], SFEEICY
Since limy_, o e®(En)=2)¢ [¥|e=0n2q,, _,(z)|dx = O for each fixed v > 0, the
proof is complete. u]

Suppose now that A(t) = (ai;(t)) is a matrix function where each entry
a;;(t) is a function of ¢. If A(t) is differentiable as defined in Section 8.1.2,

then A (t) = dA(t)/dt has entries ag-)(t). A differentiation rule for products
of matrix functions is given in the following lemma.

Lemma 8.2.3 If A(t) and A'(t) are two differentiable matriz functions, then

d oy = (4 : d
5 (ADA'®) = ( - tA(t))A )+ AQTA®). (8.2.10)
The proof of Lemma 8.2.3 is left to the reader as an exercise.

Conversely, by [ A(z)dz we mean the matrix with entries | Y a;j(z) dz for
v < t. In particular, for the matrix exponential function the following is true.

Lemma 8.2.4 (a) If A is nonsingular, then

/t exp(zA)dr = A" (exp(tA) — exp(vA)). (8.2.11)

(b) If oll eigenvalues of A have negative real parts, then

/ ” exp(zA)dz = 471 (8.2.12)
(1]
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Proof Let the matrix function F(t) be differentiable. Then, f'f FM(z)dz =
F(t) — F(v) for v < t. Thus, setting F(z) = A lexp(zA), (8.2.11)
follows from Lemma 8.1.2 because by (8.1.22) we have (d/dz)A ! exp(zA) =
A™'(d/dz) exp(zA) = exp(zA). Now, (8.2.12) is an immediate consequence
of (8.2.8} and (8.2.11). 0

The following block operations on matrices will prove to be useful. Suppose
we represent two £ x £ matrices A and A’ by

All e Alm Alll L Alln
A= ¢ o, A=
Ay ... Arm A, ... A,

k4

where 1 < k,m,n < £ and Aij,A'ij are matrices such that the matrix
multiplication A,-,A',j is possible for all ¢, 7,r. Then

2?:1 Ayr :-1 2’:_-1 A A,
AA' = : : : (8.2.13)

2:;1 A’"A;'l Z;n=1AkrAIm

For example, if A;; are £; x ¢; matrices with 5, &, = £, k = m, and A;; =0
(i # j), then

A% 0 ... 0

0 AL ... ©

A" = (Ay)" = s :
o o0 e

8.2.2 Absorption Time

We are ready to return to continuous-time Markov processes. We assume that
none of the states i € E = {1,2,...,£} is absorbing. In Section 8.1.3 we
showed that then the sample paths of a Markov process with the finite state
space E can be chosen to be piecewise constant functions, where the distances
between consecutive jump epochs are hyperexponentially distributed random
variables.

We now extend the state space E by adding one new state, say 0, and which
we assume to be absorbing. For the extended state space E' = {0,1,...,£},
we consider an intensity matrix @ = (gi;)i,jeg Written in the block form

Q= ( bOT > ) , (8.2.14)
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where b = (b3, . . ., b¢) is an £-dimensional vector with nonnegative components
bi, B = (bi;) is an € x £ matrix with b;; > 0 for 1 # 7 and by; < 0 such that

b' =-Be'. (8.2.15)

Let {X(t),t > 0} be the Markov process on E' with this intensity matrix @,
constructed in the same way as shown in Section 8.1.3, where X (t) = 0 for all
t >n=inf{t': X(#') = 0}. We do not want 7 to be infinite with probability
1. Hence B cannot be an intensity matrix (that isb; =0 foralli=1,...,)
because otherwise the Markov process {X (#)} would never visit state 0 when
being started in E = {1,...,¢}. For that reason B is assumed to be a
subintensity matrix. According to Theorem 8.1.6, the transition probabilities
of {X(t)} are given by

8 ifi=0,
pij(h) = { Size=d0b 4 [P g(i)e=tt S poppi(h —t)dt if i #0.
(8.2.16)

The random variable 7 is called the absorption time of {X(t)}. Its distribution
is determined by the initial distribution o' = (ag,a;,...,a) of {X(¢)} and
by the subintensity matrix B. Note that, instead of a’, it suffices to consider
the (possibly defective) probability function & = (a,...,a¢) on E.

Definition 8.2.1 The distribution of 1 is called a phase-type distribution with
characteristics {a, B). We denote this distribution by PH(a, B).

Examples 1. Let £ = 1,0y = 1 and B = (—A) for some A > 0.
Then PH(ex, B) is the exponential distribution Exp(A). Furthermore, for an

arbitrary £ > 1, for ¢; = 1 and consequently as = ... = a¢ = 0, and for
-2 A 0 --- 0 O
0 -x X -~ 0 0
B= . . .. ;
0 0 0 --- 0 =)
PH(a, B) is the Erlang distribution Erl(£, A).
2. Let £ > 1 and let a = (a;....,0¢) be an arbitrary (nondefective)
probability function on E. If
- 0 0 .- 0 0
0 =X 0 --- 0 0
B - . . . . . ?
0 0 0 - 0 —X

for some Aj,...,As > 0, then PH(«, B) is the hyperexponential distribution
Y-y akExp(As).
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We next derive a formula for the tail of a phase-type distribution.

Theorem 8.2.3 Consider the absorption time n with distribution PH(a, B).
Then, for each t > 0,

P(n > t) = aexp(tB)e’ . (8.2.17)
Proof Clearly, {n >t} = {X(t) # 0} and, consequently,

P(n>1t) =P(X(t) #£0) = Zza,pu(t (8.2.18)

=1 j=1

On the other hand, using formula (8.2.13) for block multiplication, we get

_ 1 0
exp(tQ) = ( e” —exp(tB)e’ exp(tB) ) (8.2.19)
as can be shown by easy calculations. The proof is now completed by (8.1.27),
{8.2.18) and (8.2.19). o

Remember that, with positive probability, {X(t),t > 0} may never reach
the absorbing state 0. The following result gives a necessary and sufficient
condition for the finiteness of 7.

Theorem 8.2.4 The absorption time 1 is almost surely finite, i.e.
Pin<oo)=1, (8.2.20)

for each (possibly defective) probability function a = (ay....,a¢) if and only
if B is nonsingular.

Proof If B is nonsingular, then all eigenvalues of B have negative real parts
as shown in Corollary 8.2.1. Thus by Corollary 8.2.2 (choosing s = 0) we have
lim;, exp(tB) = 0 and hence, for each o,

lim ccexp(tB)e” =0. (8.2.21)
t—o0

Using (8.2.17) this gives (8.2.20). Conversely, let (8.2.21) hold for each
probability function a and suppose that B is singular. Then there exists a
vector & = (£1,...,2¢) # 0 with Bz" = 0, and so B"z" = 0. Consequently,
exp(tB)x’ = x' for all ¢ > 0, and hence lim;_, o exp(tB) = 0 is not
possible. Using similar arguments as in the proof of Lemma 8.1.3, it is not
difficult to show that the matrix exp(¢B) is nonnegative for each ¢ > 0. Thus,
lim sup,_, . (exp(tB))i; > 0 for some i,j € {1,...,£} and (8.2.21) cannot hold
for each probability function a, i.e. B must be nonsingular. ]

We need the following auxiliary result.
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Lemma 8.2.5 Let B be a nonsingular subintensity matriz. Then sI — B is
nonsingular for each s > 0 and all entries of (sI — B)™! are rational functions
of s > 0. Furthermore, for alls >0, n € NN,

/oo exp(t(—sI + B))dt = (sI — B)™! (8.2.22)
0

and dn
d_s;'-(SI ~B)™ ' = (-1)"n!(sI - B)™""!. (8.2.23)

Proof Let s > 0. By Corollary 8.2.1 all eigenvalues of B —sI have negative real
parts. Hence sI — B is nonsingular. Furthermore, by Lemma 8.2.4, (8.2.22)
follows. We now prove (8.2.23) by induction with respect to n. Using the
differentiation rule (8.2.10) we have

d

=1= :—8 ((sI- B)(sI - B)™") = (sI-B)~ + (sI - B)%(sI—B)"

and, consequently,
%(SI -B) ' = —(sI-B)7?, (8.2.24)

i.e. (8.2.23) holds for n = 1. Assume that (8.2.23) holds for n = 1,2,...,k.
Then

dk+1 a d
ds PRy (3I B) Eg.
(-

(d k(SI B)~ ) = (—1)kk!i(31_3)—k—1
~1)F (k4 1)Y(sT — B)~(e+1)- 1

because

0 = % ((sI = BY**1(sI — B)™*-1)

i

(k+1)(sI - B)™! + (s - B)"“ d (sI B) k-1,

Theorem 8.2.5 Assume that ap = 0 and B is a nonsingular subintensity
matriz. If F is the phase-type distribution with characteristics (o, B), then F
is continuous with
(a) density

ft) =aexp(tB)b', t>0, (8.2.25)

(b) Laplace-Stieltjes transform
i(sy=a(sI-B)"", 5>0, (8.2.26)
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(c) n-th moment
™ = (-1)"nlaB ", n>1. (8.2.27)
Proof Using Lemma 8.1.2, by (8.2.17) we have
d
ft)=-3P0>1)= aexp(tB)(—Be') = aexp(tB)b',

where the last equality follows from (8.2.15). Thus, (a) is proved. In order to
show (b) it suffices to note that, by (8.2.25),

I(s) = /Doo e~ f(t)dt = /:o e *taexp(tB)b' di

[0 ¢] xR0
/ aexp(—stl)exp(tB)b' dt = a/ exp(t(—sI + B))dtb"
0 0

= a(sI-B)'b'.
In this computation we used that e~**I = exp(—stI) and
exp(—stl) exp(tB) = exp(t(—sI + B)),

where the last equality follows from Lemma 8.2.5. To show (c), we take the
n-th derivative in (8.2.26). Then, (8.2.23) yields

N n
™) (s) = :—s;a(sl -B)7'b" = (-1)"nla(sI - B)™"'b".

Putting s = 0 and using (2.1.6) and (8.2.15), this gives u{™ = (-1)*{")(0) =
(-1)"nlaB "e". =]

Note that a formula similar to (8.2.26) can be derived in the case when
ag > 0. Then, R
i(s)=co+a(sI-B)™'b", s>0. (8.2.28)

The proof of (8.2.28) is left to the reader.

8.2.3 Operations on Phase-Type Distributions

If it is convenient to indicate on which state space the Markov process {X (¢)}
is defined, then we say that the phase-type distribution has the characteristics
(a, B, E) and write PH(a, B, E). Furthermore, we will always assume that
B is nonsingular. Consider two phase-type distributions PH(ay, By, E;) and
PH(az, B, E2) simultaneously, where we take By = {1,...,£;} and E; =
{€t1 +1,...,6 + £2}. We prove that the family of phase-type distributions is
closed under convolution and mixing.
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Theorem 8.2.6 The convolution of the phase-type distributions PH(a,, By, Ey)
and PH(aw, B2,E2) is a phase-type distribution with characteristics
(a, B,E), where E = E; U E»,

_ [ (e ifi€ Ey,
*= { (01)0(02);- ifi e E;, (8.2.29)

and

}
B= ( By ”IB‘:2 ) , (8.2.30)

with ()i, the i-th component of o, and b;: =-Be', k=1,2.

Proof Let i(s),1(s),{2(s) be the Laplace-Stieltjes transform of PH(a, B, E),
PH(all B, Ey), PH(as, Bs, E,), respectively. Then, it suffices to prove that
{(s) = 11(8)l3(s) for s > 0. Note that

_a_f{sI-B; -blay
sI B—( 0 sI-B, )

We first show that the matrix sI — B is invertible. This is equivalent to
showing that there exists a matrix A for which

sI-By —bjoay \  ( (sI-By A _T
0 sI-B, 0 (sI-By)~' ] =

In other words, A must satisfy (sI — By)A — b] az(sI — By)~* = 0. Thus,

- -1
(SI—B)—I = ( (SI 631) (SI _ABz)—l ) 3

wilere A = (s3I — B;)"'b] az(sI — B3)™L. Let b, be the vector satisfying
- =T
b, + (B) +] az)e” =0,ie b, = (a2)ob;. Now, using (8.2.26), for the

~

Laplace-Stieltjes transform {(s} of PH(e, B, E) we have

i(s) = (an)ol@z)o
+ (e, {oudoa) ( o —()Bl)_1 (sI —ABz)_1 ) (618"
(@1)ol@z)o + e (sI — By)~'b; + ay Ab)
+ (a1)o(oz)(sI — B2)7'b;
((@)o + as(sT = B1)7'6] ) ((@2)o + ca(sI - B2)™b; )
i (9)la(s). a

It
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It is clear how Theorem 8.2.6 can be generalized in order to show that
the convolution PH(ay,Bi,E;) * ... * PH(an, Bn, Ex) of n phase-type
distributions is a phase-type distribution, n > 2. Its characteristics (e, B, E)
are given by E = Up_, B¢, s = H;:ll(a,-)o(ak),- if ¢ € E, where
k=1,...,n,and

31 braz 0 0
po| 0 B M
0 0 0 -+ B,

Theorem 8.2.7 Let 0 < p < 1. The mizture pPH(ay, By, Ey) + (1 —
p)PH(a, B2, E;) is a phase-type distribution with characteristics (a, B, E),
where E = E, U E,,

_ | plan); if i € Ey, (B, 0
“= { (1-p)a); fieE, B= ( o B, ) (8.2.31)

As the proof of Theorem 8.2.7 is easy, we leave it to the reader.

Note that Theorem 8.2.7 implies that for n > 2 and for any probability
function (p1,...,ps), the mixture Y ,_; pePH(ak, B, Ex) is a phase-type
distribution with characteristics (a, B, E}, where E = U:=1 Ei, a; = pr(ag);
ifi € E; and

B; 0 0 --- O
0 B, 0 --- O
B= .. .
0o o0 o0 .--- B,

We show now that the class of phase-type distributions is “dense” in the
class of all distributions of nonnegative random variables. More concretely,
for any distribution F on R, there exists a sequence F, of phase-type
distributions such that

Jim Fo(z) = F(z), (8.2.32)

for each continuity point z of F'. Recall that in Section 2.1.5 the sequence {Fy,}

was then said to converge weakly to F, or F, 4 F. We need the following
lemma.

Lemma 8.2.6 Let {X,} be a sequence of real-valued random variables,
and € R. If lim,EX, = z and limpyo EX2 = 22, then
limpyoo E f(Xn) = f(z) for each bounded function f : R — R being
continuous ot T.
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Proof Without loss of generality we suppose that sup, |f(y)| < 1. For each
£ > 0 we choose § > 0 such that | f(z) — f(¥)| < € whenever |z —y| < 4. Then,

|E (f(Xn) - f(=)] < E|f(Xa) - f(2)|
< E[f(Xs) - f(@); | Xn — 2| < 0] + B f(Xn) - f(2)}; | Xn — 2| > ]
< e+2P(|Xn — 2| >9).

From Chebyshev’s inequality

E(X,—-z)? EX2-2°+2z(z-EX,)

P( X, — 2] > 6) < — 2 = =

and the proof is complete because £ > 0 is arbitrary and the numerator of the
last expression tends to zero as n — 0. Q

Theorem 8.2.8 The family of phase-type distributions is dense in the set of
all distributions on R .

Proof Let F be an arbitrary distribution on IR and define

F, = F(0)do + Z F(k/n) — F((k — 1)/n))Exl(k, n) (8.2.33)
k=1

for n > 1. We first show that lim,_,o, Fn(z) = F(z) for each £ > 0 with
F(z) = F(z—). Note that

Fo(z) = i F(k/n)e ™= ("” / F(t)dGn . (t), (8.2.34)

k=0

where Gz = Y pog e'"”’ml—&/n This can be seen by comparing the
densities on (0,00) of the distributions given in (8.2.33) and (8.2.34).

Furthermore,
* — k (nz)*
tdGn.(t) =Y — e ™ =g,
/(; por L k!

and [ t2dGn:(t) = n7'z + 2% - 2% as n — oco. Thus, by Lemma 8.2.6,
f0°° F(t)dG, :(t) = EF(X,) — F(z), where X, has distribution G, ;. Now
let F. = (F(0) + F(n))d + ):::l(F(k/n) — F((k — 1}/n)) Erl(k,n). Since
each Erlang distribution is phase-type (see Example 1 in Section 8.2.2), F}, is
a phase-type distribution by Theorem 8.2.7. This completes the proof because
lim,, o |[Fr(z) — Fi(z)| =0 for each z > 0. o
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One can easily show that the family of Erlang distributions {Erl(n,n),n >
1} possesses the following optimality property: among all phase-type distribu-
tions on a state space F with n elements, Erl(n,n) is the best approximation
to &; (in the sense of the Ly-norm). Furthermore, note that Erl(n, n) converges
to 4, as n = oc.

Bibliographical Notes. More details on concepts and results from
matrix algebra and calculus can be found for instance in Chatelin (1993),
Graham (1981) and Wilkinson (1963). A comprehensive treatment of
phase-type distributions is given in Neuts (1981); other references include
Asmussen (1987), Latouche and Ramaswami (1998) and Neuts (1989).
Theorem 8.2.8 is taken from Schassberger (1973).

8.3 RISK PROCESSES WITH PHASE-TYPE
DISTRIBUTIONS

8.3.1 The Compound Poisson Model

In this section we consider the ruin function in the compound Poisson model
with phase-type claim size distributions. As usual we denote the intensity of
the Poisson arrival process by A, and the claim size distribution by Fy. The
ruin function #(u) has been shown in Theorem 5.3.4 to satisfy the relation

T—g(u) =Y (1-p)p*(Fp)*(), >0 (8.3.1)
k=0

{see also (6.5.2)), i.e. 1 — y(u) is the distribution function of the compound
geometric distribution with characteristics (p, F};), where p = (AEU)/8 < 1
with 3 being the premium rate, and F§(z) = (py)™? foz Fy(y)dy for > 0.
For F; = PH(e, B) we can derive a formula which is more suitable for
numerical computations than (8.3.1).

We first show that by passing from Fy to Ff; we do not leave the family of
phase-type distributions.

Lemma 8.3.1 Let ag = 0, B a nonsingular subintensily matriz, and F a
distribution on Ry.. If F' is the phase-type distribution PH(a, B), then F® is
also phase-type and given by F* = PH(a®, B), where

o = —pplaB™. (8.3.2)
Proof Using (8.2.17) and (8.2.11), we get that

Fiz) = pg' /0 F(y)dy = pg' /0 aexp(yBle’ dy
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x
= ppa f exp(yB)dye” = pup'aB ' (exp(zB) - )e”
0
= —u;‘aB"leT - pplaB™? exp(zB)e” =1 - o®exp(zB)e',

where the last equality follows from (8.2.27). Thus, by (8.2.17), F®*(x) is the
distribution function of PH(a®, B). =]

The following useful theorem complements results for compound geometric
distributions given in Section 4.5.1.

Lemma 8.3.2 Let F,G be two distributions on Ry. Assume that G is the
phase-type distribution PH{«, B) with ap = 0 and B nonsingular, and that
F is the compound geometric distribution with characteristics (p,G), where
0<p< 1. Then F = PH(pa, B + pb' a).

Proof By Lemma 8.2.5 the matrix sI — B is nonsingular for all s > 0. The
series 320 (s — B) ! (pb a(sI — B)™1)* is a well-defined ¢ x ¢ matrix for
each s > 0. Indeed,

f:"(sz — B) Y(pb  a(sI - B)-l)*”

k=n
= Y| (1 - B 10T )(a(sT - B) 6TV a(sI - B
k=n
<|lsI — B)™'6"a(sI — B)™'|| Y_ p(a(sI - B)~'6T)*,
k=n

where the above series is convergent since by (8.2.26), 0 < a(sI - By b =
lg(s) < 1for all s > 0. Now

(sI — B—pb" a) i(s[ - B) Y (pb" a(sI — B)~1)¥

k=0

(sI — B) i(sI - B)"}(pb' a(sI — B)~*)*
k=0

—pbTa i(s[ — B) Y (pbTa(sI — B)~1)F

k=0

f:(pra(sI - B) ) - i(pra(sI -B) hYt=1T.
k=1

k=0

Thus, sI - B — pra is invertible for each s > 0, and

fj(pa(s! -B)7'b)* = pa(i(sr - B)"(pb a(sI - B)™)* )b
k=1 =0



CONTINUOUS-TIME MARKOV MODELS 339
= pa(sI-B-pb a)™'b'.
This is equivalent to
00
> (pa(sI - B)™'b")* =1+ pa(sI - B-pb a)~'b".
k=0
Hence

1-p
1 -pa(sl - B)-1b"

=(1-p)+pa(sI-B-pb a) ' (1-p)b". (8.3.3)

By Theorem 4.2.1 and equation (8.2.26), the left-hand side of (8.3.3) is
the Laplace-Stieltjes transform of the compound geometric distribution with
characteristics (p, PH(a, B)); the right-hand side is the Laplace-Stieltjes
transform of PH(pa, B + pb' a), as follows from (8.2.28). The proof is
completed by the one-to-one correspondence between distributions and their
Laplace-Stieltjes transforms. a

The following probabilistic reasoning makes the statement of Lemma 8.3.2
intuitively clear. Let X = Z‘.Nzo U; have the distribution Fx, where
N,Us,Us, ... are independent random variables such that N is geometrically
distributed with parameter p and U3, Us, ... are distributed according to Fy.
We show that X is distributed as the absorption time of a certain Markov
process. For this purpose, we dissect the absorbing state 0 corresponding to
the phase-type distributed random variables U; into two “substates” 0, and
0p, where 0p is no longer absorbing but fictitious. Assume that, given the
state 0 is reached, the Markov process to be constructed takes substate 0,
with probability (1 — p) and substate 0, with probability p. If 0y is chosen,
then a new state from E = {1,2,...,¢} is immediately chosen according to
a, and the evolution is continued. In the spirit of the construction considered
in Section 8.1.3, this leads to a Markov process on E' = {0,,1,2,...,£} with
initial distribution a' = (1 — p, pa} and intensity matrix

0 0
Q=((l—p)bT B+bpa )

The geometric compound X = Zi}io U; is distributed as the absorption time
of this Markov process since Fy is the distribution of the (stochastically
independent) times between consecutive visits of the instantaneous state O,
and N is the number of visits in 05 before the absorbing state 0, is reached.

We are now ready to prove a numerically convenient representation formula
for the ruin function 1(u) in terms of the matrix exponential function.
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Theorem 8.3.1 Assume that the claim sizes are distributed according to
Fy = PH(«, B) with ag = 0, B nonsingular and p = (AEU)/8 < 1. Let
a® be defined by (8.3.2). Then, for allu > 0,

¥(u) = pal®exp(u(B + pbTa*)eT . (8.3.4)

Proof Using (8.3.1), from Lemmas 8.3.1 and 8.3.2 we get that 1 — ¢(u) is
the distribution function of PH(pa®, B + pras). Now, it is easily seen that
formula (8.3.4) follows from (8.2.17). ]

Also, for the multivariate ruin function ¥(u,oc,y) introduced in Sec-
tion 5.1.4, a similar algorithmic formula can be given when the claim sizes are
phase-type distributed. Recall that ¥(u, 00,y) denotes the probability that
ruin occurs and that the overshoot (i.e. the deficit at the ruin epoch) is larger
than y, where u is the initial risk reserve. Using the representation formula
(6.5.17) for ¥(u, 00,y) we arrive at the following result.

Theorem 8.3.2 Under the assumptions of Theorem 8.3.1, for all u,y > 0,

vwooy) = 72 ((a*expB), exp(u( o B’j:’;;’?as ))eT

—pa® exp(u(B + pb‘-a’))eT) . (8.3.5)
Proof By Gy we denote the phase-type distribution PH(a® exp(yB), B), and
by G the phase-type distribution PH(pa®, B + pb' o®). By (8.2.17) and
Lemma 8.3.1

fy+u-v) = l-—ca*exp(ly+u—v)B)e'
= 1-(a*exp(yB))exp((u —v)Ble' = Gy{u-v),

where (8.1.24) has been used in the second equality. From (6.5.17) we have

Wluoo) = YA - X [ Ry +u ) AR ).
k=0 k=0 0

Hence, by Lemma 8.3.2, ¥(u,00,y) = (1 — p) ' p(G2(n) — Gy * Ga(w))(u).
Now, (8.2.17), (8.2.29), (8.2.30) and Theorem 8.2.6 give (8.3.5). (Note that
oz = pof is defective.) ]

8.3.2 Numerical Issues

In Theorem 8.2.8 we proved that the family of phase-type distributions forms
a dense class of distributions on IR;. Moreover, in Section 8.3.1 we showed
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that phase-type distributions lead to formulae involving matrix algebraic
operations, like matrix multiplication and addition, inversion and matrix
exponentiation. In this section we discuss a few numerical methods, helpful
when computing the matrix exponential. We further show some numerical
experiments in computing the ruin function ¥(u) given in (8.3.4).

The most straightforward but, at the same time, most dubious method for
numerical computation of matrix exponentials is the use of the diagonalization
method which has aiready been considered in Chapter 7. This method is known
for its numerical instability. Moreover, it requires that all eigenvalues of the
considered matrix are distinct. Thus, in order to compute the right-hand
side of (8.3.4) we first assume that the eigenvalues of the matrices B and
C = B + pb’ o are distinct and represent these matrices by

B = &(B)diag(0(B))¥(B), C = &(C)diag(0(C))¥(C), (8.3.6)

where ®(B), ®(C) and ¥(B), ¥(C) denote the £ x £ matrices consisting of
right and left eigenvectors of B, C, respectively. Then we compute B~! =
&(B)diag(6;'(B),...,0;'(B))¥(B) and also p, a® and

exp(uC) = ®(C)diag (exp(ub (C)), ... ,exp(uf(C))) ¥c . (8.3.7)

This way we obtain all elements needed to compute the expression in (8.3.4).

Alternatively, exp(uC) can be computed by the following uniformization
method. Put C' = uC and note that max; jeg(f + a~1C');; < 1, where
a = max{|cj;| : i,j € E}. Moreover, since all entries of I + a~'C’ are
nonnegative and all row sums of I + a~'C’ are not greater than 1, we have

0<I+a'CYI+a'C"Y<(I+a 'CYELE,

where the inequalities are entry-wise. By induction, 0 < (I +a~'C")* < E
for each k € IN. Thus,

rk
exp(C") = e *exp (all +a7'CY) = 3 55
k=0

e *(I+a”'CY +R,,
where for the remainder matrix R,, we have

°©  k
a” _
O<|IRalIS D) oge ™ (8.3.8)
k=n+1
This means that, for numerical purposes, the approximation

n ok
exp(C")app = Z %e““(l +a71C')*
k=0
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can be used. It follows from (8.3.8) that the error of this approximation
becomes arbitrarily small when n is sufficiently large.

Another way to compute the matrix exponential function exp(uCY) is given
by the Runge-Kutte method. This is based on the observation that, for each

vector & = (xy,...,&¢), the (column) vector f(u) = exp(uC)z " satisfies the
linear system of differential equations
fOw) = Cfw), (8.3.9)

with initial condition £(0) = 7. A common algorithm for the computation of
the solution to (8.3.9) is a standard fourth-order Runge-Kutta procedure. This
method has the advantage that one computes the whole function exp(uC)z "
for all values u within some interval.

Still another approach for the computation of the ruin function 1{u) is based
on the numerical inversion of the Laplace transform é(z) = [ e~ **c(u) du,
where ¢(u) = p~!9(u) and Rz > 0, see Section 5.5. In the compound Poisson
model with phase-type distributed claim sizes, é(z) can be given in closed
form and, consequently, (5.5.14) can be applied to this case. Indeed, using
Theorems 8.2.3 and 8.3.1 it is easily seen that c{u) is the tail function of
F = PH(a*, B + pb' a®). By an integration by parts we find

Hz) =2t 427 / e do(u) = 2711 - Ip(2))
0

and hence, by (8.2.26) we have
Hz)=2zY1-a(zI-B-pb a®)b"). (8.3.10)

We can now use the approximation formula (5.5.14) when inverting the
Laplace transform ¢é(z) given in (8.3.10). The results of a numerical experiment
for the example given below are included in Table 8.3.2 in the column called
Euler.

Nowadays, the computation of the inverse matrix B~! and the matrix
exponential function exp{uC) can usually be done painlessly by standard
software, as for example MATHEMATICA, MAPLE or MATLAB. For
example, in the numerical experiment discussed below, the computation of
exp(uC) by MAPLE led to the same values of 1(u} as those given in the first
column of Table 8.3.2.

Example Let p = 0.75, and Fyy = PH(«, B) with £ = 4,
a = (0.9731, 0.0152, 0.0106, 0.0010),

—28.648 28532 0.089  0.027
0.102 -8.255 8.063 0.086
0.133 0.107 -5.807  5.296
0.100 0.102 0.111 -2.176

B =
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The eigenvalues of the subintensity matrices B,C are distinct and their
numerical values are given in Table 8.3.1. Furthermore, for EU = —aB7 e’
and b= (by,...,bs) we have

EU = 0.888479, b = (0.0, 0.004, 0.271, 1.863) .

Finally, using (8.3.4), the ruin function ¥(u) has been computed by the
diagonalization method and the results are presented in the first column of
Table 8.3.2 called “Diagonalization”.

i 0:(B) 6:(C)

1 —28.73487884 —28.736208960

2 —8.397648524 —7.462913649 + ¢ 0.511062594

3 —6.090958978 —7.462913649 — ¢ 0.511062594

4 —1.662513676 —0.379909177

Table 8.3.1 The eigenvalues

u Diagonalization Maple Euler
0.1 0.728 043 6176 0.728 043 6171 0.728 041 3240
0.3 0.680 721 2139 0.680 721 2139 0.680 713 0932
0.5 0.632 869 6427 0.632 869 6429 0.632 853 8609
1.0 0.524 073 3050 0.524 073 3051 0.524 029 7168
2.0 0.358 447 3675 0.358 447 3678 0.358 310 3419
3.0 0.245 150 6038 0.245 150 6049 0.244 872 2425
4.0 0.167 664 2644 0.167 664 2654 0.167 202 5238
5.0 0.114 669 5343 0.114 669 5351 0.113 989 3001
6.0 0.078 425 1920 0.078 425 1924 0.077 498 0890

Table 8.3.2 The ruin function ¥(u)

Bibliographical Notes. Another proof of Theorem 8.3.1 can be found in
Neuts {1981) with the interpretation that the ruin function ¥(u) of the
compound Poisson model can be seen as the tail function of the stationary
waiting time distribution in the M/GI/1 queue. Theorem 8.3.2 extends
related results which have been derived in Dickson (1992), Dickson and
Waters (1992), Dufresne and Gerber (1988) and Gerber, Goovaerts and
Kaas (1987), for example, for special phase-type distributions, in particular
for hyperexponential and Erlang distributions. For Runge-Kutta procedures
concerning the solution of linear systems of ordinary differential equations we
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refer to Press, Flannery, Teukolsky and Vetterling (1988). Further numerical
methods to compute a matrix exponential function can be found in Moler
and van Loan (1978). The method for computing the ruin function ¥(u) by
pumerical inversion of its Laplace transform has been stated in Section 5.5.
For further results concerning the numerical computation of the ruin function
¥(u), see also Asmussen and Rolski (1991).

8.4 NONHOMOGENEOUS MARKOV PROCESSES

Life and pension insurance modelling require stochastic processes {X(t),t >
0}, for which the future evolution of the process after time ¢ depends on the
state X(t) = z and also on time ¢. Therefore in this section we outline the
theory of nonhomogeneous Markov processes. In order to gain more intuition
we first consider an example. Let T > 0O be the lifetime of an insured.
If T is exponentially distributed with parameter A > 0, then the process
{X(t), t > 0} defined by

1 ift<T,
X(t)—{ 2 HesT (8.4.1)

is clearly a homogeneous Markov process with intensity matrix

0 0
=(3 %)
If P(T > z) = exp (- f; m(v)dv), where m(t) is a hazard rate function,
then the stochastic process {X(t)} defined in (8.4.1) still fulfils the Markov

property. The reader can show that, indeed, forall n > 1, 4p,4y,...,i, € {1,2}
and 0< ¢ <...<tp,

P(X(tp) =in | X(tn—1) = tn-1,..., X (1) = i1, X(0) = i)
= P(X(@n) =in ] X(tn_l) = in—l) s (8.4.2)

whenever P(X (tp-1) = tn—1,...,X(t1) = 11,X(0) = i9) > 0. However, in
general the transition probabilities P(X (¢,) = in | X (tn—1) = in—1) depend
on the pair (t,_;,¢,) and not just on the difference ¢, — t,_,, as was the
case of a homogeneous Markov process. Throughout this section we consider
Markov processes with the finite state space E = {1,...,£}.

8.4.1 Definition and Basic Properties

‘The homogeneous Markov processes discussed in the preceding sections of this
chapter form a special case of the following class of nonhomogeneous Markov
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processes. Consider a family of stochastic matrices P(t,¢') = (pi;(¢, 1), ;e
where 0 <t < ¢, fulfilling

e P(t,t)=1TIforallt >0, and
e forall0<t<v<¥,

P(t,t") = P(t,0)P(»,¢') . (8.4.3)

Each family of such stochastic matrices {P(t,t'),0 < t < t'} is said to be a
(nonhomogeneous) matriz transition function. Referring to (7.1.7) and (8.1.1),
the matrix identity (8.4.3) is also called the Chapman—Kolmogorov equation.

Definition 8.4.1 An E-valued stochastic process {X(t),t > 0} is called a
nonhomogeneous Markov process if there exist a (nonhomogeneous) matriz
transition function {P(t,t'},0 < t < t'} and o probability function a =
{a1,09,...,04) on E such that
P(X(0) =14, X(t1) =11,...,X(tp) = in)
= @y Pigiy (07 tl)pixiz (tht?) v Pig_yin (tn—h tﬂ) ’ (844)

foralln=0,1,..., ig,41,...,in € E, 0< ), < ... <ty

Similarly to the characterization in Theorem 8.1.1 for homogeneous Markov
processes, we have the following result.

Theorem 8.4.1 The E-valued stochastic process {X(t),t > 0} is a non-
homogeneous Markov process if and only if there exists a matriz transition
function {P(t,t'}, 0 <t < t'} such that, for alln > 1, io,i1,...,in € E and
0<t £...<ty,

P(X(tp) =in | X(n-1) =tn-1,..., X (t1) = 11, X(0) = 4p)
= Pin_1.a (tﬂ—l ) tn) 3 (8.45)
whenever P(X (tn—_1) = tn_1,...,X(t1) =1, X(0) = %) > 0.

The proof is similar to that of Theorems 7.1.1 and 8.1.1.
In this section we assume that the matrix transition function {P(t,t')} is
continuous at t for all t > 0, that is limy o P(0,¢') = I and

‘ N =i =1 8.4.6
%rgP(t,t) mm,) (8.4.6)

for t > 0. We also assume that the limits

o) =tim PG =T P, t) -1

= 8.4.7
it t—t 1t t—t ( )
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exist for each ¢ > 0 with the exception of a set of Lebesgue measure zero.
Recall that all countable sets are of Lebesgue measure zero. On this set of
exceptional points we put Q(t) = 0. By inspection we check that, for i # j,
¢ij(t) >0, gii(t) <Oandforalli € Eand t > 0, .

> ais(t) =0. (8:4.8)
JEE
Again {Q(t),t > 0} is called the matriz intensity function of {X(t)}.

In the nonhomogeneous case, problems can arise. We give an example that
shows that the limits in (8.4.7) need not to exist for each ¢ > 0. Consider the
two-state Markov process defined in (8.4.1). Then, we have

tI
plg(t,t')=P(T5t'|T>t)=1—exp(—/ m(v)dv), t'>t
t

and hence ¢2(t) = limy (¢ — £)~'p12(t, ') = m(¢) requires that the hazard
rate function m(t) is continuous at ¢. Similarly we can prove that

0= ity —mie )

for each continuity point ¢ of m(t) and 0 otherwise.

Theorem 8.4.2 For all i,j € E, 0 < t < t' for which the limits in
(8.4.7) exist, the partial derivatives 8/(0t)pi;(t,t') and 8/(Ot')p;;(t,t') exist
and satisfy the following systems of differential equations:

a 7
FPi(tt) = > qun (e (t,t) (8.4.9)
kEE
and 5
5P (B = Y pult, ) (t). (8.4.10)
keE

Proof Let h > 0 such that ¢t + h < t'. From (8.4.3) we have

pij(t + B, 1)) — pij(t,t') = pij (¢ + B, t') — D pie(t,t + R)pa;(t + h,t')
kEE
= p’ij(t + h‘: t')(l - pii(t:t+ h)) - zpik(t’t + h)pkj(t + hv t') .
k#i
Using the continuity of p;;(t,t'), we obtain

1,3% h~t (pij(t +h, t’) - Dij (t,t')) = — Z ik (t)pkj (t, tl) .
kEE
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In the same way,
lim A~ (pis (¢ = b, t') = pig(t,¢) = — ’;q.-k(t)m,-(t,w :

This gives (8.4.9). The proof of (8.4.10) is analogous. O

The terminology, used in the homogeneous case, becomes more transparent
when the differential equations (8.4.9) and (8.4.10) are called the Kolmogorov
backward eguations and the Kolmogorov forward equations, respectively. In
matrix notation, the equations take the form

%P(t, ') = —Q)P(t,t') (8.4.11)
and P
ﬁP(t, ') = P(t,t)Q(t") (8.4.12)

with the boundary condition P(¢,t) = I for all ¢ > 0. We can integrate the
differential equations (8.4.11) and (8.4.12) to obtain the following result.

Theorem 8.4.3 Suppose that {Q(t),t > 0} is measurable and that the
function {maxi<i<e |gii(t)|,t > 0} is integrable on every finite interval in R..
Then, for all 0 <t < ¢/, the matriz transition function {P(t,t')} satisfies the
integral equations

tl

Ptt)=I+ | QuP(u,t)dv (8.4.13)
t

and

Pt t)y=I+ / t P(t,v)Q(v)dv. (8.4.14)
t

Proof Let t' > 0 be fixed. Using the fact that, for 0 <t < ¢/,
Ptt)y=1I- /t' iP(v t')dv
+ - ¢ av LA k2

(8.4.13) is obtained from (8.4.11). The proof of (8.4.14) is analogous. a

Note that the matrix intensity function {Q(t), ¢ > 0} fulfils the condition of
Theorem 8.4.3 if, for instance, it is piecewise continuous and locally bounded.
Relations (8.4.13) and (8.4.14) can be used to express the transition function
{P(t,t"),0 < t < '} by the matrix intensity function {Q(t),t > 0}, showing
a one-to-one correspondence between the matrix transition function and the
matrix intensity function of nonhomogeneous Markov processes with finite
state space. We need the following auxiliary result, where we put vo = £.
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Lemma 8.4.1 Let g : R, — IR be a measurable function which is integrable
on every finite interval in Ry. Then, for all0 <t <t' < o0, k=1,2,...,

/ / /t’ g(v1) .. q(ve) dvk . .. dvy UROLD, k! D)t g g1s)

Proof Note that

(/f o))’ =/t’~~/t’ a(v1) .- q(vn) don... dv

t' ¢
= Z / (v, <wy, ... < )9(0) ... g(vp)doyy, ... duyy

(f14000080)

where the summation is over all permutations (1,...,4g) of (1,...,k). This
in turn gives

t k
v) dv
([ q(v) )
t' ¢
= k!/ / Iy vy <... <vdg(wr) ... qlvn) du, ... doy,
t t

because all the summands in the above sum coincide. [

Theorem 8.4.4 Under the assumptions of Theorem 8.4.3 we have, for
0<t<t,

Pt t)=TI+ Z / / Q(vl)...Q(vn)dvn...dvl (8.4.16)

and alternatively

P(t, t')—I+Z / / / Q(v1)...Q(vy)dv,...dvy.  (8.4.17)

n=1}

Proof Inserting (8.4.13) into the right-hand side of this equation yields

i

¢ t
P(t,t") I+ /t Q(vl)(I-&— Q(vg)P(vz,t’)dvg)dvl

4 t' ot
I+./¢‘ Qv) dv—&-/t/v1 Q(v1)Q(v2) P(va,t') dvadu, .
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By iteration we get, for arbitrary k > 2,

Pty = I+ tQ(v)dv

/ / Q1) .. Q(vp) dvn ..oy

n=2 Yn -1

+/¢/m”'/vh_1 Q(v1)... Qo) Plus, ') dvg . .. dvy

Put ¢(t) = maxj<i<¢|g:i(t)]- To complete the proof of (8.4.16), it suffices to

observe that
¢ pt! ¢
’(// / Q(vl)...Q(vk)P(vk,t’)dvk...dvl)ul
t Ju Up-1 iy
t' ot ¢’
< K"/// g(v1)...q{vg) dug ... duy
t Jug V1
_ U a(v)dv)t
- —k'— k—00 0,
where the last equality follows from Lemma 8.4.1. O

We still mention another property of the matrix transition function
{P(t,t')}. Under the assumptions of Theorem 8.4.3, the limit

rHmz:(zo(vf_'i)l, oi™) - I) = A(t, 1) (8.4.18)

i=1

exists for each sequence {(v((,"), ., u8™)} such that £ = of™ < u{® < ... <

»™ = ¢ and maxlgign{vg » ff)l} —nooo 0, where the limit A(t t)

does not depend on the particular choice of the sequence {(v{™,...,v5)}

of partitions of the interval [t,¢'], and
tl
At = / Qv)dv. (8.4.19)
t

8.4.2 Construction of Nonhomogeneous Markov Processes

Let o be an initial distribution and {Q(t),t > 0} a measurable matrix
intensity function. Assume that the function {g(t),t > 0}, where ¢(t) =

max;<i<¢ |¢:i(t)] is integrable on every finite interval in R,. Our goal now
is to construct a nonhomogeneous Markov process with the state space E =
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{1,2,...,£}, initial distribution ¢, and matrix intensity function {Q(t),t >
0}. We outline a construction principle which is similar to that discussed
in Section 8.1.3 for the homogeneous case. It can be used for simulation
of nonhomogeneous Markov processes with a preassigned matrix intensity
function.

We define the family of stochastic matrices {P°(t),t > 0} setting

oy _ J (1 —0(1,5))ai;(t)/ai(t) if qi(t) >0,

() = { i i alt) = 0. (8.4.20)
where g;(t) = 3_;; ¢5(t). The nonhomogeneous Markov process {X(),t >0}
with initial distribution a and intensity function {Q(t),t > 0}, whose
construction will be given below, has the form

[o o]

X(t)=)_ X(on)(on <t <0nt1).

n=0
The jumps times a, of the process {X(¢), ¢ > 0} and its states X (o,) at the
jump times are given by the following algorithm.
Step 1 Let X(0) be an E-valued random variable with distribution a.

Step 2 If X(0) = ip, then the sojourn time Zp in state 1o of the process
{X(t),t > 0} has the conditional (possibly defective) distribution function

Fi[:](t) =1- exp(— /: gis (V) d'v), (8.4.21)

where we put 01 = Zg and X (t) = X(0) for 0p = 0 < t < 03.

Step 3 If X(0) =4 and 0; = ¢; < 00, the process assumes state i; at time
t, with probability pg, ; (¢1), which gives the new state X(o1) of {X(t)} at
jump time o;.

Step 4 (analogous to Step 2) If o3 = t; and X (01} = ¢;, then the sojourn time
Z, in state i; has the conditional (possibly defective) distribution function
Fi[:](t) = 1 — exp(- f:“ q(v,i;)dv), where we put o3 = 0y + Z; and
Xt)=X(n) forog =0<t <o,

Step 5 (analogous to Step 3) If X(o1) = ¢; and o2 = t2 < 00, the process
jumps to state i3 with probability p{ ;, (t2), which gives the state X(o2) of
{X(t)} at time o9.

Following this construction, we define the sample paths of {X(¢),t > 0} on
the whole nonnegative half-line R, because

P(lim on, =o0) =1, (8.4.22)
n—o0
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as can be proved by the reader.

Theorem 8.4.5 The stochastic process {X(t),t > 0} constructed above is a
nonhomogeneous Markov process.

The proof is omitted. It can be found, for example, in losifescu and
Tautu (1973).

Example A nonhomogeneous Markov process {X(t),t > 0} with state
space E = {1,...,£} is called a nonhomogeneous birth-and-death process if
Pii1(t) + P71 (t) = Land ppo(t) = pg,_1(t) =1forall1 <i<{,¢t>0. The
products p{, ., (t)g(t, i) and pf;_, (t)q(t,i) are called the birth rate and death
rate in state ¢ at time ¢, respectively.

We leave it to the reader to show that the Markov process {X(t),t > 0}
50 constructed is the “right” one, i.e. its matrix intensity function equals the
preassigned matrix intensity function {Q(t),¢ > 0}.

8.4.3 Application to Life and Pension Insurance

We first review two basic economic factors: interest and discounting in
continuous time. Suppose that the unit of time is one year and that the annual
interest rate is r; . If the interest were to be paid once per year, then the value
of one monetary unit after k years would be equal to (1 + r;)*. Analogously,
if the interest is paid n times per year and the annual interest rate is equal to
Tn, then the value of one monetary unit after k payments of interest is equal
to (147,/n)*. Now, letting k and n go to infinity in such a way that k/n — ¢
and r, — 4, then the value of one monetary unit at time ¢ is equal to e’t. The
value ¢ is called the force of interest. Thus, if § is a force of interest and r is
an annual interest rate which give the same value of one monetary unit after
one year, then § and r are related by d = log{l + r). Conversely, the present
value at time 0 of one monetary unit at time ¢ is equal to v(t) = e~%, which
is called a discount factor in the case of continuous discounting.

Note that the above argument remains valid if a time-dependent force
of interest J(t) is considered. Assume that the function &(¢) is Riemann
integrable and approximate it by a piecewise constant function which is equal
to 8(j/n) for all t € [(j — 1)/n,j/n). If k and n go to infinity so that
k/n — t, one can see as before that now the value of one monetary unit
at time £ is equal to exp( fot &(z) dx). The subsequent discount factor is then

v(t) = exp(— fot d(z)dz). A formal proof of these facts is left to the reader.

Examples 1. We begin with the simplest life insurance model, considering
a single life and only one cause of death. Suppose that the life time of an
insured (after policy issue) is modelled by a random variable T' with density
function f(t) and hazard rate function m(¢). In the introduction to the
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present Section 8.4 and just preceding Theorem 8.4.2, this model has been
formulated in terms of a nonhomogeneous Markov process {X (t)} with state
space E = {1,2}. Assume that during his life the insured pays premiums at
constant rate 3;(t) = B and that discounting is based on a constant force of
interest § > 0. Assume further that the insurer provides a lump payment of
amount by2(¢) = 1 if the policy changes from state 1 (alive) to state 2 (dead).
The net prospective premium reserve y (t) at time ¢ after issue is defined as
the expected discounted value at that time of the subsequent benefits minus
all future premiums payable until the policy changes from state 1 to state 2,
ie.

T—t
p(t) =E@E %79 | T >¢) - gE ( / e~ %% dz | T> t) . (8.4.23)
0

We leave it to the reader to show that the function uy(t} defined in (8.4.23)
satisfies Thiele’s differential equation

dps (t
;gt( L= B+ b (®) - m@)(1 - m (1) (8.4.24)
If the equation p1(0) = O can be solved for the net premium rate

3, then (8.4.23) determines a premium calculation principle based on the
reserve function u;(t). We can represent uj(t) in terms of the underlying
nonhomogeneous Markov process {X(t)} with two states {1,2}. Here, 2 is
an absorbing state, qi2(z) = m(z) and py(t,z) = exp(— [ m(y)dy) =
F(z)/F(t) for £ > t. Note that the condition T > t means that X(t) = 1.
Thus, (8.4.23) can be rewritten in the form

[Cee 0 f@yde  JPUy e dy)f(a)da

ml =7 120)
and consequently
M1 (t) = /tco e"i(”“) (pu(t, z)q12($) e ,Bpu(t,it)) dz . (8425)

The net prospective premium reserve u,(t) when the policy is in state 2 at
time ¢ is p2(t) = 0.

2. The above example from life insurance can be modified in the following
way. Death occurs when the underlying process {X(t)} passes from state 1
to state 2. Rather than paying one lump sum at the time of death, a family
income insurance provides a continuous payment of one monetary unit per
time unit, lasting from the instance of death till a (fixed) time w. As before,
premiums are paid at a constant rate 3 but not longer than over a period ',
during survival of the insured. The quantities w and w’ are supposed to be
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settled at the time the insurance contract is signed. In this case, the benefit
rate function d(¢) in state 2 and the premium rate function 8, (t) in state 1

are given by

_J1 ifo<z<w, _[B o<z <,
bZ(x)—{O ifx>w, ﬁl(”)“{o ifz >w.

Then
m@® = Ef /T e~y z) da | X (1) = 1)
T
-E —8(z—t) d =
(/t e~8-08,(z) dw | X(t) = 1)
can be written in the form
m(t) = ‘/t'°° %=1 (pya(t,2) ba(z) — 1 (t, 7) B (2)) de. (8.4.26)

Furthermore -
ua(t) = / e“‘s(”“‘)bg(x) dz. (8.4.27)
t

In particular, for ¢t < w,
w
a(t) = / e~8e—t) gg = §1(1 — e~dlu-1)) (8.4.28)
t

3. Another example is the following insurance model with three states:
l-active, 2-disabled and 3-dead with possible transitions as depicted on
Figure 8.4.1, where the matrix intensity function {Q(t)} is given by ¢:12(t) =

Figure 8.4.1 Transition graph

a(t) and g;3(t) = ¢23(t) = b(t) for some nonnegative and continuous functions
a(t), b(t). It is easily seen that the corresponding matrix transition function



354 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

{P(t,t")} has the entries

pu(t) = exp(— /t ‘ (a(y) +b(y))dy),
o~ [ ) (1 - e~ [ "ot ).
exp(— /t ’ b(y) dy)-

The above examples are special cases of a more general model which also
includes a general life annuity payment, which is a kind of pension insurance.
This general model allows two types of benefits: lump-type payments and
continuous payments. Qur concrete assumptions are the following:

I

pr2(t)

p22(t)

e The state of the policy is described by a nonhomogeneous Markov process
{X(t)} with a finite state space E = {1,...,£}; a subset Eays of E describes
the absorbing states; we assume that E,ps is nonempty and that the process
{X(t)} ultimately ends up in E,ps.

e The outgoing benefit for the transition i — j at time z (a lump payment)
is b;j(z), and B3;(z) and b;(x) are the premium rate and the annuity benefit
rate in state j at time x, respectively; we will assume in this section that
all the functions B;(z), b;(z) and b;;(f) are continuous and bounded.

e The discounting is based on a general time-dependent force of interest 4(t);
we assume that 6(t) is bounded away from zero, i.e. §(t) > € > 0 for all
t > 0 and some € > 0.

Let N;;(t) denote the number of transitions of the process {X(t)} from
state ¢ to j by time ¢ (i # j). If all ¢;;(f) are bounded, the random variables
Ni;(t) are finite for all ¢ > 0. We therefore assume that all g;;(t) are bounded
and moreover continuous. Thus the cumulative benefit up to time ¢ is

t t
B(t) = /0 bxey dy+ 3 /o b (y) Ny (v)
i#j

and the cumulative premium by time ¢ is [I(¢) = f; Bx(y) dy. Further, the net
prospective premium reserve u;(t) in state i € E at time ¢ > 0 is

w®) =E ([ o(t.2)d(B(e) - (@)

X(t) = z’) : (8.4.29)

where v(t, ) = exp(— f: d(y) dy). If i € Eays is an absorbing state, one usually
puts B;(z) = 0. In this case, (8.4.29) takes the form x;(t) = [ v(t, z)bi(z) dz,
generalizing (8.4.27). However, the following theorem shows that also for
t € E\ Eaps there is an alternative representation formula for u;(t) which
generalizes (8.4.25) and (8.4.26).
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Theorem 8.4.6 Fori € E andt > 0,

W = X[ oot oo da

J.k€E. j#k

-y f i v(t, z)pi; (¢, 2)(B(z) — bj(z))dz.  (8.4.30)

jeEYE

As the proof of Theorem 8.4.6 is based on martingale techniques, it will be
given later in Chapter 11; see (11.2.12).

Notice that the premium reserve functions {u;(t),i € E,¢ > 0} satisfy the
following system of equations. Let 0 < ¢t < #'. Then,

tl
) = [ vt.0) T pu2) ((6,) - b@) + 3 bin(edan (@) dz
t j€E k#j
+u(t,t) 3 pis(t )5 (), (8.4.31)
JEE

which is obtained from (8.4.30) by separating payments in (¢,¢'] from those
in (',00), and by using the Chapman-Kolmogorov equations; see (8.4.3).
Taking derivatives with respect to ¢ on both sides of (8.4.31), we arrive at a
generalization of Thiele’s differential equation, see (8.4.24).

Theorem 8.4.7 The premium reserve functions {pi(t),i € E,t > 0} satisfy
the following system of differential equations. For each i € E,

dp(t
WO~ (50) + aslODpstt) - 3 s s ®)
J#i
+(B:() - (1)) = Y b (). (8.4.32)
J#i
The proof of this theorem is omitted. It can be found, for example, in
Section 7.1 of Wolthuis (1994).

Example A married couple buys a combined life insurance and widow’s
pension policy specifying that premiums are to be paid at rate 8 as long as
both husband and wife are alive; pensions are to be paid at rate b as long
as the wife is widowed and a life insurance of amount ¢ is paid immediately
upon the death of the husband if the wife is already dead (as a benefit to
their dependant). Assume that the force of interest is constant and equal to 4.
The reader should write down the system of generalized Thiele’s differential
equations (8.4.32) for the net prospective premium reserves p;(t).

Note that in general the differential equations (8.4.32) do not help to
calculate p1;(t) because a boundary condition is needed. However, lim; o0 #:(t)
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does not even need to exist. However, if the contract has a finite expiration
time w, then the boundary condition g;(w) = 0 has to be satisfied. As there
was no lump sum at w in our model, the boundedness of b;(t), b;;(t), 8:(t)
and g;;(t) imply limy4y, pi(t) = 0. As no human being grows older than 200
years, we can safely assume that the contract expires after 200 years.

In general it is difficult to solve (8.4.32) analytically. However, the following
iteration procedure leads to an approximate solution to (8.4.32). For each ¢t > 0,
let o denote the next jump epoch after time ¢ at which {X(t)} changes its
state. Put 9(t) = 0 and define pul(t) recursively by

i = E([ w0 (o) (6@ - 5,6 + 1 buloh(a) dz
k#j

j€E
+0(t,0) Y mielt, ;7 (o) | X(0) =) . (8.4.33)
teE
Theorem 8.4.8 For eachi € E and ¢t > 0,
”1;1{1010 ut) = pi(t). (8.4.34)

Proof Denote by ;3 < 03 < ... the epochs after time ¢ at which the state
changes and let o¢g = t. We show by induction that

urt)y =E / o(t,2) 3 £ (:2) (B5(2) — bie) + Y bse(z)asu(a)) da)
t JEE kit
This clearly is true for n = 0. Assume the above equation holds for n. Then,
using (8.4.3) and v(t,0,)v(oy,2) = v(t,z) for t < 0y < z, we get

st (t)

= E (/t ! v(t,z) D pi;(t,z) (ﬂj(z) —bi(z) + ) bjk(z)qjk(:c)) dz

JEE k#3
+o(t,01) Y pie(t, o )ufon) | X(0) = i)
(cE
= E([ 09 Tpst,0)(50) - 5@ + X bu@lan(@) az
¢ j€E k)
+o(t,0) 3 pelt B ([ (01,2) ¥ ps(o1,2) (61() - by(2)
teE 1 JEE
+ Y bik(@)ase(@)) da | X(0n) = ) | X (1) =)
k#g

il

E([ ot:2) X pslt. o) (30 - 1) + (el (@) da

JEE k#j
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+E (/a,,+x v(t, 01)v(o1, ) Z Zpit(t,o'l)pej(O'l,.’L') (ﬂ,»(x) — bj(z)

JEELEE

+ Y bir(@)gir(2)) dz | X(01))
ki

X@:Q

= E (/ta1 v(t,z) Z pii(t,2) (lgj (z) — bj(z) + Z bir(T)gjk (z‘)) dz

JEE k#j
+ [T ot2) Yt ) (8560 - 1)
o1 J€E
+ Y bi(@)aje(@)) dz | X(t) = )
k#j
- e/ " ott,2) Y pst2) (B5(2) - @) + X ba(@)ase @) d)
: i€E k#j

Because v(t,z) — 00 as £ = o0 and g, — 00 as n — 00, the assertion follows
from (8.4.31) by bounded convergence. =]

Bibliographical Notes. Further details and results on nonhomogeneous
Markov processes with continuous transition functions, including the
case of a general (infinite) state space, can be found, for example, in
Tosifescu (1980) and Iosifescu and Tautu (1973). The speed of convergence
of the series of product integrals in Theorem 8.4.4 has been investigated in
Mpgller (1992). For nonhomogeneous Markov processes with discontinuous
transition functions, the theory of product-integration and its application in
insurance mathematics has been surveyed in Gill and Johansen (1990); see
also Helbig and Milbrodt (1998). The original proof of (8.4.19) has been given
in Dobrushin (1953). One of the first papers where nonhomogeneous Markov
processes have been applied to problems of life insurance is Hoem (1969).
Here, the central result is Thiele’s differential equation (8.4.24) for the net
prospective premium reserve and goes back to Thiele; see Hoem (1983).
For generalizations in different directions, see, for example, Milbrodt and
Stracke (1997), Mgller (1993), Norberg (1991, 1992, 1995), Norberg and
Mgller (1996) and Ramlau-Hansen (1990). The exposition of Section 8.4.3
partially follows Wolthuis (1994), where further examples of the general person
insurance model discussed in Section 8.4.3 (like widow's pension, disability
annuity, AIDS models) can be found.
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8.5 MIXED POISSON PROCESSES

In this section we give a thorough treatment of mixed Poisson processes which
have found applications in insurance mathematics because of their flexibility.
We show in particular that a mixed Poisson process can be represented as
a pure birth process, a special type of nonhomogeneous Markov processes.
However, mixed Poisson processes are interesting in their own right.

8.5.1 Definition and Elementary Properties

Consider a counting process {N(t), ¢t > 0}. For example, the random variable
N(t) can be interpreted as the number of claims arriving within a portfolio
up to time ¢. In this section we suppose that the distribution of the counting
process {N(#)} is given by a mixture of Poisson processes. This means that,
conditioning on an extraneous random variable A, the process {N(¢)} behaves
like a (homogeneous) Poisson process, as introduced in Section 5.2.1. Starting
from N(0) = 0, a formal definition goes as follows.

Definition 8.5.1 The counting process {N(t), t > O} is called a mized
Poisson process if there exists a positive random variable, the mixing random
variable A with distribution function F(x) = P{A < z) such that for each
n = 1,2,..., for each sequence {k,;r = 1,2,...,n} of nonnegative integers,
and for 0 < a; <h <as < <...<a, < by,

P((Y (Vo - N =k)) = [ II(*(" oD e aF ().
= (8.5.1)

From (8.5.1) it can be seen that a mixed Poisson process is a stochastic
process with stationary increments. However, in general the increments are
not independent. We return to this question in Lemma 8.5.2. However, it is
already useful to rewrite (8.5.1) in a slightly different form.

Lemma 8.5.1 Let {N(t), ¢t > 0} be a mized Poisson process with mizing
random variable A. Then, for each n = 1,2,..., for each sequence {k,;r =
1,2,...,n} of nonnegative integers, and for 0 < a3 < by <az < b <... <
a5 < by,

P(rjl{N(b,) ~ N(a,) = k,}) = f[ Q’—k—,— DR (Z(b, —ar) )

r=1
) (8.5.2)
where k= Y _, kr, and l5(s) = Ee™? is the Laplace transform of A.
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Proof The statement immediately follows from (8.5.1) since

(ﬂ{N(br) ~ N(a,) = kv ) _/ H (t\(br - ar)) e~ A0-=er) P())

H(br—ar) / A exp( ,\Z(b _a,)dm)

and (d*/dst) [° e dF(A) = (—1)k [° e~ e\k dF(N). n)

Let {N(t)} be a mixed Poisson process with mixing distribution function
F(X). To facilitate the writing we use the notation a;(t) = P(N(t) = i). Note
that (8.5.1) implies

ai(t) = /; e M (’\t) T dF()),  ieNN. (8.5.3)

Thus, for each fixed time point £, the random variable N(t) has a mixed
Poisson distribution as defined in Section 4.3.3. If F is degenerate at a fixed
point A, then we retrieve the Poisson random variable with intensity .

One remarkable property of mixed Poisson processes is that the probabilities
{ao(t),t > 0} for state 0 determine all the other probabilities {a;(),t > 0}
for ¢ > 1. Note that the function aq(t) is differentiable infinitely often
by (8.5.3) and Lebesgue’s theorem on dominated convergence. Furthermore,
(8.5.3) yields

ofFl(t) = (-1)* /0 ” Abe~MyF()) = (—1)k§ak(t), kelN. (8.5.4)

We can of course transform the explicit formula (8.5.3) for a;(t) into an
equivalent expression for the generating function gy (s). This leads to the
following result.

Lemma 8.5.2 For |s| < 1 andt >0,
an(s) = Ia(t(1 - 9)), (8.5.5)
and hence
ENB(N#H -1)...(N@t)—-r+1)) =t"E(A"), (8.5.6)
forr=1,2,.... In particular,
EN() =tEA, Var N(t) = t* VarA+ t EA (8.5.7)
and for the index of dispersion

Ing = (EN@) WVarN(#) = 1+t 14 (8.5.8)
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Proof Applying Fubini’'s theorem we can write

EsN(t) = ian(t)sn _ / —At z (AtS) dF(A)

n=0 n=0

dne(s)

= / " exp(= (1 — 8)) dF(A) = iy (t(1 — 5)) .
[1]

This shows (8.5.5). To evaluate the successive factorial moments of N(t),
take the rth derivative with respect to s € (0,1) of gn(,(s) to obtain

ﬁggl)(s) j;) (At)" exp(—At(1 — 8))dF() and hence as s T 1 we get, finite or
not, E(N(£)(N(t) = 1)...(N(t) — 7 + 1)) = gigs,, (1) = 'E (A"), o

Lemma 8.5.2 implies that within the class of mixed Poisson processes, the
Poisson process is the only one that is not overdispersed. It is also the one with

the smallest variance function Var N(t}, which on top of that is linear and not
quadratic. We now generalize (8.5.4) to the case of bivariate distributions.

Lemma 8.5.3 For ki, k2 € IN and t,h > 0,

k1
P(N() = ky, N(t+h) = ky +k3) = Z o 2T (Cpatkagletka gy (85.9)
and hence
Cov (N(t), N(t+ h) — N(t)) = thVarA . (8.5.10)

Proof We omit the proof of (8.5.9) since it is analogous to that of (8.5.4).
Using (8.5.4) and (8.5.9) we have

E (N(#)(N(t+ k) - N(1)))
= Y kkP(N@) =k NE+h) - N@E) = k)

k1,k2€IN
thr pka ki +k
= Y klkgk'k‘ / Aertkag=At+h) g r(3)
k1.k2€IN

- [T RGN (X wld)eremaroy
k1=0

/ (tA)(RA)etrehre XEHR) AR (X)) = thE (A?).
1]

Since {N(t)} has stationary increments, this and (8.5.7) give (8.5.10). a

It follows from (8.5.10) that neighbouring increments of a mixed Poisson
process with nondegenerate mixing distribution are positively correlated. This
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implies in particular that the increments are not independent, except in the
case of a Poisson process. Thus, a large number of claim arrivals in a given
time period has a tendency to trigger off a large number of claim arrivals in
the next period as well.

The reader should see how the result of Lemma 8.5.3 can be generalized to
the case of n-variate distributions.

8.5.2 Markov Processes with Infinite State Space

In order to represent a mixed Poisson process as a Markov process, we have to
generalize the notion of a nonhomogeneous Markov process with a finite state
space as it has been introduced in Section 8.4.1. Fortunately this extension to
the case of a countably infinite state space is easy.

Consider the state space F = IN and a family of matrices P(t,t') =
(93 (t,)); ;> Where 0 < t < ¢/, fulfilling P(t,t) = I for all ¢ > 0, and

P(t,t') = P(t,v)P(v,t'), (8.5.11)

for all 0 < ¢t < v < t'. Then, an IN-valued stochastic process {X(t), t > 0}
is called a nonhomogeneous Markov process if the conditions of Definition
8.4.1 are fulfilled. We further assume that the conditions formulated in
(8.4.6),(8.4.7) and (8.4.8) hold, i.e. the matriz intensity function {Q(¢), t > 0}
is well-defined. Besides this we assume that ¢;(t) < oo for all ¢t > 0 and
i € IN, where ¢;(t) = 3°,, ¢i;(t). This means that each state i € IN is stable.
Under the above assumptions, the Kolmogorov differential equations (8.4.9)—
(8.4.10) (and their matrix forms (8.4.11)-(8.4.12)) remain valid. However,
the theory needed to solve these (infinite) systems of differential equations
is more complicated. We omit the details and refer the reader to Chapter 2
in Bharucha-Reid (1960), for example. Instead we discuss a few examples of
nonhomogeneous Markov processes with infinite state space. Note that for the
probabilities po;(0,t) = a;(t) for t > 0 and i € IN, (8.4.10) implies

a)(t) =Y ar(®aui(t) — as(ailt), i€ N, (8.5.12)
ki
Examples 1. We first consider the case of a (nonhomogeneous) pure birth
process, where ¢;;(t) = 0 for all j # 4,1+ 1. In addition we take
Gige1(8) = b+ (@ +i), (8:5.13)

for all i € IN and t > 0, where e,b > 0 are some constants. The resulting
process {X(t)} is called a Pdlya process with parameters a,b. Specifying
the intensity functions gi; and g¢; in (8.5.12), we see that the probabilities
ai(t) = P(X(t) =] X(0) = 0) satisfy the system of differential equations:

ol (t) = —(b+t) laao(t), (8.5.14)
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and, fort=1,2,...,

o) = b+ ((a 4+ — Daim1(t) — (a+i)au(t)) . (8.5.15)
Together with the initial condition
1 ifi=0,
@i(0) = {0 otherwise, (8.5.16)

this system of differential equations has the solution

ai(t) = (a +:: - 1) (%)a (ﬁt_—b)' (8.5.17)

for all i € IN and ¢ > 0. Note that this is the probability function of the
negative binomial distribution NB(a, /(¢ + b)) and hence for each ¢ > 0

ia,-(t) =1. (8.5.18)

=0

This means that a Pélya process does not explode in finite time. We leave it
to the reader to derive (8.5.17) as an exercise, using the recursion formulae
(8.5.14)—(8.5.16). Let us mention that a Pdlya process can be approximated
by a (homogeneous) Poisson process when a,b > 0 are large. The reader is
invited to prove this.

2. The class of pure birth processes can be modified in the following way.
Assume now that ¢;;(t) = 0 for all j #i—1,4,i+ 1. Then, {X(t)} is called a
{nonhomogeneous) birth-and-death process. If we additionally assume that

i fA®i =i+,
‘Iu(t)_{u(t)i ifj=i-1,

for some nonnegative functions A(¢) and u(t), then the probabilities o}(t) =
P(X(t) =i| X(0) = 1) are given by aj(t) = ¢;(t) and

ai(t) = (1 - ()1 — () ca(t)' ™, (8.5.19)
foralli=1,2,..., where ¢;(t) = 1 —e~91() /go(t), c2(t) = 1 — (g2(2)) ! and
t } ¢
)= [G0)-A)w, a6 =e2O(1+ [ woen ).
0 0
The proof of (8.5.19) is omitted. It can be found in Kendall (1948), for example.

Note that (8.5.19) yields expressions for the expectation and the variance of
X(t):

t
EX(t)=e ) VarX(t) = e 200(® / (A(v) + p(v))e ) du .
0
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Furthermore, the probability of extinction before time ¢ is given by

a(t) = o (@®)en dv
T+ [l pe)en dy

8.5.3 Mixed Poisson Processes as Pure Birth Processes

In this section we derive an intimate link between mixed Poisson processes
and pure birth processes. In Example 1 of Section 8.5.2, the latter have
been introduced as continuous-time but possibly nonhomogeneous Markov
processes with state space £ = IN. They are determined by the intensities
or instanteneous birth rates ¢i;41(t) = —gqii(t) = qi(t) which are the only
nonzero elements of the matrix intensity function {Q(¢)}. The Kolmogorov
forward equations (8.4.10) are then

'g_tfpi.j (t7 tl) = —q; (t,)pi,j(t» t') + qj—l(tl)pi,j—l(tv t’) ifd # j)
228, t) = —g(!)pis(t,¥) if i = j,

with boundary or initial condition p; ;(t,t) = &;(j).
The link between mixed Poisson processes and pure birth processes is given
by the following result.

Theorem 8.5.1 Let {N(t),t > 0} be a mized Poisson process with mizing
random variable A. Then, {N(t)} is a pure birth process with intensities

a(t) = -0 ®)'ag™ @), €N, (8.5.20)

where ag(t) = A (t).

Proof We first show that the mixed Poisson process {N(t)} is a Markov
process. Notice that, by (8.5.2), we have P(N(t,) = k1 +...+ kp,...,N(0) =
ko) >0forall ky,...,kpy E Nand 0 =¢tg < t; < ... < tp,. Furthermore, for
aln>1,k,....knelNand 0=z <23 < ... < 2y,

PN(@xy)=k,....N(zo)=ki +... +kp)
n _ ke
= H (zr er'—l) (__1)k1+...+k.~a‘()b1+---+kr)(x") .
r=1 T
Thus, we can write

P(N(tnp1) = ki + ...+ knpt | N(tn) = k1 + ...+ knyoo o, N(t1) = k1)

veetkn
TI2E (b — tyq)fr (k)= (—1)r+FhariglRitotbos) gy

e, ¢ — tr_l)k.-(kr!)-l(_1)k1+...+k..aé’°1+..,+k“)(tn)
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k1+...+ka
(tn+1 - tn) nH ( l)kn+1 a(!) ' * +1)(tn+1)
a(()kl+.-~+kn)(tn)

kn+l
= P(N(tn+1)=k1+...+kn+1 IN(tn)=k1+...+kn) .

Put p;;(¢,t') = P(N(t') = j | N(¢) = i), where we assume that 0 < ¢t < ¢,
Then by the result of Lemma 8.5.3 we have,fori < jand 0 <t < t/,

(¢ —~¢ j—i Cea
n_ P(N@#)=i,N({t')=3) _ %[(Tj—_-%ﬁ-(_l):ag)(t)

Pi(t,t) = P(N(t) = i) - g(-l)ia(‘,"(t)

so that .
(¢ =y~ o (¢)
G- o)’
for i < j, and p;;(t,t') = 0 otherwise. It can be seen that the matrices
Pt t') = (pij(t,t")ijem given by (8.5.21) satisfy P(¢,t) = I for all
t >0, and pi;(t,u) = 3% pik(t,t')pe;(t',u) for all 0 < ¢t < ¢' < u and
i < j, i.e. condition (8.5.11) is satisfied. This shows that {N(¢)} is Markov.
Furthermore, it follows from (8.5.21) that ¢;;(¢) = 0 for all j # 4, + 1 and
that ¢;(t) = —gi,.+1(t) is given by (8.5.20). n]

pii(t, ) = (-1

(8.5.21)

One can show that the transition probabilities p;;(¢, ') satisfy the Kolmo-
gorov forward equations (8.4.10) with the prescribed intensities. For i # j,
take first logarithms of both sides of (8.5.21) and then partial derivatives with
respect to ¢'. This gives

8 :
e Pini(t:t) _J-i ot (¢)
pigt,t) -t D

On the other hand we can also directly evaluate the right-hand side of the
Kolmogorov forward equation. Then, by (8.5.20) and (8.5.21),

nwPij-1(t.t")
—g;{t') + g1 () ===
2 7 1( ) Pi,j(t, t,)

| AR ) =" i ),
a‘()J—i-l)(tr) a((,’)(t’) G-1-9" (’)(t)
of () af V() (¢ = )i~ ol (t')
G- o

¥

(15

which coincides with the previous expression. For i = j the calculation is even
easier.
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Combination of equations (8.5.4) and (8.5.21) expresses the transition prob-
abilities p;;(t,t') in terms of the probabilities a;(t) = P(N(t) = i),

where i < j and 0 < t < ¢'. Further, note that (8.5.20) can be written
in the form go(t) = —af)l)(t) and g;+1(t) = ¢;(t) - qj(il)(t)/qj(t) for § > 0.
Alternatively, combine (8.5.4) with (8.5.20) to get another recursion formula

t , -
aj(t) = 3Qj-1 (t)aj_.l (t) N ] = 1,2, e (80.23)

In many practical situations it suffices to solve the Kolmogorov forward
equations for the case : = 0 and s = 0. We then arrive at

oM (t) = —gj(B)a;(t) + gi—1(Daj_1(t) if j #0,
ol (t) = —go(t)ao(t) ifj=0,

with initial condition a;(0) = do(J), and the intensities are given by (8.5.20).
Once the functions {a;(t),j € IN} have been properly determined, the
transition probabilities p;;(t,t') follow immediately from (8.5.22). That the
resulting transition probabilities p;(¢,t') satisfy the gemeral Kolmogorov
forward equations should be proved by the reader.

A similar type of argument leads to the following result.

Corollary 8.5.1 The mized Poisson process {N(t)} satisfies the binomial
criterion, t.e. for 1 < j and 8 < t the inverse transition probabilities
rij(t,t') = P(N(t) =i | N(t') = j) are given by the binomial distribution

NAYEAY AN
Proof Note that
rolt ) = PVE) = | V() =) =% = e t) 20
and apply formulae (8.5.4) and (8.5.22). a

8.5.4 The Claim Arrival Epochs

We turn to the claim arrival epochs {o,} defined by the mixed Poisson process
{N(t)}. Recall that the arrival epoch o, of the nth claim satisfies the identity
{N(t) > n} = {on <t} for all t > 0. For the joint distribution of the arrival
epochs (o1,...,0,) we have a generalization of the conditional uniformity
property of homogeneous Poisson processes stated in Theorem 5.2.1.
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Theorem 8.5.2 The joint density function fs, 0. (T1,...,Zn) of the random
vector (61,...,0,) is given by

e (n) n!
foryon (@15 80) = / AngmAEn dF(A) = (-1)"aqg ' (zn) = z_nan(xn) ’
° " (85.25)

for0< z; <... <z, while the density fo, .. o, (T1,...,Zn) is zero elsewhere.

Proof Let bp =0 < a; < by < ... < a, < bn = z, be a sequence as in
Lemma 8.5.1. Then

P(ﬁ{ar <or< br})
r=1
= P(ﬂ{N(br_l;ar) =0}n ﬁ {N(as;b,) = 1} N {N(an; bp) > 1})
r=1 r=1
= Il - I? 3
where

n n—1
I =P((Y{N®r1;0,) =0} [ {N(ariby) = 1})
r=1 r=1
and

n n-—1
I = P(ﬂ {N(br-13ar) = 0} 0 () {N(@r;br) = 1} N {N(an;bs) = 0}) .

r=1 r=1

We apply the representation formula derived in Lemma 8.5.1 to both terms
of the last difference. For the first term, in (8.5.2) we choose k, = 1 when r is
even, and k, = 0 for r odd. This yields

L = (-1)""ay" Y(an) In](b, -a,).

r=1

For the second term we similarly find that kj,, = 0 and
n
L= (-1)""o§" V(by) [[br - ar).
r=1

Thus, we ultimately obtain

n

P((V(or <onst)) = [16c a0 (o) - o 0)

r=1 r=1

by by
/ v (=Dl () Az . . . dxy
ar Gn

I
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where the last equality follows from (8.5.4). O
From Theorem 8.5.2 a number of intriguing corollaries can be obtained.

Corollary 8.5.2 The density f,, (z) of the arrival epoch o, i3 given by

fou () = a,.( )= (—(n—fl—)l%z"”la((,")(z), z>0. (8.5.26)

The latter result itself leads to a set of rather simple formulae linking
characteristics of oy, to the distribution of the mixing variable A.

Corollary 8.5.3 For eachn > 1,

. 0 A A"
B (s) = /0 (535)" 4P (8.5.27)
and
Eo,=nEA™Y), Ed=nn+1)E(A?). (8.5.28)

Note that the expectations in (8.5.28) do not have to be finite. Furthermore,
(8.5.28) shows that the expected waiting time for the arrival of the nth claim
is proportional to n. The proportionality factor gets larger when the mixing
distribution is more concentrated around small values of A.

The joint distribution of two consecutive claim arrival epochs illustrates a
remarkable dependence structure in the mixed Poisson model.

Corollary 8.5.4 The conditional densities f; iz, . .on_(Tn | Z1,...,%n-1)
and f,.10._,(ZTn | Zn_1) of the sequence {on;n > 1} exist and are given by

(n)
oy (z
Joniorimon1 (@n 1 T Zn-1) = fonlon., (Tn | Tn-1) = _'—(JlQTf_nz— )
&) (Tn-1)
(8.5.29)

for0<z <...<xTp_y <&n, n=12,..., and zero otherwise.

Proof Let 0 < x; <...< zy,. Then, using (8.5.25), we have

falv'--ycn—lyan (T1y-- 1 Tn-1. Tn)
R U L1y Ip-1) =
f ni0lyyOn 1(1:71 ' 1 n 1) fn,‘..,a"_l(z!’--~axn—1)
n! an(xn) (xn—l)ﬂ-l - n (zn—l)"—l an(:tn)
B zn (n—D0ap-1(@n-1) 2n Tn an—1(Tn-1)
Recall from (8.5.2) that
fou_1,00(Tn-1:Tn) = ‘an( n)&l_l)‘_“ (=" ;:_f (n) (zn)
n—1:0n xn ( ) ( 2)'
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and
net_Tnci (a-1)
f”n—l(zn-l) = (_1) (n _ 2)! 20 (zn—l) -
Now, with the help of (8.5.4), we obtain (8.5.29). =]

From the result of Corollary 8.5.4 we realize that the sequence {on,n > 1}
has the Markov property; see also Section 7.1.1.

8.5.5 The Inter-Occurrence Times

We turn to the times in between consecutive claim arrivals in the mixed
Poisson process. The inter-occurrence times are defined by the relations
T\, = o1 and for n > 2 by T, = 0, — 0n—1, and their joint density
fr...r.(x1,...,%,) has a simple form.

Theorem 8.5.3 Let {N(t)} be a mized Poisson process. Then
oyt (@1, -y 20) = (1) (@1 + ... + 24) (8.5.30)
for zy,...,24, > 0.

Proof Use the chain rule for conditional densities to write

n
1y, 1. (%1, 20) = H Ittty (@ {21, oo 20 21) (1)
r=2
In order to determine the conditional densities fr 1y,..1._, (% | T1....,Zr—1)
notice that

P(T. <z, | T =1,...,Tpcy = Tpy)
= Plo, <oy +... 4z, |loy=a1,...,001 =21 + ...+ Tpy)
= Plo, <oy +...4+ 2, jop1 =21 +...+21),

where in the second equation we used the Markov property of the sequence
{on} of arrival epochs as derived in Corollary 8.5.4. Hence

fT,-[T;,...,T,._l(xr | Z1ye0 0y Teoy) = Jortooo {1+ 2 |2+ .+ Troy).

Now (8.5.29) together with fr, (x1) = fo,(z1) = af(,l)(:vl) yield the required
result. u]

One of the surprising consequences of Theorem 8.5.3 is that the inter-
occurrence times are identically distributed but not independent. Moreover,
(8.5.30) implies that for all permutations (iy,...,i,) of (1,...,n),

fT],Tz,...,Tn (3:1,1‘2, ey -'l'n) = fT.'l,TiQ,...,Ts" (Z‘l,x2, “e- ,.’En) .
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This means that {Ty,...,T,} is an ezchangeable sequence of random variables,
gince their joint distribution is invariant under permutations of the arguments.
Restricting our attention to one or two inter-occurrence times, we immediately
get the next consequences of Theorem 8.5.3.

Corollary 8.5.5 Let {N(t)} be a mized Poisson process with mizing
distribution function F()\) = P(A < A). Then,

f'r” (.’L‘) = —af)l)(;c) = ﬂa%x—z = Loo e N2 dF(/\) .

In particular ET, = E(A™!) while E(T2) = 2E(A~2). For the bivariate
case,

00
MAwwhm9w+w=L A2 AN g ().
In particular E (T;T) = E (A~2) and Cov (T}, Ti) = Var (A~1).

These results entitle us to reformulate the conditional uniformity property of
mixed Poisson processes from Theorem 8.5.2. The latter meant that a mixed
Poisson process has the order statistics property, i.e. given N(t) = n, the
claim arrival epochs a1,...,0, follow the same distribution as the sequence
of order statistics from a uniform distribution on [0,¢]. Using the notation
foreon|N(@) (%15 .-, Tn | n) for the density of the conditional distribution of
(01,-..,00) given that N(t) = n, we find the following result.

Theorem 8.5.4 Let {N(t),t > 0} be a mized Poisson process. Then, for
0< <...<zp <0,

a(")(t)
P(Nt)=n|o1=21,...,0np =Ts) = _T?AT_—_ (8.5.31)
Gy (zn)
and
JorroaN@®) (Z1: - T | 1) = for . onloni (T1y- - Za [ 8) =27 "0L.
(8.5.32)

PTOOf As P(N(t) =n [ O] = F1y.:.4,0q = a:n) = P(T,H.l >t—x, | gy =
Ti,...,0n = Tp), (8.5.31) follows from Theorem 8.5.3. Furthermore,

forvoniN®){(Z1s. - Zn | M)
P(N#)=n|0o1 =2Z1,.--,0n = Zn) foy....0n(T1,. .+, Zn) .
PN@D =n)

Replacing the factors in the numerator by the right-hand sides of (8.5.31) and
(8.5.25), respectively, and applying (8.5.4) to the denominator, we finally get
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that fs,, . o0 N(@®(Z1,...,Zn | B) = t7"n! holds. In a similar fashion, applying
Theorem 8.5.2 and Corollary 8.5.2 to the ratio fy, . onjonsi (T1s---1Tn | E) =
frrrnomanss (T1y -+ 2 Enst)/ fo,,, (1) We obtain (8.5.32). o

The following result is vet another phrasing of the same order statistics
property.

Theorem 8.5.5 Consider the sequence {on.n > 1} of arrivel epochs of a
mired Poisson process. Then, for0< z; < ... <z, <1,

J01/0n41:03/TnstresOnfonsr (1 T2, Tn) =1L, (8.5.33)

The proof of Theorem 8.5.5 is based on standard transformation of random
variables and is left to the reader.

8.5.6 Examples

We now give a few examples of mixed Poisson processes that have found their
way into the actuarial literature.

1. The easiest example is the homogeneous Poisson process itself, which is
characterized by the degenerate mixing distribution function F(z) = dp(z—A),
where A is a positive constant. Since in this case a;(t) = e~ (A\t)?/i! for all
i € IN, we find that ¢;(t) in (8.5.20) is given by g;(t) = A.

2. Discrete mixtures of homogeneous Poisson processes form the next example.
Suppose that there exists an increasing sequence {\,} of positive values A,
such that F(z) = Y oo ando(z — An) for some sequence {a,} of weights with
an > 0 and ¥ a, = 1. It is easily seen that a;(t) = Y, ane ™ (Ant)/i!
holds. In the special case where A\, = n and a, = e #u"/n! for some p > 0,
we have ag(t) = exp(—u(l —e™*)). The corresponding mixed Poisson process
is called of Neyman type A.

3. Another important example of a mixed Poisson process is obtained by
choosing the gamma distribution I'(a, b) for the random variable A, i.e. f(x) =
dF(z)/dz = (b*/T'(a)) e **z%~, where a and b are positive constants. Some
authors have coined this mixed Poisson process a Pascal process. It turns out,
however, that the resulting mixed Poisson process is a Pdlya process with
parameters a, b, as has been defined in Example 1 of Section 8.5.2. A simple
calculation reveals that the number N(t) of claims arrivals up to time ¢ is
NB(a,t/(t + b)) distributed, so that

a(t) = (‘”z B 1) (be)(t—i—b)‘ (8.5.34)

and this coincides with (8.5.17). For the generating function gn(;)(s) we obtain

N (s) = (ﬁ_—-‘q))a ) (8.5.35)
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Proofs of (8.5.34) and (8.5.35) are easy exercises. Furthermore, using (8.5.20)
and (8.5.34), we arrive at the transition intensities

i+lagi(t) a+id
t ai(t) b+t’

qi(t) = ite N,

as in (8.5.13). Thanks to (8.5.22) we can even calculate the transition
probabilities

NN (R e A2 Rt 1 Yo B
p"(t’t)"(aw—-l)(t')(t'+b) v BSpE<t

4. The Sichel process is obtained by using a generalized inverse Gaussian
distribution with density
—0,,6-1 24 .2
n "z T+ .
f@) =3 2Ks(/e) (-5 ) ita>0

0 ifz <0,
and n,£ > 0 and # € R as mixing distribution. The function Kg(x) is the
modified Bessel function of the third kind defined in (2.2.2). For 8 = —0.5
we get the inverse Gaussian distribution, and the resulting mixed Poisson

process is called an inverse Gauss—Poisson process. From the definition of the
modified Bessel function of the third kind we can derive the relationship

/:o exp(—bzx — g)mg'l dz
= [Ten(-va((Ge) " G e
= 2 (%)0/2 Ks(2Vab) (8.5.36)

for a,b > 0. This integral representation gives us an expression for the
Laplace-Stieltjes transform of A:

. oo —-2,.0-1 2 2
Ia(s) = /0 exp(—sm);’—K—a—(a;'/—g) exp(—f—g—f—) dz
_ _9/2K0(\/§Zm71/£)
= (2s+1) Ko (n/8) .

By (8.5.5), the generating function of N(¢) is then

o2 Ka(/1 +26¢(1 - s)n/&)
Kq(n/&) '

dn(8) = (1 +28¢(1 - 8))”
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Relation (8.5.36) leads to the explicit formula for the probabilities a;(#):

0o i -—0/\6‘—1 /\2+ 2
ailt) = / exp(—tx) N7 exp(— 1 )dA
0

il 2Ky(0/8) 2%z
= @y ag-oor K0+i(KV:(:)'/§E) tit).

Finally, (8.5.20) and the latter relation yield the following expression for the
transition intensities ¢;(t):

gi(t) = —1 Korin1 (V1 +260/6)
T VITF2E Kowi(VTF 20n/€)

5. As a final example we mention the Delaporte process, which is a mixed
Poisson process with mixing distribution a shifted gamma distribution with
density

f(::):{ (@' =0t ep(onlz - 8) 2>

The Laplace-Stieltjes transform of A is iy (s) = e~%*(n/(n +s))* for s > 0 and
hence, by formula (8.5.5), the generating function of N(t) is
. a
dne(8) = e—(l—s)tb(ﬁ_—é’_—sﬁ) , lsf<1.

From this, we immediately conclude that for all ¢ > 0 the random variable
N(t) has the same distribution as N;(t) + Ny(t), where N;(t) and No(t)
are independent, N,(t) has the Poisson distribution Poi(bt) and Nz(t) has
the negative binomial distribution NB(a, t/(t + b)). Moreover, each Delaporte
process is the sum of a Poisson process and an independent Pélya process.
We leave it to the reader to prove this. The probabilities a;(t) are then given
in terms of the confluent hypergeometric function Uf(a,b;z), defined by its
integral representation (2.2.5). Thus

al) = [ eMELI0 4t e (—nh- ) ar
b -

I'(a)
tptbite 1 [ i, a1 —(n+t)by
e F(a),/o (y + 1)’y e dy
(tb)* (Ub)a

= ——Ua,i+a+1;(n+1t)b).

In particular, for ag(t) we obtain a simple formula:
("ﬂ’)ae_bt /-oo a~1_,—(
) = n+t)bv
ao(t) tw ), U ° dv
(nb)®
I'(a)

e M ((n+1)b)"T(a) =e *(n+1)~".
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Using now (8.5.20) we see that go(t) = ——a((,l)(t)/ag(t) =b+a/(n+i).

Bibliographical Notes. A survey on nonhomogeneous continuous-time
Markov processes with countable infinite state space can be found,
for example, in Bharucha—Reid (1960). For further details on mixed
Poisson processes we refer to Grandell (1997). The relationship between
nonhomogeneous birth processes and mixed Poisson processes has been
discussed, for example, in Lundberg (1964) and McFadden (1965). Mixed
Poisson distributions whose mixing distribution is an inverse Gaussian
distribution have been considered in Sichel (1971); see also Sichel (1974,1975).
The Delaporte process was introduced in Delaporte (1960) as one of the
first applications of mixed Poisson processes in an actuarial context; see also
Delaporte (1965) and Willmot and Sundt (1989). Other special examples of
mixed Poisson processes can be found in Albrecht (1984), Philipson (1960)
and Willmot (1986).
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CHAPTER 9
Martingale Techniques I

A variety of reasons can be given to study martingales. Not only do they
constitute a large class of stochastic processes, but in recent years, insurance
and financial mathematics have been prime fields of application of martingale
techniques. In contrast to Markov models, the theory of martingales usually
does not give tools for explicit computation of quantities of interest, like ruin
probabilities. However, martingale techniques appear quite unexpectedly in
proofs of various results. In particular, martingales turn out to be particularly
useful when constructing bounds for ruin probabilities. Even more important
is the backbone structure provided by martingale theory within the realm of
financial mathematics.

The notions and results considered in the present chapter are basic for the
modern theory of stochastic processes. Unfortunately, in contrast to most of
the material given in the preceding chapters, we can no longer avoid using
more advanced concepts of probability theory. More specifically, the notion of
conditional expectation with respect to a o-algebra will broadly be applied.

9.1 DISCRETE-TIME MARTINGALES

9.1.1 Fair Games

We start from a simple example that will help to understand the general
martingale technique introduced later. A gambler wins or loses one currency
unit in each game with equal probability and independently of the outcomes
of other games. At most ng games can be played, but the gambler has the
privilege of optional stopping before ng. We can formalize his gains in terms
of a random walk {S,,n € IN}. Put So =0and S, =Y .., Y; and ¥3,Y5,...
as independent and identically distributed random variables assuming values
—1 and 1 with probability 1/2, respectively. Thus S, is the gambler’s gain
after the n-th game. We now define a stopping rule bounded by no. Let
wy, : Z* = {0,1}, n = 1,2,...,n9, be a family of test functions with
wn, = 1. A stopping rule is a random variable T taking values from {1,...,n0}
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such that 7 = n if and only if wy(¥},...,¥;) =0fori =1,...,n -1 and
wa(Y1,...,¥n) = 1;n =1,...,n9. So, if after the n-th game the test function
wy, shows 0, then the gambler continues to play, while if the outcome is 1, he
quits. If the stopping rule 7 is used, then the gambler leaves the game with
the gain S, = 3" 1% SpX(r = n). We show that

ES, =0. (9.1.1)

This equation is a special case of an optional sampling theorem in
Section 9.1.6, stating that the game is fair. Note that the event v = n is
independent of Y, 41,...,Yy,, forn=1,...,np — 1. Hence

ESnp;t=n] = E[Sp+Ynui+...+ Yo7 =n]
= E[Su;tr=n]+EYou+...+ Yo7 =]
E[SyT=n],

ie.
E[SM;T=n1=E[Sn;T=n], (9.1.2)

for 1 < n < np and, consequently,
no o
ES, =E (Z Sa1(r =n)) =Y E(Su,K(r =n)) = ESp, = 0.
n=1 n=1

Furthermore, note that a much stronger result than (9.1.2) is true in that
E(Sn+k ' y'ls-”)y,ﬂ) =Sﬂ1 (913)

for all k,n € IN. This equation illustrates in another way the fairness of
the game. By E (Sy4x | ¥1,...,Y,), we mean the conditional expectation of
Sn+r with respect to the sub-o-algebra of F and which consists of the events
{w: M (w),...,Ya(w)) € B}, for all Borel sets B € B(R").

We continue with a slightly more general model from insurance. As in
Chapter 5, consider a sequence {Z,} of aggregate claims over intervals of
equal length, say (n — 1,n], n = 1,2,.... After the nth period the cumulative
claim amount is W,, = Y1, Z;, where we set W, = 0. It turns out that we can
decompose the random variables W, into W,, = S,4V,, n = 0,1,.... Here the
sequence {Sy,n € IN} fulfils a fairness property of the type (9.1.3) and hence
no optimal bounded stopping rule for this sequence is induced by a family
of test functions. Let us clarify this. Suppose that the risks Z;, Zs,... form
a sequence of independent and identically distributed nonnegative random
variables with finite mean EZ. Put Y; = Z; - EZ and S, = .., V;, then
Sn =W, —nEZ and V,, = nE Z. Furthermore, (9.1.3) holds, i.e. E Z is a fair
premium applied to {Z,} for each interval (n — 1,n}, n = 1,2,.... Note that
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E Z, is the net premium for the risk Z, and so {nE Z,n € IN} can be called
the (cumulative) net premium process. Under our independence assumption,
the sequence {V, } is deterministic. The more complex situation of dependent
risks Z1, Z,, ... will be studied in Section 9.1.8.

Equivalent formulations of (9.1.3) are E (Sp4« | S1,...,Ss) = Sn and

E (Sntk | F2) = Sa, (9.1.4)

where F3 = {{w: (So(w),...,Sn(w)) € B}, B € B(R"*!)}. This version of
the fairness property (9.1.3) can be seen as an introduction to the general
theory of discrete-time martingales, based on filtrations.

9.1.2 Filtrations and Stopping Times

Suppose {X,, n € IN} is an arbitrary sequence of real-valued random
variables on (Q,F,P) with E|X,| < oo for each n € IN. Inspired by
the o-algebras appearing in (9.1.4), the o-algebra FX containing the events
{w: (Xo(w),...,Xn(w)) € B}, for all B € B(R™!) is called the history of
{X,} up to time n. We also say that FX is generated by the random variables
Xop, ..., X5. The following statements are true: for all n € IN,

o FXC 7,
o FX CFXa,
e X, is measurable with respect to FX.

The family of o-algebras {FX, n € IN} is called the history of { X, }. However,
it is more common to say that {F,X, n € IN} is the filtration generated by
{Xn}. As such, it is a special case of the following definition.

Definition 9.1.1 A family {F,,n € IN} of o-algebras such that F,, C F
and F,, C Fps1 for alln € IN is called a filtration. We sey that the sequence
{Xn,n € IN} is adapted to the filtration {F,} if X, is measurable with respect
to F, for alln € IN.

Example Consider the random walk {S,} from Section 9.1.1 which describes
the evolution of the gambler’s gain. In this case F3 is generated by the events
{S1 = i1,...,8n = in} with 4;,...,i, € Z or, equivalently, by the events
{Yi =i1,..., Yy =ip} with iy,...,i, € {—1,1} because there is a one-to-one
correspondence between the sequences {S,,n € IN} and {Y,,n = 1,2,...},
ie. F5 = FY for each n € IN, and where F§ = F} = {0,0}.

The stopping rule 7 considered in Section 9.1.1 is an example of the
important notion of a stopping time.

Definition 9.1.2 A random variable T taking values in IN U {00} is said
to be a stopping time with respect to o filtration {F,} (or eguivalently an
{Fn}-stopping time) if the event {T = n} belongs to Fn, for alln € IN.
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Example Let {X,} be a sequence of real-valued random variables. Consider
the first entrance time 72 of {X,} to a Borel set B € B(R), i.e

g _ [ min{n: X, € B} if X, € B for somen € N,
T 7\ w otherwise.

The random variable 7% is a stopping time with respect to {FX} because
{TB =n} = {Xo ¢ B,....Xn-1 ¢B,Xn € B} ef,,:(

In the special case where X,, = 2?:1 Y; is a random walk generated by a
sequence Y1,Y,. .., all (descending and ascending) ladder epochs v},v_ as
defined in Section 6.3 are stopping times. The formal proof of this fact is left
to the reader.

We say that a stopping time 7 is bounded if there exists an ng € IN such
that P{r < ng) = 1. The following result is called Komatsu’s lemma. It
gives further motivation for the concept of martingales introduced in the next
section.

Theorem 9.1.1 Let {F,} be e filtration and let {X,} be adapted to {F,}.
Assume that for each bounded {F,}-stopping time T,

EX,=EX,. (9.1.5)

Then, for each k € IN,
E(Xerr | Fe)=Xs - (9.1.6)

Proof Let k € IN and A € F; be fixed, and consider the random variable 7
defined by

_ |k ifwe A,
@)= k1 ifwgA

It is easy to see that 7 is an {F,}-stopping time because
§ ifn<k,
{r<n}=< A4 ifn=k,
Q fn>k+1,

and, consequently, {r = n} € F, for each n € IN. Now, applying (9.1.5)
consecutively to 7 and to the bounded stopping time 7' = k + 1, we have

E[Xk,A] + E[Xk.,.l;Ac] = EXT = EXIc+l = E{Xk.l.l;A] + E[Xk.;.l;Ac]

i.e. E[Xg41; A] = E[Xy; A]. This gives (9.1.6) since k € IN and 4 € Fy are
arbitrary. m]
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9.1.3 Martingales, Sub- and Supermartingales

Let {F,.} be a filtration and let {X,} be a sequence of random variables
adapted to {F,} such that E|X,| < oo for each n € IN. Then {X,} is called
a martingale with respect to {F,} or an {F, }-martingale, if with probability 1

E (Xas1 | Fn) = Xn, (9.1.7)
for all n € IN. Similarly, {X,} is called a submartingale if

E(Xnp | Fn) 2 Xn, (9.1.8)
and a supermartingale if

E(Xp+1 | Fn) £ Xan, (9.1.9)
for all n € IN. Note that (9.1.7) implies

E(Xotk | Fn) = Xn, (9.1.10)

for all k,n € IN. Indeed, repeatedly using (9.1.7) and basic properties of
conditional expectation we have

E(Xn+k | fn) = E(E (Xn+k | fn+k-1) l fn) = E(Xn+k—1 | fn)
E(E(Xntk-1 | Frir-2) | Fn)

= E(Xp41 | Frn)=Xn.
Analogously, (9.1.8) and (9.1.9) imply
E (Xntk | Fn) 2 Xn (9.1.11)

and

E (Xn+k I }-n) < Xn (9.1.12)
for all k,n € IN. Taking expectations on both sides of (9.1.10)-(9.1.12) we
get

e for a martingale, EX, = E X, for all n € IN,
e for a submartingale, E X,,,; > E X, for all k,n € IN,
¢ for a supermartingale, E X,y < EX, for all k,n € IN.

Let {X,} be a martingale with increments ¥, = Xpn — Xn_1 having finite
second moments E X2 < oo. Then it is not difficult to show that

EY, =0, Cov(Yp,Yass) =0 (9.1.13)
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and consequently Var X, = Y 1., VarY;.

Examples 1. As already mentioned in Section 9.1.1, every random walk
{Sn}, Sn = T0, Vi, with EY = 0 is a martingale with respect to {F3} =
{FY} because E(Sps1 | FS) = E (Sn | F5) + E (Yny1 | FS) = Sn. We get a
submartingale whenever EY > 0 and a supermartingale if EY < 0. For every
random walk {S,} with E|Y| < o0, the sequence {X,}, X, = Sn —nEY, is
an {FY }-martingale.

2. Consider a random walk {S,}, S, = Y.,V with EY = 0 and
VarY = 02 < oo. Then the sequence {X,}, X, = S2 — no?, is an {FY}-
martingale. The proof of this fact is similar to that given in Example 1.

3. Consider a random walk {S;}, S, = Y .., Y:, such that the moment
generating function 7y (s) is finite for some s € R. Then {X,} given by
Xn = e*5*(rmy(s)) ™™ is an {F) }-martingale. Indeed,

E(e*Setton | FY) _ oS E(e | FY)
(my ()™t T (rhy(s))"!
esSnEesY,.H esS..
~ n+1 = ~ = Xﬂ .
(my(s))™+!  (rhy(s))”

4. Consider a martingale {W,,,n € IN} with respect to a filtration {F,} and
a sequence {Z,,n = 1,2,...} of random variables such that Z, is measurable
with respect to Fn_; for each n = 1,2,.... Such a sequence {Z,} is said to
be {F,}-predictable. If F, = FY, then the value of Z, is determined by the
values of Wy, ..., W,_,. The sequence {X,} with Xo =0 and

E (Xn41 | FY)

”n
Xn= Z(Wi—Wi1), nelN, (9.1.14)
k=1

is a martingale with respect to {F,} provided that the integrability condition
E|[Zp (W — Wi_1)| < oo is fulfilled for all k = 1,2, . ... Indeed,

E (Xn41 | Fn)

= Y E(Z(Wi - Wir1) | Fo) + E(Znpa(Wass — Wa) | F)
k=1

n
= D Zk(Wk — Weea) + Zntt E(Wayt — Wa | Fa)
k=1

n
= Y Ze(Wi — Wee1) = Xn.
k=1

Note that (9.1.14) is a discrete analogue to a stochastic integral of a
predictable process with respect to a martingale.
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5. Consider a homogeneous Markov chain {Z,} with finite state space
= {1,...,£} and transition matrix P. If § # 0 is an eigenvalue of
P and ¢ = (¢1,...,¢¢) the corresponding right eigenvector, then {X,}
with X, = 0 "¢z, is a martingale with respect to the filtration {FZ}.
This can be seen as follows. From the Markov property (7.1.3) we have
E(Xnt1 | FZ) = E(Xp41 | Zn). Now, for all i = 1,...,¢, (7.1.12) implies

4
EXot1|Za=1)=07"07" pijé; =0"¢x,
=1
from which we have E (X411 | Z,) = 0" "¢z, = X,

6. Suppose Y;,Ys,... are strictly positive, independent and identically
distributed with EY = 1. Then the sequence {X,} given by

x o[ if n=0,
"\ "V, ifn>1

is a martingale with respect to the filtration {FY }. Indeed, we have

E(Xor1 | FY) = EWMYs...You | FY) = VYs. . YoE Yoyt | FY)
= YiYs...YaEY¥ny = X

7. Let f and f be density functions on R such that f # f. For simplicity
assume that the product f(z)f(z) > 0 for all z € R. Let ¥3,Y2,... be a
sequence of independent and identically distributed random variables, with
the common density either f or f. The likelihood ratio sequence {X,,,n € IN}
is then given by

f(¥) if
X = Hf(Y) "zl

ifn=
We show that {X,} is an {F, Y}-mart'mgale if the Y, have density f. Indeed,

) FYe) 1 ( f(Yar1)
E (Xnu | Fy) = E (Hﬁyk 77) = HfEY:; (f(Ynﬁ))zx"’

because E (f(Ynt1)/f(Yns1)) = ff‘; f(z) dz = 1. In the alternative situation
that Y, has density f, the additional assumption f_°°°° f2(@)/f(x)dz < oo
turns {X,} into a submartingale with respect to {F }. Indeed, in this case

F(, (F=) i(2) i(2)
E(;&iii) /x f(zz)) dz = E(f(Z)) >(E(f(2))) =1

where Z is a random variable with density f.
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9.1.4 Life-Insurance Model with Multiple Decrements

In this section we give an application of discrete-time martingales to a general
life insurance model. Let Jy : § — {1,...,¢} denote the (random) cause of
decrement of an insured person and let To ! — IN denote the total lifetime
of the insured (measured in years). Let b;; be the payment at the end of the
k-th year after policy issue, if decrement by cause j occurs during that year;
J =1,...,{ Assume that the payments b;; are not random but deterministic
and that these payments are financed by annual premiums Gg, 81, 82, . . - which
have to be paid by the insured at the beginning of each year.

For i = 0,1,..., let the components of the random vector (J;,T;) be
distributed as the (conditional) cause of decrement and the residual lifetime
of an insured after policy issue at time i, respectively. Then g;:(m) = P(J; =
7, Ti < m) denotes the probability that an insured will die of cause j within
m years after time i. Note that ¢;;(m) =P(Jp = j,To <i+m | Tp > i) and
piim)=1- 2 ;=1 85i(m) is the probability that the insured survives at least
m years after time i. By g;; we denote the probability that the insured dies
within one year after time ¢ by cause j, i.e. gj; = ¢;i(1). Then

PJi=jTi=k)=PJi=5,To=i+k|To>1)
PTo2i+k|To>2)P(Ji=jTo<i+k+1|To>i+k)
Pi(k)gj ik -

Il

We consider a constant annual discount factor v with 0 < v < 1 and use the
abbreviations J = J; and T = T;. Then, at time 7, the present value of the
insured benefit is bJ’T+1UT+1 and the present value of the insurer’s overall
loss X is given by

X = bJ T+1v - Zﬁkv (9.1.15)

The annual premiums 3y, 31, 32, . . . are called net premiums if they satisfy the
equation B X = 0, which is equivalent to

t oo
Zzbg,lﬁ-lv Pa k)qJ itk = Zﬂkv p7' )

=1 k=0 =0

Let p, denote the expectation of X with respect to the (conditional)
probability measure P,, where P,(A) = P(A | T > n). Then we have
pn =E[X;T > n]/P(T > n) and, by (9.1.15),

£ oo

oo
bn = Z E bjnt k10 Pisn (B) i itnik — Z BnrkV*pira(k).  (9.1.16)

j=1k=0 k=0
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In life insurance mathematics, the quantity u, is called the net premium
reserve at time n after policy issue. It can be interpreted as the expectation
of the difference between the present value of future benefit payments and the
present value of future premiums at time n, provided that T > n.

Note that (9.1.16) gives

(4

pn + Bn = Bny1VUPirn + z b',n+1UQj,i+n s (9.1.17)
j=1
where piyn = pipn(l). This recursion formula is useful for numerical

computation of the net premium reserves u,. Moreover, it implies that the
premium 3, can be decomposed into two components:

[4

Bn = fns1V — ftn + Z(b 41 un+l)v¢b'.i+n =6n +0Bn, (9.1.18)
Jj=1

where 3% = fin41v — pin is the savings premium which increments the net
premium reserve, and

¢

B = Z(b bl = ot 1)V itn (9.1.19)
j=1

is the risk premium which insures the net amount of risk for one year. Using
this notation, the insurer’s overall loss X given by (9.1.15) can be represented
in the following form, provided that 3o, 31, ... are net premiums.

Lemma 9.1.1 Assume that EX = 0. Then

¢
X =3 Yok, (9.1.20)
k=0
where
Yi=1{ —Bi+ bsrsr —pesr)v ifT =k,
-3t fT>k+1.

Proof The decomposition (9.1.18) of 3, gives

T

bJ,T+1’UT+l i Z((Nk+lv - I‘k) + ﬁlx;)vk
k=0

T

T+1 k

by 10T+ po — pravTH = Y Aot
k=0

X

i
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Thus, (9.1.20) follows since gy = EX =0. a

Note that the random variable Y; appearing in (9.1.20) is the insurer’s loss
in year k+ 1, evaluated at time k. Moreover, it turns out that the partial sums
Xn =Y 4o Ys form a martingale. Consider the filtration {F,} with F, the
smallest o-algebra containing the events {J = j,T =k}, for all j =1,...,¢,
k=0,1,...,n.

Lemma 9.1.2 If EX = 0, then {X,} is a martingale with respect to {F,}.

Proof Since X, is F,-measurable, we have
E (Xnt1 | Fn) = E(Xn | Fn) + E(Yay1 | Fn) = X + E (Yot | Fa).
Furthermore, E(Yp1 | Fn) = 1T >2n+ 1)E(Yp41 | T > n+1) and

EYpu1|T2n+1)
= E (<8441 + bingz = ins2)) KT =n+1) | T > n+1)
B PT2n+2|T2>2n4+1)
E (bynss — tns20IT =0+ 1) [T 2 n+1) = By
0

il

where the last equation follows from (9.1.19). Thus, E (X, | Fn) = X, O

The next result is called Hattendorff’s theorem. It shows how to compute
the variance of the insurer’s overall loss X. Interestingly, the yearly losses
Yo, Yi, ... are uncorrelated, but generally not independent.

Theorem 9.1.2 Let EX = 0. Then for arbitrary k,n =0,1,...,

{
Cov (i, Y,) = { Pr(k) (ng(bj,lwl = M)V Qiimpk — (ﬂi)z) ifn=F,

0 ifn#k
(9.1.21)
and

oG
VarX =) v*VarY,. (9.1.22)
k=0

Proof 1t suffices to show that (9.1.21) is true because, by (9.1.20), equation
(9.1.21) yields (9.1.22). However, we showed in Lemma 9.1.2 that Y, =
Xn — Xn-1, where {X,} is a martingale. Thus, the second part of (9.1.21)
follows from (9.1.13). The first part of (9.1.21) is directly obtained from the
definition of Y. o
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9.1.5 Convergence Results

If the filtration {F,} is not further specified, we simply speak of martingales,
submartingales, supermartingales and stopping times without reference to the
filtration. A useful tool is the following submartingale convergence theorem.

Theorem 9.1.3 Let {X,,n > 0} be a submartingale and assume that

supE (X,)+ < 0o. (9.1.23)
n>0

Then there exists a random variable X, such that, with probability 1,

lim X, = Xeo (9.1.24)

n—00

and E|X | < co. If, additionally,

supE X2 < o0, (9.1.25)
n>0
then
EX2 < oo, lim E|X; — Xo| =0. (9.1.26)
n—oo

We first show an auxiliary result which will be used in the proof of
Theorem 9.1.3. For arbitrary fixed real numbers a,b € R with a < b, we
consider the number of upcrossings of the interval (e, b) by the sample paths
of {X,}. Namely, we put

o = 0 '
nn = min{n:n>1,X, <a},
T, = min{n:n>7’1,Xan}7
Tom—-1 = mm{n n > sz—2;Xn < a} ’
Tom = min{n:n> 7m_1, X, 2 b},

and call Uy (a,b) = max{m : 73m; < n} the number of upcrossings up to time
n. With this notation we can derive the upcrossing inequality for discrete-time
submartingales.

Lemma 9.1.3 For eachn > 1,

E(Xn—0a); E(Xa)s +lo|

1.27
b—a b—a © )

EUp(a,b) <
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Proof Note that the number of upcrossings of (a, b) by {X,} is identical with
the number of upcrossings of (0,b — a) by {X}}, where X = (X, — a)4.
Furthermore, {X!} is again a submartingale which follows from Jensen's
inequality for conditional expectations. We leave it to the reader to show
this. Thus, without loss of generality we can assume that ¢ = 0 and that
{Xy} is nonnegative with Xg = 0. Then, it remains to show that

EU,0,b) < bV 'EX,. (9.1.28)
With the notation

1, if 7m <1 < Trm+1 and m odd,
= : ;
0, if T, <1 < Tm+1 and m even,

we have bU,(0,b) < 30, ni{X; — Xi_,) and
m=1= |J {Um<i\{mna<i}).

mgIN, odd
Hence
n n
EUL08) < By mi-X)=Y [ (- X))
i=2 i=2 / {m=1}

= E/ E(Xi —X,'_l lf,'_l)dP
i=a Y {m=1}

since {n; = 1} € F;_;. Thus,

BUOH <Y [ B0 IR - Xi) P
=2

ni=1}
n
< 3 [ B0 Fi) - Xit) dP=EX, - EXy SEXa,
i=2 70
where in the last but one inequality we used that {X,} is a submartingale,
that is E(X; | Fi—1) — Xi-1 > 0. o

Proof of Theorem 9.1.3 Note first that X,, = oo is not possible because
of (9.1.23). Let A C € be the set of those w € Q such that the limit
lim,,— 00 Xpn(w) does not exist. Then, we have

A= {w liminf X;(w) < limsup X,-(w)} = { bg " Aas,
a, a

where A, = {liminf; 00 X; < a < b < limsup;_,, X;} C {U(a,b) = o0}
Thus, (9.1.23) and (9.1.27) imaply that P(A,s) = 0 and consequently P(A4) =
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0, i.e. (9.1.24) is proved. Integrability of X, follows from Fatou's lemma. In
order to prove (9.1.26), we note that by Fatou’s lemma

EX2 = E(lirfx_x)ingf,) < lin_l}infEX;‘; <supE X2,

n2>0

Thus, condition (9.1.25) implies E X2 < oo. Furthermore, since (9.1.24)
implies limy 00 P(|Xn — Xoo| > €) = 0 for each € > 0, we have

E|X, - X
= E((I(|Xn - Xool < &) + I(|Xn — Xoo| > £))] Xn — Xo})
< e+ E(I(|X5 - Xeol > €)X — Xool) .

Now Schwartz’s inequality gives for all sufficiently large n € IN:

E|X, - Xoo| < e+P(Xn-Xo|> 5)1/2(supEx3,
n

1/2
+2sup(E X2)V2(E X2)1/2 4+ E){go)
n
< 2.

This completes the proof of Theorem 9.1.3. a

9.1.6 Optional Sampling Theorems

The next few results are known as optional sampling theorems and can be
seen as extensions of the fairness property (9.1.1).

Theorem 9.1.4 Let {X,,} be a martingale and 7 a bounded stopping time.
Then EX. = EXj.

Proof Let 7 be bounded by ng. Then, by (9.1.10) we have X; = E (X,,, | Fi)
for ¢ < no and consequently

EX,

E (2 XA(r =1)) = ZDE(E (Xno | FOX(T = 1))

i=0 =0

:\":E(x,.ol(r—_-i)) =EXpn,.

i=0

Unless we make additional assumptions, the boundedness of stopping time
T is essential for the validity of E X, = E X,. With an appropriate finiteness
condition, the equality also holds for 7 not necessarily bounded.



388 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

Theorem 9.1.5 Let {X,} be a martingale and T a finite stopping time

fulfilling
E|X,;| < (9.1.29)

and
lim E[Xy;r > k] =0. (9.1.30)
k—00

Then EX, = E Xp.

Proof Note that 7, = min{r,k} is a bounded stopping time for each
k € IN. Thus, by Theorem 9.1.4, E Xy = E X, . Hence, using the dominated
convergence theorem, (9.1.29) and (9.1.30) give

EXo = lm EX, = lim E[X;;7 <]+ lim E[Xy;7 > k]
k—oc k=00 k—o0
= EX,.

We mention still another set of somewhat stronger conditions under which
E X, =E X; is true.

Theorem 9.1.6 Let {X,} be a martingale and 7 a stopping time fulfilling
ET <00 (9.1.31)
and, for some constant ¢ < oo,
E(|Xnt1 — Xul | Fn) <ec  as. (9.1.32)
for alln € N. Then EX,; = E Xg.

Proof In view of Theorem 9.1.5 it suffices to show that (9.1.29) and (9.1.30) are
satisfied. Using the obvious identity X, = Xo + Y poo(Xi+1 — X&) X(1 > k),
the triangle inequality and the monotone convergence theorem give

E|X,| = E|Xo+ Y (Xiy1 — Xp)X(r > k)

k=0
o0
< E|Xol+ Y E [[Xes1 — Xeli7 > k]
k=0
o0
= E|Xo|+ ) E [E(Xes1 — Xl | Fa)i7 > k]
k=0
< E|Xol+cY P(r>k) =E|Xo|+cET,

k=0
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where (9.1.32) is used in the last inequality. Thus, by (9.1.31), (9.1.29) follows.
Furthermore, using (9.1.32) repeatedly, we have

E[X;r >k < E[|Xiit>k <E[Xol;r > k] + cE[k;T > k]
< E[|Xol;t> k| +cE[r;T > k]

and (9.1.30) follows from (9.1.31) and the dominated convergence theorem. O

Theorem 9.1.6 can be used to prove Wald’s identity (6.3.5) for stopping
times.

Corollary 9.1.1 Consider a random walk {Sp} with S, = Y., Y:, where
Y1.Y2,... are independent and identically distributed random variables with
E|Y| < 0. If 7 is a stopping time with respect to the filtration {FY} and if
ET < 00, then

ES, =ETEY. (9.1.33)

Proof Applying Theorem 9.1.6 to the martingale {X,}, X, = S, —nEY, we
have to show that condition (9.1.32) is fulfilled. Note that

E (| Xns1 — Xal | FD) E(|Yo11 —EY|| FY)

< E(Yanl| F)) +|EY|<2EY],

i.e. (9.1.32) holds. Consequently, Theorem 9.1.6 gives the equalities 0 =
EXo=EX,=ES,-E7EY. o

From the proofs of Theorems 9.1.4-9.1.6 it is easily seen that analogous
results are also valid for sub- and supermartingales. If { X, } is a submartingale
(supermartingale), then

EX, > (S)E X, (9.1.34)

provided the conditions of one of the Theorems 9.1.4-9.1.6 are fulfilled.
Moreover, Theorem 9.1.4 can be generalized in the following way.

Theorem 9.1.7 Let {X,} be a submartingale and T a stopping time such
that P(r < ng) = 1 for some ng € IN. Then, for each z > 0,

E [X,; X, > 2] SE [Xnp; X, > ). (9.1.35)
Proof We have
no
E[X;X,>z] = ) E[XeXe>a,7=k
k=0

ng
EE [Xno; X >z, 7 =k] = E [X5,; X > g,
k=0

IA
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where the last inequality follows from (9.1.11). ]

Example The optional sampling theorem in the form of inequality (9.1.34)
can be used to give another proof of a somewhat weaker version of the
exponential bound derived in Theorem 4.5.2 for the tail function of compound
distributions. Let U7,Us,... be nonnegative, independent and identically
distributed with distribution Fyy and let N be an IN-valued random variable
with probability function {pi} which is independent of U;,Us,.... Consider
the compound distribution F' = Z:‘_’__o ka{," of 2?_’__1 U; and assume that,
forsome 0 < § <1,

P(N>n+1|N>n)<4, n€IN, (9.1.36)

that is the probability function {px} satisfies condition (4.5.13), i.e. rp4; <
fr, for n > 1, where r, = ZZ‘_’__" px. Furthermore, assume that

gy (7) = 0~ (9.1.37)

has the solution v > 0. We will show that

F(z) < 1—:0—29@"’”, z2>0. (9.1.38)

For each n € IN, define

YSn 41 N
X, ={ ersrtt i N >n, (9.1.39)

0 if N <n,
where S, =U; +... +U,. Then, X,41 = Zp 1 X forn =1,2,. .., where

g _[ &% €N>n,
710 if N <n.

Consider the filtration {F,}, where F, is the o-algebra generated by the
random variables (N = 0),...,I(N = n),U;,...,Uns;. Note that by
(9.1.36) we have P(N >n + 1| F,) <8, and hence by (9.1.37),

E(Znt1 | Fo) =E(E@U2I(N >n+1) | F) =
=E(e'7Un+2)P(N Sn+1 I ]:n) =9_1P(N Sn+1 I }-n) <1.

Thus E(Xyp11 | Fn) = E(Zn41Xn | Fn) = E(Zpt1 | Fo)Xn < Xi, that
is {Xn,n € IN} is an {F,}-supermartingale. For each ¢ > 0, consider the
{Fn}-stopping time 7 = min{i : ;31 > z}. We leave it to the reader to check
that 7 fulfils the conditions of Theorem 9.1.5. We then apply (9.1.34) to the
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supermartingale {X,} using the fact that

X, = f: K= k)X = i I(r = B)I(N > k)erSs+

k=0 k=0
oo oc N

> Y lr=nIN>ke” =Y I(r= k)l( U; > x)e”"
k=0 k=0 =1

H

I(,é U > :c)e""”.

Thus, (9.1.34) gives (1 — pg)8~! = E (V"IN >0)) = EXp > EX, >
e””P(Z:_f."'=l U; > ), and hence the exponential bound (9.1.38).

9.1.7 Doob’s Inequality

We now deal with Doob’s ineguality for sub- and supermartingales.
Theorem 9.1.8 (a) If {X,} is a nonnegative submartingale, then

EXn -
P(o?’gnxk > :c) <=2, z>0neNN. (9.1.40)

(b} If {Xn} ts a nonnegative supermartingale, then

P( max XkZE) < EXO, z>0nelN. (9.1.41)
0<k<n z

Proof Assume that {X,} is a submartingale. Let A = {maxo<i<n Xi > z}.
Then A = AgU...U A, is the sum of the disjoint events

Ay = {Xo > .'l?} € Fa,
Ay = {Xo<z,Xi <z, ..., Xpm1 <2,X} 22} € Fi, 1<k<n.
In view of the submartingale property, we have E[X,; Ax] > E[Xj; A] >

zP(Ag). Summing over k = 0,...,n, we see that Xy > 0 implies EX, E
E[Xn; 4], and so statement (a) follows. The proof of statement (b) is
]}

analogous and is left to the reader.

Remark Doob’s inequality (9.1.41) can be used to give a simpler proof
for the exponential bound (9.1.38). Define the filtration {¥,} and the
supermartingale {X,} as in the example of Section 9.1.6. Then (9.1.41) gives

P(iuj > z)

P(gxeaﬂ)é{SnHI(N >n)} > :r) = P(gg‘c)(n > e'Yz)
i=1

fl

EX, 1-
lim P( max X, > e””) < LA, —p—ge"".

m—oo  \0<n<m = e ]
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9.1.8 The Doob—Meyer Decomposition

We are now in a position to generalize the decomposition property for the
sequence {W,} of cumulative claim amounts as discussed in Section 9.1.1.
Note that {W,} is an {F¥ }-submartingale. We call a sequence {X,,n € IN}
of random variables increasing from zero if Xo = 0 and P(5—o{Xn <
Xnt1}) = 1. The reader should prove that each increasing sequence {X»}
adapted to a filtration {F,} is a submartingale. Two sequences {X,} and
{X'} are coined indistinguishable if P((\,_,{Xn = X},}) = 1. The following
result is the well-known Doob-Meyer decomposition for submartingales.

Theorem 9.1.9 Let {X,,} be a submartingale with respect to a filtration {Fn}.
Then there exists an {Fn}-martingale {M,} and an {F,}-predictable sequence
{Va.} which is increasing from zero and such that X, = Xo + My + V, for all
n € IN. This decomposition is unigue modulo indistinguishability. Moreover,
a version of {V,,} is given by

n
Va=Y E(X¢—Xeor | Feor),  n21, (9.1.42)

k=1
which itself is called the compensator.

Proof Let V, be the random variable given by (9.1.42) and define M,, =
Xn—Xe—-Vyforalln=1,2,...; My =Vy =0. Then

n+1
E(My|Fn) = E (Xﬂ+1 —Xo— Y E(Xx— Xy | Fe-1) | fn)
k=1

n+1
E(Xnt1 | Fa) = Xo = D E(Xk - Xp-1 | Fi1)
k=1

I

= Xn—Xo- 3 EXi— Xe-y | Fror) = My,
k=1

i.e. {My} is an {F,}-martingale. By definition, (9.1.42) implies that V, is
measurable with respect to F,.;, for each n = 1,2,.... This means that
{Va} is {F,}-predictable. Since {X,} is an {F,}-submartingale, we have
E(Xn41 — Xn | Fn) = E(Xpq1 | Fn) — Xn > 0 and consequently

n+1l n
Vat1 = ZE(Xk = Xe—1 | Fe—1) 2 EE(Xk = Xko1 | Fo—1) = Vo,
k=1 k=1

i.e. {V,,} is increasing from zero. Suppose that there exists another decomposi-
tion {M,}, {V.} of {X} with the same properties. Then, M, +V,, = My +V,
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for each n € IN. This means that the {F,}-martingale {M, — M,,n € N} is
{Fn}-predictable. Hence

Mpg - A/ITIZ-FI =E(Mp41 — Mr,z+1 i Fn) =M, - A'Irlz 1

which shows that M, — M, = 0 for all n € N, since My — M} = 0.
Consequently, V, — V! =0 for all n € IN. a

The Doob—Meyer decomposition for submartingales, given in Theo-
rem 9.1.9, can be used when defining the concept of a fair premium for the
sequence {Z,} of aggregate claims considered in Section 9.1.1. However, we
no longer assume that the risks Z;, Z3, . .. are independent. Consider the sub-
martingale {W,}, W, = Y| Z;, of cumulative claim amounts. Then by
(9.1.42), the conditional increment E(Z, | FZ_,) is a fair premium to be
paid for the aggregate claim over the interval (n — 1,n], in the sense that
{M,} given by M, = 3", (Z; — E(Z; | F£,)) is a martingale and where
FZ = {0,9}. The sequence {V,} with

Vo= iE(Z,- | FE)) (9.1.43)

i=1

is called the (cumulative) net premium process.

Analogous to Theorem 9.1.9, a Doob-Meyer decomposition can also be
proved for supermartingales. The reader can easily provide a proof if he uses
the fact that {—X,} is a submartingale when {X,} is a supermartingale.

Bibliographical Notes. The introduction to martingale theory presented
in this section is standard. For further details we refer to textbooks like
Karr (1993) or Williams (1991). The exposition of Section 9.1.4 follows
Gerber (1993). A continuous-time version of Hattendorff’s theorem can be
found, for example, in Wolthuis {1987). In risk theory, the usefulness of
martingales was discovered in Gerber (1973); see also De Vylder (1977) and
Gerber (1975). Scheike (1992) introduced the notion of the net premium
process defined in (9.1.43). The idea of applying an optional sampling theorem
for supermartingales to derive the exponential bound (9.1.38) for the tail
function of compound distributions was also used in Gerber (1994). The proof
of this result via Doob’s inequality as mentioned in Section 9.1.7 seems to be
new.

9.2 CHANGE OF THE PROBABILITY MEASURE

In this section we study concepts related to the likelihood ratio martingale
which has been introduced in Example 7 of Section 9.1.3. Apart from
examples, we show how to use the subsequent results in risk theory.
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9.2.1 The Likelihood Ratio Martingale

We start from a sequence of random variables Y),Y2,... defined on a
measurable space (Q,F), with filration {FY}. Put 7 = {0,Q}. For the
underlying probability measure, we have to choose between P and P. Under
P, the sequence {Y,} consists of independent and identically distributed
random variables with common density f(z), while under P the sequence
{Yn} consists of independent and identically distributed random variables
with common density f(z). We assume that f(z) > 0 if and only if f@) >0.
Define the likelihood ratio function

f@) . flym)
l(ylsvyn)= f(y])f(yn) lf'f(yl)f(y“)>0,

0 otherwise,

and let
Xo=1  Xpo=I11,...,Yn) (9.2.1)

for n > 1. We have that

e the sequence {X,}, considered on (2, F,P), is an {FY }-martingale,
o forall A€ FY,

P(4) =[4Xn(w)P(dw), (9.2.2)
e EX, =1

The martingale property of {X,;} was already noticed in Section 9.1.3. To
prove (9.2.2), it suffices to consider events of the form A = {Y; € By,...,Y, €
B} which generate FY and where B,..., B, € B(R). Then

/ / fw) ... fyn) dyn...din

/B/ s o ¥n) 01 - Fgm) A .. g

P(A)

i

il

/ Xn(w)P(dw) = E[Xn; 4].

Hence (9.2.2) holds and it is immediate that EX, = P(Q) = 1.

The likelihood ratio martingele {X,} defined in (9.2.1) is a special case of
the following model. We start from a sequence of random variables ¥;,Y>,...
defined on a measurable space (f2, F), whose filtration {FY } is given. Again
there are two candidates for the underlying probability measure P and P.
However, this time we assume nothing about the independence of Y3,Y3,. ...
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In accordance with (9.2.2) we assume that, for each n € IN, there exists an
}',‘,,’ -measurable, nonnegative random variable X,, such that

A) = /A Xn(w)P(dw), AeFY. (9.2.3)

Theorem 9.2.1 On the probability space (, F,IP) the sequence {Xn} given
by (9.2.3) is an {F) }-martingale with mean EX,, = 1.

Proof Since FY C FY.,, it is clear that (9.2.3) implies E{Xp+1;4] =
E[X,; A} for all A € FY. Together with the assumed F -measurability of X,
this gives E (Xp41 | .7-',’: ) = Xn because, by the definition of the conditional
expectation E (X,11 | FY), we have E[E (X4 | FY); Al = E[Xp41; Al
Consequently, E[E (X, | FY); A] = E[X,; A] for all A € FY. Furthermore,
(9.2.3) obviously implies that E X, =1 for all n € IN. ]

Note that we can rewrite (9.2.3) in terms of the restrictions of the
probability measures P and P to the o-algebra .7-',‘: , denoted by P,, and P,
respectively. Then (9.2.3) reads

Po(4) = /A Xo()Pa(dw), AcFY. (9.2.4)

This assumption is justified by the Radon-Nikodym theorem, which says that
(9.2.4) holds if and only if P,,(4) = 0 whenever P,(4)=0,forall A€ F}.
Thus, X, is called the Radon-Nikodym derivative of P, with respect to P

and is denoted by X,(w) = (dP,)/(dP,)(w). In particular, if the densities
fa(yi,-- . yn) and fr(y1,...,y¥n) of the random vector (Y1,...,Y,) under P,
and P, exist, respectively, then with P,,-probability 1

fn(Yl,-c-,Yn)

x\r = 3
" fn(Yh-")Yﬂ)

n=12,.... (9.2.5)

9.2.2 Kolmogorov’s Extension Theorem

We now consider the following converse question. Suppose we have a
probability space (2, F,P) with filtration {F,} and where F = F, the
smallest o-algebra consisting of all events from |J;o, Fn. Let {X,} be a
sequence of nonnegative random variables on (2, F,P) forming an {F,}-
martingale with EX,, = 1. By P, we denote the restriction of P to F,
and, for each n € IN, we define the set function P, : F, — [0,1] by

P.(4) = / X ()P (dw) (= / Xn(w)P(dw)), A€F.. (9.26)

It is straightforward to check that P, is a probability measure on (§2, ).
The question is whether there exists a probability measure P on (©, F) such
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that the restriction of P to F,, is P,,, for all n € IN. An answer to this question
is given by Kolmogorov’s extension theorem. The discrete-time version of this
theorem is stated for @ = R, the set of all sequences yo,¥1,... of real
numbers. On this set { the o-algebra F is defined in the following way. Let
G, be the family of those subsets of R™ which are finite unions of sets of the
form By x By x ..., where By, € B(R) forall k <n and By =R for all n > k.
Put F = B(R™), where B(R®) = a(lUp— Gn)-

Theorem 9.2.2 Suppose that, for each n > 0, there exists a probability
measure P, on (R™*!, B(R™')) and suppose that the family {P,} fulfils the
consistency condition

Poy1{Bo X ...x By xR) = Po(Bp % ... x By), n=0,1,.... (9.2.7)

Then there exists a uniquely determined probability measure, P say, on
(R, B(R™>)) such that for alln =0,1,... and By,...,B, € B(R),

P(By x...x B, xR™®)=Pp{Bp x... x B,). (9.2.8)

The proof of Theorem 9.2.2 is omitted and can be found, for example, in Shiry-
ayev (1984). The probability space (2, F,P) = (R*, B(R*),P) considered
in Theorem 9.2.2 is called a canonical probability space.

Corollary 9.2.1 Let {X,,n € IN} be a nonnegative martingele on (R*,
B(R*),P) with respect to the filtration {F,} given by F,, = o(G,). Assume
that E X, = 1. Then there exists e uniquely determined probability measure
P on (R*™,B(IR™)) such that

P(A) = P,(4), (9.2.9)
for alln € IN, A € F,,, where P,, is given by (9.2.6).
Proof Foreachn =0,1,..., we put
Pa(Byx...xBp) =Pn(Box...xB,xR®), By...,B, € B(R). (9.2.10)

Then the family {P,} of probability measures defined in (9.2.10) fulfils (9.2.7)
since By X ... X B, x R® € F,, and consequently

Pn+1(B0 X ... X Bn x R) =/ Xn+1(W)P(dW)

BoX...X B, xIR®

= / E(Xni1 | Fa) (@)P(dw) = / Xn(w)P(dw)
By x...x By xIR® Bgx...x B, xR>®
= P,(Bo x...x By).

In view of Theorem 9.2.2, this completes the proof. o
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Remark In particular, Theorem 9.2.2 implies the existence of a “global”
distribution P of a sequence Yp,Y;,... of independent and identically
distributed random variables. Indeed, let F' be the common distribution of
the Y;,. Then, the family {P,} of probability measures given by

n
P,(Box...xB,)=[[F(Bi), Bo,....B.€B(R), (9.2.11)
1=0

satisfies the consistency condition (9.2.7). In an analogous fashion,
Section 7.1.2 contains the notion of a Markov chain using a consistent family of
finite-dimensional distributions. Again, in Sections 8.1.1 and 8.4.1 continuous-
time Markov processes have been introduced in the same way.

9.2.3 Exponential Martingales for Random Walks

Let F be a distribution on R and let P be the probability measure on the
measurable space (R, B(IR*)) as given by (9.2.8) and (9.2.11). Furthermore,
let Yy, Y1, . .. be a sequence of independent and identically distributed random
variables on (R*°, B(R*),P) with the common distribution F. Assume that
(R>, B(R™),P) is the canonical probability space of {Y,}, i.e. Yo(w) = yn
for allm = 0,1,...; w = (yo,¥1,.-.).- Assume that EY < 0 and consider
the random walk {S,} with S, = Y [.,Y;. As shown in Example 1 of
Section 9.1.3, {S,} is an {F) }-supermartingale. Example 3 of Section 9.1.3
shows that the sequence {X,,n € IN} with

n—exp( ZY) n=0,1,..., (9.2.12)
i=1
is an {FY }-martingale on (R, B(R*>), P) provided the equation
wmr(s) =1 (9.2.13)

admits a positive solution v. Corollary 9.2.1 now implies that there exists
a well-defined probability measure P _on (R>, B{R™)) given by (9.2.6) and
(9.2.9). Furthermore, the sequence {X,,n € IN}

X, = exp(——'yi}’,-) . n=0,1,..., (9.2.14)

is an {F, ¥}-martingale on (R*, B(R™),P). This follows from the fact that,
under P, the random variables ¥1,Y2,... are independent and identically
distributed with distribution function F(z), where F(z) = F,(z) and

e’y
F,(z) = [_m m dF(y) (9215)
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is the associated distribution to F, for all s € R such that mr(s) < co.
By E we denote the expectation taken with respect to P.Notethat EY > 0

because EY = f_oo ze"® dF(z) = 17 (1)(7 ) and riip(s) is strictly increasing
at 7. The random walk {S,} therefore tends to —oo under P, but under Pit

tends to oc; see also Theorem 6.3.1. The stopping time
ra(u) =inf{n: S, > u} (9.2.16)

is thus finite with P-probability 1. N

Since {X,} given by (9.2.14) is a martingale on (R*,B(IR*),P), the
change of measure P — P defined in (9.2.6) and (9.2.9) can be iterated.
For each n € IN, let

Po(4) = /A Xo()Pdw), AcFY. 9.2.17)

Then Corollary 9.2.1 implies that there exists a_uniquely determined
probability measure P on (R*®, B(R™)) such that P(4) = P,(4) for all
n € IN,A € F¥. However, in view of (9.2.14) and (9.2.17), we have

P=P. (9.2.18)

In what follows, we need a variant of the optional sampling theorems as
stated in Section 9.1.6: if {X,,} is a martingale and r a stopping time, then
E(X, | Fr) = X an for each n € IN, where

Fe={A:{r=n}NAEF,, foraln e N} (9.2.19)

is the o-algebra consisting of all events prior to the stopping time 7. To show
this, it suffices to note that, for A € F,, we have

E{X,;An{r <n}]=E[X;ANn{r <n}]. (9.2.20)
We recommend the reader to prove this property as an exercise.

Theorem 9.2.3 Let Td(u) be the stopping time given by (9.2.16). If A C
{ra(u) < oo} and A € FY (u) then

7a(u)

P(4) = [exp(—"/ZY) ] (9.2.21)

Proof Let n € IN be fixed and consider the event AN {rq(u) < n} € FY.
Then, by (9.2.17) and (9.2.18) we have

PlANn{ry{u) <n}) = [exp( 'yZYz),Aﬂ{'rd(u <n}]

i=1
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Since {exp (—y Y%, ¥;)} is a martingale under P, (9.2.20) gives

- n ~ _ rg(u) :

E [e_'yzxe! Yoo AN {ra(u) < n}] =E [e 1LY ;AN {ra(u) < n}] .

Letting n tend to oo, the proof is completed by an appeal to the monotone
convergence theorem. ]

9.2.4 Finite-Horizon Ruin Probabilities

Consider the discrete-time risk process introduced in Section 5.1. Let u > 0 be
the initial risk reserve, and Y3, Ys,... the net payouts encountered at epochs
1.2, ... with distribution F. Assume that (9.2.13) has the solution v > 0. Ruin
occurs if the cumulative net payout exceeds the initial risk reserve at some
epoch n =1,2,.... We want to compute the ruin function ¥(u) = P(ra{u) <
00), where 74(u) is the ruin time defined in (9.2.16). If we restrict ourselves
to a finite time horizon, then we ask for the ruin until time n and we need
to compute the finite-horizon ruin function Y(u;n) = P(r4(u) < n). We can
apply Theorem 9.2.3 to the events A = {rq(u) < oo} and 4 = {7g(u) < n} to
obtain representations for the ruin functions y(u) and ¥(u; n), respectively.

Theorem 9.2.4 Foru>0aendn=1,2,...,

rally g

v = e "E (e‘”(zm )) (9.2.22)
- ralu) o
v(u;n) = e TE [e_" = }"_");{Td(u) < n}] . (9.2.23)
Proof In view of Theorem 9.2.3, we have to comment only on formula (9.2.22).
Since under PP the event {74(u) < oo} has probability 1, Theorem 9.2.3 gives

b = o B [e (TR (ry(0) < )

= e [ (T o9 .

Note that Theorem 9.2.4 can be generalized in the following way. Let s € R
be such that thp(s) < oc and put X, = exp(—s 3., ¥; + nlogmp(s)).
Then {X,} is an {FY }-martingale on (R, B(R>), P(*)), where P(*) ig the
probability measure under which Y;,Y3,... are independent and identically
distributed with the common distribution function Fy(z) given by (9.2.15).
Moreover, for each A € FY . such that A C {ra(u) < oo}, we have

7a(u)

Ta(w)

P(4) = E® [exp (—s Y Y: + ra(u) log mF(s)) ; A] (9.2.24)
i=1
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provided that P (r4(u) < 00) = 1, where E(*) denotes expectation with
respect to P, Proofs of these properties can be provided by arguments
similar to those used in Section 9.2.3. Details are left to the reader.

The computation of the finite-horizon ruin probabilities is a notoriously
difficult problem, even in the compound Poisson model. Contrarily, exponen-
tial bounds for the ruin probability P(rq(u) < n) are easier. Let x(s) =
loghp(s) and take v > 0 the solution to x(v) = 0. If x(se) < oo for some
sg > v, then x(s) is differentiable in (0, ). We leave it to the reader to show
that x(s) is convex in IR, even strictly convex in (0,5¢). Let £ > 0, and s = s,
the solution to x()(s) = z~.

Theorem 9.2.5 Let z > 0. If (1} (y) < 7!, then zx(s;) — 5. < 0 and
P(7a(u) < 2u) < exp (zX(s5) — 52)) (9.2.25)
for allw>0. Ifz7! < x(1)(%), then s, > 0 and, for all u > 0,
P(ra(u) < 00) — P(14(u) < zu) < e™%%, (9.2.26)

Proof Suppose that x(!)(y) < z~!. Since rhr(s) is strictly convex in (0, so),
it follows that m(ﬁl.)(s) is strictly increasing in (0, s5) and hence x(s;) > 0 for
8z > . Now, from (9.2.24) we get

P(ra(u) < zu) E ©*) [exp(ra(u)x(82) = 8254(wy); Ta(u) < zu]

exp ((zx(sz) — sz )u).

IA

For 0 < 27! < x()(7), we have 0 < s, < v and consequently x(s.) < 0.
Thus, (9.2.24) gives

P(ra(u) < 00) — P(1a(u) < zu)
= B0 [exp(ra(u)x(s:) = 825r)); 26 < 7a(u) < 00] < &7,

9.2.5 Simulation of Ruin Probabilities

Consider the discrete-time risk process generated by a random walk, as
in Section 9.2.3. We collect a few remarks on how to use the change-of-
measure theory presented above in the approximation to the ruin probability
¥(u;n) via simulation. The simplest approach is to simulate ! independent
replications of the random walk until ruin occurs. In each replication we stop
the experiment at n, unless ruin occurs before n, in which case we stop at
the ruin epoch. As an estimator ¢ for 1(u;n) we take the ratio ¥ = L/ of
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the number L of replications in which ruin occurred until n, over the total
number ! of runs. Since L has the binomial distribution Bin(l, ¥(u;n)),

E(L/M)=v(wn), Var(L/)=1""p(uin)(1-w(wn).  (9.2.27)

In mathematical statistics, an estimator fulfilling the first equality in (9.2.27)
is called unbiased. However, we cannot expect ¥ to be a good estimator since
typically ¥(u; n) is very small. To reach a prescribed relative accuracy a with
probability 1 — p, we must run a certain minimum number [ of replications
such that the relative error |t — ¥(u;n)|/¥(u;n) satisfies

P(%’n > a) =p. (9.2.28)

Let ¢, be determined from P (|Z} > €,) = p, where Z has the standard normal
distribution N(0,1). The central limit theorem gives

. % — ¥(u;n)|
lim P >e,)=p.
t=oo (\/l’lw(u; n)(1 - ¥(u;n)) ,,) P
From the 2-sigma law of normal distributions, the value of p is close to 0.05
if e, = 2. Hence, for all sufficiently large [, the probability

19 = vn)| o VI T9uin)(1 ~ ¥(u;n))
P( ¥(u;n) >2 ¥(u;n) )

(9.2.29)

is close to 0.05 and consequently aapp = 24/1=19(u; n)(1 — Y(uin))/¥(u;n).
Thus, for all sufficiently large u > 0,

401 - ; 2 _ 2 .
o = Sgtan] 2 I ~ e

where in the last relation the Cramér-Lundberg estimate (6.5.29) has been
used. This shows that the number of replications ! has to be at least
proportional to €’* and so the number of required replications grows very
fast with u.

Let P{?) be the probability measure on (R*, B(R™)) defined analogously
to P, but by the martingale {exp(sY ., Y¥:),n € IN} as considered in
Example 3 of Section 9.1.3 and in Section 9.2.4. For the special case when
s = v, we have P(") = P. In an attempt to lower the number of replications
while keeping a given precision, we simulate the random walk under the
probability measure P® for some properly chosen s for which hp(s) < oco.
We then use (9.2.24) to estimate the ruin probability ¢(u; n). In the particular
case s = 7, we proceed as follows. Relation (9.2.23) shows that it suffices to

estimate the expectation E [exp(—y Z"’(") Y:); 7a(u) < n]. The crucial point

i=1
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is that, under PP, the stopping time 74(u) is finite with probability 1; see
Section 9.2.3. For each simulation run we compute a realization of the random

variable
Ta(u)

Z= exp(—fy Y Y,~) 1(ra(u) <n). (9.2.30)
=1

Thus for ! independent replications we obtain the values z,23,...,2 com-
puted from (9.2.30). We now use Uy(z1,. .y 21) = Zl‘él z;/l as an estimate
for ¥(u;n). It is clear that E, = ¥(u;n), showing that the estimator ¢,
is again unbiased. If we denote by ﬁ2 the variance with respect to P, then
]321/3., < Var 4 because

IDP, = E(2% - ®(u;n))?
Tq{n)

= B[ X3 ¥in() < n) - @(win)?
E[e X5 r(w) < n] - @(wn)?
< $(uin) - (¥(uin)?,

where the third equality follows from the definition of E. Thus, simulation
under P leads to an estimator for ¥(u;n), with a reduced variance.

Bibliographical Notes. The family of distribution functions F, defined in
(9.2.15) generates a family of associated distributions. A detailed account of
such families was given in Section 2.3; see also Asmussen (1987). Formulae like
(9.2.23) appear in Asmussen (1982), Siegmund (1975) and von Bahr (1974).
In the theory of Monte Carlo simulations, the proper choice of an underlying
probability measure is called importance sampling. The carly ideas for
solving such problems go back to Siegmund (1976), who considered the
simulation of probabilities occurring in sequential tests. In Lehtonen and
Nyrhinen (1992a) importance sampling is studied for random walks; see also
Lehtonen and Nyrhinen (1992b). For further papers discussing importance
sampling in connection with stochastic simulation, see, for example, Asmussen
and Rubinstein (1995) and Glynn and Iglehart (1989). More details on Monte
Carlo simulations can be found, for example, in Crane and Lemoine (1977),
Fishman (1996) and Ross (1997a).
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CHAPTER 10
Martingale Techniques II

10.1 CONTINUOUS-TIME MARTINGALES

The theory of continuous-time martingales is deeper and often requires lengthy
proofs that will not always be presented in full detail and generality. The aim
of this section is to outline and discuss some selected aspects of continuous-
time martingales and to study their applications in risk theory and other
branches of insurance and financial mathematics.

10.1.1 Stochastic Processes and Filtrations

Under the notion of a stochastic process we understand a collection of random
variables {X(¢), t € T} on a common probability space (2, F,P). Here T
is an ordered space of parameters. Typically in this book 7 C R and in
particular T = IN,Z, R or T = R. However, in a few places we will feel the
need for more general parameter spaces like sets of stopping times or families
of subsets. Formally, a stochastic process is a mapping X : T x Q@ — R, but in
general we do not require the measurability of this mapping. If 7 is a subset
of R and X is measurable with respect to the product-o-algebra B(7) ® F,
then we say the stochastic process {X(¢),t € T} is measurable.

In this section we always assume that 7 = R.. Then the set T of
parameters plays the role of time and so we speak about continuous-time
stochastic pracesses. For each fixed w € , the function ¢ — X (¢,w) is called a
sample path or trejectory; however, we usually drop the dependence on w € §2.
In general, sample paths can be quite irregular. We will mostly deal with
processes having sample paths belonging to one of the following two spaces:

e the space of continuous functions ¢ : R+ — R denoted by C(RR,),

o the space of right-continuous functions g : R, — R with left-hand limits
denoted by D(R.).

Note that the process {X(t)} is measurable if the sample paths of {X(t)} are

from D(R.); see, for example, Lemma 2.1.1 in Last and Brandt (1995). In

this book we say that a stochastic process with sample paths from D(IRy)
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is cadlag, which is the abbreviated French name of this property. In the
literature, one usually makes the somewhat weaker assumption that only
almost all sample paths are from D(R.). However, in most cases relevant
in insurance mathematics, one can consider a canonical probability space.
In particular, one can restrict {2 to the set 3¢ C € such that Qp =
{w:X(,w) € D(R,4)}.

Let t > 0. By the history of {X(t)} up to time t we mean the smallest
o-algebra FX containing the events {w: (X (¢1,w),..., X (tn,w)) € B} for all
Borel sets B € B(R"), foralln = 1,2, ... and arbitrary sequences t,,ta, ..., ¢,
with0 <t <t3<...<t, <t.Notethatfor0<¢<?¥

o FX CF,
o F¥X c Ff,
o X (t) is measurable with respect to FX.

The family of o-algebras {F;¥} is called the history of the process {X(t)}.
Similarly to the discrete-time case (see Section 9.1.2) we also say that {FX}
is the filtration generated by {X(¢)}. This is a special case of the following
definition. An arbitrary family {F;,t € T} of o-algebras such that T C R
and F; CF, Fy C Fp for all t,¢' € T with £ < t' is called a filtration. We say
that the process {X(t).t € T} is adapted to the filtration {F;,t € T} if X(¢)
is measurable with respect to F;, forall t € 7.

10.1.2 Stopping Times

A random variable 7 taking values in Ry U {oo} is said to be a stopping time
with respect to a filtration {F;, ¢ > 0} (or equivalently an {F;}-stopping time)
if the event {r < t} belongs to JF¢, for all t > 0. We define Foy =[50 Fese-
Note that F;, is a o-algebra because the intersection of any family of o-
algebras is a g-algebra. If i, = F; for all t € R, we say that the filtration
{F:, t > 0} is right-continuous. In this case we have the following equivalent
definition of a stopping time.

Lemma 10.1.1 The random variable 7 is an {F,;}-stopping time if and
only if {T <t} € F for allt > 0. In particular, if {F,} is a right-continuous
filtration, then T is an {F;}-stopping time if and only if {T < t} € F; for all
t>0.

Proof If T is an {F¢, }-stopping time, then {r < t} € F; since {r < t} =
Une:{7 <t—n"1} € F;. Conversely suppose that the random variable  has
the property that {7 < t} € F; for all ¢ > 0. Then {r < t} = N3, {r <
t+n~1} € F,.. The second part of the statement is now obvious. m]

Throughout the present section we assume that the stochastic process
{X(t),t > 0} is cadlag. Let B € B(R) and define the first entrance time
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78 of {X(t)} to the set B by

+B inf{t : X(t) € B} if X(t) € B for somet >0,
1 o otherwise.

In contrast to the discrete-time case considered in Section 9.1.2, the question
whether 77 is a stopping time is not obvious. A positive answer can only be
given under additional assumptions, for example on B or on the filtration
{F:}. We now discuss this problem in more detail for sets of the form
B = (u,00) and B = [u,0), where 4 € R. Let 7(u) = inf {t > 0: X(t) > u}
denote the first entrance time of {X(t)} to the open interval (u,occ), where
we put inf @ = oo as usual. For the interval [u,00) it is more convenient to
consider the modified first entrance time

™) =inf{t >0: X(t—-0)>uor X(t) >u}. (10.1.1)

Theorem 10.1.1 Let u € R. If the process {X(t)} is adapted to a filtration
{Fi}, then 7(u) is an {Fii}-stopping time and 7*(u) is an {F;}-stopping
time. In particular, if {F.} is right-continuous then 7(u) is an {F}-stopping
time too.

Proof Since the trajectories of {X (¢)} belong to D(R. ), we have

{rw<tt={J{X(@>u}er (10.1.2)
q€Q,

for each ¢ > 0, where @, is the set of all rational numbers in [0,¢). Hence
7(u) is an {F4 }-stopping time by the result of Lemma 10.1.1. Furthermore,
{r*(u) <t} = Npem {7(@ —n~") <t} U {X(t) > u}. Thus, (10.1.2) implies
that {7*(u) <t} € F; for each t > 0. o

Remarks 1. The proof of Theorem 10.1.1 can easily be extended in order
to show that the first entrance time 7% to an arbitrary open set B is an
{Fi+}-stopping time. Moreover, it turns out that 72 is a stopping time for
each Borel set B € B(R;) provided that some additional conditions are
fulfilled. In connection with this we need the following concept. We say that the
probability space (Q, F,P) is complete if for each subset A C Q2 for which an
event A’ € F exists with A C A’ and P(A4’) = 0, we have A € F. We now say
that the filtration {F;,¢ > 0} is complete if the probability space is complete
and {A € F : P(A) = 0} C Fo. If the filtration {F;} is right-continuous and
complete, {F;} is said to fulfil the usual conditions. Furthermore, 1f {F:} fulfils
the usual conditions and if {X(t)} is adapted to {F}, then 7B is an {F;}-
stopping time for each B € B(IR,). A proof of this statement can be found,
for example, in Dellacherie (1972), p. 51. We mention, however, that in some
cases it can be difficult to show that a given filtration is right-continuous.
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T(u) >t T(u) =t

Figure 10.1.1 Two paths coinciding till time ¢

2. Theorem 10.1.1 indicates that the first entrance time 7(u) is not always
a stopping time, unless the considered filtration is right-continuous. An
example where this problem appears can easily be found if the underlying
probability space is large enough. Consider the process {X(f)} on the
canonical probability space (2, F,P) with Q@ = D(R.) and F = B(D(IR4)).
Then, {7(u) < t} ¢ F¥ for each t > 0, i.e. T(u) is not a stopping time with
respect to the history {FX} of {X(t)}. Indeed, the two sample paths given
in Figure 10.1.1 show that from the knowledge of the process {X(t)} up to
time ¢ it is not possible to recognize whether 7(u) < t or 7(u) > £.

3. An important characteristic of the claim surplus process {S(¢)} introduced
in Section 5.1.4 is the time of ruin for a given initial risk reserve u > 0,
i.e. the first entrance time of {S(¢)} to the open interval (u,o00). However,
in this case the measurability problem mentioned above does not appear if
we consider {S(¢)} on its canonical probability space. This means that we
restrict @ = D(IR4) to the set Oy C Q of those functions from  which
have only finitely many jumps in each bounded interval and which decrease
linearly between the jumps; see also Figure 5.1.1. We leave it to the reader
to show as an exercise that on this smaller probability space the ruin time
7(u) = min {t > 0: 5(t) > u} is an {F }-stopping time.

10.1.3 Martingales, Sub- and Supermartingales

Suppose that the stochastic process {X(t), t € T} is adapted to {F;, t € T}
and that E | X (t)| < oo for all t € T. We say that {X (t)} is an {F;}-martingale
if with probability 1

E(X(t+h) | F) = X(), (10.1.3)
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for all t,t + h € T with h > 0. Similarly, {X ()} is called a submartingale if
EX({+h) | F) 2> X(@), (10.1.4)
and a supermartingale if
EX@+h) | F)<X({®), (10.1.5)

forall t,t +h €T with h > 0.

The definition (10.1.3) for continuous-time martingales entails a property
for the discrete version. If {X(¢),t > 0} is an {F;}-martingale and 0 <
to < t1 < ..., then {X(t,),n € IN} is an {F;_ }-martingale in discrete time,
i.e. (9.1.7) holds with X, = X(¢,) and F, = F;,..

Examples 1. Consider the cumulative arrival process {X(t),t > 0}
introduced in Section 5.2.2 for the compound Poisson model with charac-
teristics (A, Fiy), where X(t) = Efi(f) U;. f EU < oo, then the process
{X'(t),t > 0} with X'(t) = X(¢) — tAEU is a martingale with respect to
the filtration {.’F,X }. This is a special case of the next example.

2. Let {X (), t > 0} be a process with stationary and independent increments.
If E|X(1)] < o0, then the process {X'(¢),t > 0} with X'(t) = X(¢) —tE X (1)
is a martingale with respect to the filtration {FX}. We leave the proof
of this fact to the reader. We only remark that it suffices to show that
E(X'(t+h) | X'(t1),...,X'(ta), X'(t)) = X'(t) whenever 0 < t; < t; <
<t <t<t+h

3. Consider the claim surplus process {S(t),t > 0} with S(t) = EN O, - ot

=1
for the compound Poisson model, with arrival rate A, premium rate 3 and
claim size distribution Fy;. Note that, by formula (5.2.7) in Corollary 5.2.1,
we have

Ee®5(t) = ¢ts(s) seR, (10.1.6)

where g(s) = A(rhy(s) — 1) — 3s. Now we use this result to show that the
process {X(t),¢ > 0} with X (t) = e*5()-9(#)¢ i 3 martingale with respect to
the filtration {F7}, where s € R is fixed. For ¢,k > 0 we have

E(X(t+h) | F)) = E(eStHN-sth | g8
esSt)—9(sit g (GS(S(HA)—S(t))—y(S)h [ }‘ts)

esS(t)—g(s)tE (esS(h)—g(s)h) ,

1l

where the last equation follows from the fact that {S(f)} has independent and
stationary increments, and which is known from Corollary 5.2.1. From (10.1.6)
we have E (e*5(")-9()h) = 1 and consequently E (X (t + h) | F¥) = X ().

4. The current example indicates the close relationship between martingales
and the concept of the infinitesimal generator in the theory of Markov
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processes; see also Section 11.1.3. Consider a continuous-time homogeneous
Markov process {Z(t), t > 0} with finite state space E = {1,2,...,£} and
intensity matrix Q. Then, for each vector b = (b,...,b¢) € R’, the process
{X(t),t > 0} with

t
X(t) = bz(t) - bZ(O) - ‘/(; (QbT)Z(U) du, t>0 (10.1.7)

is an {FZ}-martingale, where the integral in (10.1.7) is defined pathwise. In
order to demonstrate this fact, write for t,h > 0

E(X({t+h) | FE)=E(X({t+h)| Z(t)

A
= X(t)+E(bZ(t+h) = bz —/t (Qb )z dv l Z(t))-

Because {Z(t)} is homogeneous we have
thh
E (bZ(c+h) — bz —/ (Qb ' )z(wy dv \ Z(t) = 'i)
¢

= E (bZ(h) - bZ(O) - Ah(QbT)z(U) dv l Z(O) = Z) .

Thus it suffices to show that, for all i € F,
h
E bz | Z0) =) -t = [ B(Q@7)z) |20 =)dv (1018

since E (f(Qb7 )z dv | Z(0) = i) = [TE(Qb )z | 2(0) = i)dv.
However, recalling from Theorem 8.1.4 that the matrix transition function
{P(v),v > 0} of {Z(t),t > 0} is given by P(v) = exp(Qv), we have

E (bzn) | Z(0) = i) = e;exp(Qh)b" (10.1.9)

and
E ((@b7)z() | Z(0) = i) = e; exp(Qu)QbT, (10.1.10)

where e; is the ¢-dimensional (row) vector with all components equal to 0
but the i-th equal to 1. Using (10.1.9) and (10.1.10) we see that (10.1.8) is
equivalent to

h
eiexp(Qh)bT — b; = / e; exp(Qu)Qb" dv. (10.1.11)
0

The latter can be verified by differentiation and by using Lemma 8.1.2. So
far, we have shown that the process {X(¢),t > 0} given by (10.1.7) is an
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{FZ}-martingale. Note that (10.1.7) is a special case of Dynkin’s formula for
Markov processes with general state space; see also (11.1.17). This martingale
technique yields a versatile approach to the concept of infinitesimal generators
for Markov processes. For example, the following converse statement is true.
Suppose for the moment that Q' is an arbitrary £x £ matrix, i.e. not necessarily
the intensity matrix of the Markov process {Z(t)}. Moreover, assume that the
process {X'(¢)} with

t
X'(t) = bZ(t) b bi - /(; (Q'bT)Z(v) d-v, t> 0 (10.1.12)

is an {F#}-martingale for each vector b € R’ and for each initial state
Z(0) =1 of {Z(t)}, Then, analogously to (10.1.11), we have

h
e;P(h)b" —b; = / e;exp(Qu)Q'bT du. (10.1.13)
0

On the other hand, using Theorem 8.1.2 we see that

i e;iP(h)b™ —eb'
h-0 h

=e; Qb

for all i = 1,...,¢ and b € R’. This means that Q' must be equal to the
intensity matrix Q of {Z(t)}. In Section 11.1.3 we will return to questions of
this type in a more general setting.

5. This example shows how stochastic integrals with respect to martingales
can be used to create new martingales. In an attempt to avoid technical
difficulties, we make rather restrictive assumptions on the (deterministic)
integrated function f and on the martingale {X(t)} with respect to which
we integrate. Let the process {X(t),t > 0} be cadlag and such that, with
probability 1, the trajectories of {X (£)} have locally bounded variation. Then
for each continuous function f : Ry — R and ¢ > 0 the stochastic integral
Xe(t) = fot f(v)dX(v) is defined pathwise as a Riemann-Stieltjes integral,
i.e. for each w € QY and t,h > 0,

t+h
Xp(wt+h) - Xplw,t) = [ f@)dX(w,v)
i

_ i-1 i -1
= Jm Y (X ) - X 5).
int+1}<i<in(t+h)]

Note that the integrated process {X;(t), t > 0} is an {F*}-martingale
whenever {X(t)} is an {F;f }-martingale. Indeed, the random variable X;(t)
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is F/X-measurable, since it is the limit of F{X-measurable random variables.
Furthermore, for ¢, h < 0 we have

t-+h

E (X;(t+h) | FX) = /ﬂ () dX () +E( t fw)ax () | 7).

If {X(t)} is a martingale, then
i—1
n

(Y iEHED-x(ED) | #) =0

nt+1]<i<|{n(t+h)]

The reader should prove that for fixed ¢,k > 0 the sequence {Z,} with

Z= Y HEDH(EG-x(ED), m=12.

n
Lnt+1]<i<{n(t+h)]

is uniformly integrable, that is

Jim. (fé’n‘i E(|Znl; {12l > 2)]) =0. (10.1.14)
We can conclude that in this case E ( f:“ fw)dX (@) | FX) = 0 and
consequently E (X;(t + h) | FX) = X;(t). For f which are random and
for {X(t)} with trajectories of unbounded variation, the theory of stochastic
integrals is much more complicated; see Section 13.1.1.

6. For two {F;}-martingales {X ()} and {Y (¢)}, the process {X(t) + Y ()} is
also an {JF;}-martingale. The proof of this fact is left to the reader.

7. i the random variable Z is measurable with respect to Fo for some filtration
{F:,t > 0}, and if E|Z] < oo, then the process {Y ()} defined by Y (¢) = Z
is an {F;}-martingale. Moreover if {X(¢)} is another {F;}-martingale, then
the process {ZX(t), t > 0} is an {F;}-martingale, provided E (ZX(0)) = 0.
We leave the proofs of these simple properties to the reader.

10.1.4 Brownian Motion and Related Processes

In the risk model introduced in Section 5.1.4 we assumed that the premium
income is a linear function of time. This reflects the situation that pricing of
insurance products is sometimes evaluated on a basis where no interest is taken
into account. However, if the return of the company’s investments is included
into the balance, then a deterministic (linear) income process is no longer an
appropriate model, as the return is affected over time by random changes of
market values of assets and inflation. For that reason, one also considers risk
models with a stochastic income process {X ()}. In Section 13.2 we discuss this
question in detail assuming that {X(¢)} is a diffusion process. An important
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special case is given when the (scheduled) deterministic income 8t up to time
t is perturbed by a Brownian motion {W(t),¢t > 0}, i.e. X(t) = Bt + W(¢),
where the stochastic process {W(t), t > 0} is called a o%-Brownian motion
if

e W(0) =0,

e {W(t)} has stationary and independent increments,

e W(t) is N(0, o*t)-distributed for each ¢ > 0,

e {W(t)} has all sample paths from C(R).

It is a nontrivial question to show that the notion of Brownian motion is not
empty, that is to show that there exists a stochastic process satisfying these
four conditions. The positive answer to this question was given by Norbert
Wiener in 1923. Note that the condition W (0) = 0 is merely a normalization
rather than a basic requirement. It was shown later that the paths of the
Brownian motion have curious properties. For example, with probability 1,
all the paths are nowhere differentiable, or they pass through 0 infinitely
often in every neighbourhood of zero. Besides this, all the sample paths have
unbounded variation on the interval [0, t] for each t > 0. If ¢ = 1, then {W (1)}
is called a standard Brownian motion. We say that {X(t)} is a o2-Brownian
motion with drift if X(t) = W(t) + ut for some g € R, where {W(t)} is
a o2-Brownian motion. For short, we say that {X(#)} is a (u, o%)-Brownian
motion.

The following result shows that the ¢2-Brownian motion is a martingale
and gives two further martingales related to Brownian motion.

Theorem 10.1.2 Let {W(t)} be a o>-Brownian motion. The following
processes are martingales with respect to the filtration {F}¥}:

(a) {W(0)},
(b) {W2(H) - o1},
(c) {exp(sW (t) — 02s%t/2)} for each fized s € R.

Proof Statement (a) directly follows from the property of processes
with stationary and independent increments mentioned in Example 2 of
Section 10.1.3. To show (b), note that for {,h > 0 we have

EW2(t+h)—c?(t+h) | FY)=E(W(t+h) - W)
+2WE+h) —WE)W(E) +W2(1) | FY) - ad*(t+h)
= W2(t)—o’t.

Similarly, for ¢,k > 0,

E (eaW(t+h)_,,2,2(z+h)/2 [ }-tW) =E (es(W(t-i-h)_w(t))) eaW(t)—-ozgi(t+h)/2.

Since B (e*(W(t+h)-W(®)) = ¢o*s*h/2 we get statement (c). 0
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Let {X (), t > 0} be a stochastic process which is cadlag and adapted to a
filtration {F;}. We say that {X(¢), ¢t > 0} is a homogeneous Markov process
with respect to {F,} if, with probability 1,

P(X(t+h)e B|F)=P(X(t+h) € B| X(t)

for all t,h > 0 and B € B(R). The case that {X(t)} is Markov with respect
to its history {FX} is discussed in more detail in Chapter 11. Furthermore,
we say that {X(¢), t > 0} is a strong Markov process if, with probability 1,

P(X(r+h)eB|F)=P(X(r+h) € B| X(1))

on {r < oo} for each {F;}-stopping time 7. It can be proved that most
processes with independent stationary increments (including Brownian motion
and the claim surplus process in the Poisson compound model) are strong
Markov processes with respect to their history; see Breiman (1992).

For many results on martingales given in the literature, a right-continu-
ous filtration is required. For example, such an assumption is needed in order
to prove that the first entrance time to an open set is a stopping time; see
Section 10.1.2. It turns out that if {X(¢), ¢ > 0} is a strong Markov process
with respect to a complete filtration {F;}, then this complete filtration is right-
continuous; see Proposition 7.7 of Karatzas and Shreve (1991). However, for
our purposes the notion of a complete filtration is not very useful; see, for
example, the remark at the end of Section 10.2.6.

Another result, due to Brémaud (1981), Theorem A2T26, states that if
{X(t), t > 0} is a stochastic process defined on a probability space (§2, 7, P)
such that, for all ¢t > 0 and all w € Q, there exists a strictly positive real
number £{t,w) for which

X(t+hw)=X(,w) if h € [0,e(t,w)), (10.1.15)

then the history {F;X, ¢ > 0} is right-continuous. A stochastic process with
property (10.1.15) is called a pure jump process.

10.1.5 Uniform Integrability

The introduction on continuous-time martingales closes with a discussion of
some further related results. We extend the definition of uniform integrability
that has been mentioned in (10.1.14) for sequences of random variables. The
concept can be generalized to any collection of random variables, that is to a
stochastic process {X(¢), t € T} with a general space T of parameters. We
say that {X(t), t € T} i8 uniformly integrable if E|X(t)] < coforallt € T
and if

xlin;o(fggla(LY(t)u 1X(8)] > z)) =0. (10.1.16)

The following is a characterization of uniform integrability.
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Theorem 10.1.3 The stochastic process {X (t),t € T} is uniformly integrable
if and only if the following two conditions hold:

(a) sup;e7 E|X(t)] < oo,

(b) for every € > 0 there exists a & > 0O such that for everyt € T and A € F,
P(A4) < § implies E[|X(t)|; A] < e.

Proof To show sufficiency of conditions (a) and (b) it suffices to prove that
(10.1.16) holds. Note that zP(|X(t)] > z) < E|X(t)| for all t € T and
z > 0. Hence sup,c7 P(|X (¢)| > z) < 27! sup,cr E|X(t)] < 6 for each § > 0
provided that = > 0 is large enough. Thus, for each £ > 0,

limsup(supE(lX(t)I; 1X(t)] > :c)) <e.
z—00 MET

This gives (10.1.16), since £ > 0 can be chosen arbitrarily small. Assume now
that {X(¢),t € T} is uniformly integrable. Then for each z large enough,

sup E|X (2)] < sup {E [[X()|;|X(t)] > 2] + =} < o0,
teT teT

i.e. condition (a) is fulfilled. Now, for £ > 0 given, choose z > 0 such that

sup E[X(0): X (&) > 2] < 5 -

teT

Then, for each § > 0 such that § < 27 1¢/2 and for each A € F with P(4) < 6,
we have E{|X(¢)]; A] < E{|X(t)];|X(¢)] > =} + zP(A) < €. This shows that
condition (b) is fulfilled. a

The relevance of uniform integrability in the realm of convergence of random
variables becomes clear in the next theorem.

Theorem 10.1.4 Let tg,ty,... be an arbitrary sequence of parameterst, € T
and consider the sequence X, Xo, X1, . . - of random variables with X, = X (t,,)
and E|X,| < 0o for each n € IN. If limyoo Xn = X with probability 1, then
the following statements are equivalent:

(a) {Xn, n € IN} is uniformly integrable,

(b) E|X| < o and limy_,00 E|X, — X|=0.

Proof Suppose that lim, o X, = X with probability 1 and note that then
limy, 00 P(|Xn — X| > €) = 0 for each € > 0. Furthermore, for each & > 0 we
have

E{X, - X|
< E[Xn - X[1Xn - X| <] + E[Xn - X[;|Xn — X| > €]
< 5+E[txn’;|Xn'Xl>€]+E[‘X|;|Xn_xl>E]'
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Let {X,, n € IN} be uniformly integrable. Then the second term of the last
expression tends to zero by Theorem 10.1.3 choosing A = {| X, —X| > ¢}. The
third term also tends to zero since sup, ¢ E|Xs| < co by Theorem 10.1.3
and therefore E X < oo by Fatou’s lemma. Thus, (b) holds because ¢ > 0 can
be chosen arbitrarily small. Assume now that (b) holds. Then

sup E|X,| < sup E|X, — X|+ E}X| < oo. (10.1.17)
nelN nelN

Fix £ > 0 and choose ng € IN such that E[|X,, - X|; 4] < E{X,, - X| <¢&/2
for all n > ng and A € F. Now, choose § > 0 such that P(4) < § implies

sup E[|X, - X;A]+ E[|X|; 4] <
0<n<no

ol m

Thus, for each € > 0 there exists § > 0 such that

sup E[|X,;A] < sup E[|X, — X; A+ E[|X}; 4] <e
nclN nelN

whenever P(4} < 4. By Theorem 10.1.3, this and (10.1.17) imply that
{X,,n € N} is uniformly integrable. a

Corollary 10.1.1 Let X, X, X1, ... be random variables such that E|X,| <
oo for each n € IN and lim, o, X,, = X with probability 1. If {X,,n € IN}
is uniformly integrable, then E|X| < oc and lim,,, . EX, =EX.

Proof Since |EX, — EX| < E[X, — X|, the statement is an immediate
consequence of Theorem 10.1.4. a

Bibliographical Notes. The general concepts of stochastic processes are
studied in many books, such as Chung (1982), Dellacherie (1972) and
Meyer (1966). The notion of a martingale was introduced to probability
theory by Ville (1939) and developed by Doob (1953). For continuous-
time martingales we refer to the books mentioned above and to Dellacherie
and Meyer (1982), Elliot (1982) and Liptser and Shiryaev (1977). The
first quantitative results for Brownian motion are due to Bachelier (1900),
Einstein (1905) and Thiele (1880). A rigorous mathematical treatment of
this class of stochastic processes began from Wiener (1923,1924). Basic
properties of Brownian motion are given, for example, in Billingsley (1995),
Breiman (1992), Ito and McKean (1974) and Karatzas and Shreve (1991).
The characterization of uniform integrability stated in Section 10.1.5 follows
the approach of Karr (1993) and Williams (1991).
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10.2 SOME FUNDAMENTAL RESULTS

In this section, we state and prove some fundamental results for continuous-
time martingales that will prove to be highly useful when studying more
specific martingales that appear in insurance and financial mathematics. The
main idea in the proofs of all these results is to draw on the discrete-time
theory by considering a continuous-time martingale at a sequence of discrete
time instants.

Let {F:} be an arbitrary but fixed filtration. Unless otherwise stated,
stochastic processes are always assumed to be adapted to this filtration and
stopping times refer to {F;}. If not needed, we will not refer to the filtration
explicitly. Contrary to common practice in continuous-time martingales,
sample paths of stochastic processes considered in this section are cadlag,
not just right-continuous functions.

10.2.1 Doob’s Inequality

The following result is a counterpart of Doob’s inequality (9.1.40) given in
Section 9.1.7 for discrete-time submartingales. Armed with this inequality,
one can easily derive exponential (Lundberg-type) upper bounds for infinite-
horizon ruin probabilities in the compound Poisson model.

Theorem 10.2.1 Let {X(2)} be a submartingale. Then for each x > 0 and
t>0,
P( sup X(v) > z) < EX®)+ (10.2.1)
0<v<t z
Proof Without loss of generality, we assume that for each ¢ > 0 the random
variable X (t) is nonnegative. Indeed, for £ > 0 we have

P( sup X(v)} > :1:) =P{ sup (X(v))y > a:)
0<v<t <w<t
and the stochastic process {X'(t),t > 0} with X'(¢) = (X(¢))+ is again a
submartingale. This follows easily from Jensen’s inequality for conditional
expectations. Let B be a finite subset of [0,t] such that 0 € B and t € B.
Then, (9.1.40) gives the inequality

xP(r&agX(v) > z) <EX(t). (10.2.2)
Considering an increasing sequence Bj,Bs,... of finite sets with union
([0,t) N Q) U {t}, we can replace the set B in (10.2.2) by this union. The
right-continuity of {X (¢)} then implies (10.2.1). &

Examples 1. For s € R fixed, consider the martingale {e*5(*)=ts(*) ¢t > 0}
of Example 3 in Section 10.1.3. Here {S(¢t)} is the claim surplus process for



416 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

the compound Poisson model with arrival rate A, premium rate 3 and claim
size distribution Fy, while g(s) = ¢! log Ee*5(®). Choose s = v > 0 such that
g(7) =0, i.e. 7 is the adjustment coefficient for this model. In Section 10.1.3
it was shown that {Ee"5(®} is an {7 }-martingale. Since Ee"5®) =1 and
{supgcy<e S(v) > 7} = {Supp<y<s e75(¥) > 7%}, the bound

P( sup S(v) > a:) <e 7,

o<yt

for all z > 0 follows from Doob's inequality (10.2.1). Let ¢t — oo to get
P(sup,>o S(v) > z) < e~ 7%, Note that a stronger version of this Lundbery
inequality has already been derived in Corollary 5.4.1 but using a more
complex argument.

2. Let {W(t)} be a standard Brownian motion and consider the (—u,1)-
Brownian motion {X ()} with negative drift, where X (f) = W(#) — ut; u > 0.
In Theorem 10.1.2 we showed that, for s € R fixed, {e*(X(W)+ut)=s*t/2 ¢ > 0}
is an {F}¥ }-martingale. Putting s = 2u we see that {ez“"“')(} is a martingale
and since supg<, <, X (v) > z is equivalent to supgc,«; e*#X(v) > 282 apain
Doob’s inequality (10.2.1) yields a bound T

P(sup X(t) > :c) < e72mm (10.2.3)
>0

for all £ > 0. Later, in Section 10.3.1, we will prove that even equality holds
in (10.2.3), so that P(sup,»q X(t) > z) = e 2#* for all z > 0.

10.2.2 Convergence Results

The next theorem is usually called the submartingale convergence theorem and
is a consequence of Theorem 9.1.3.

Theorem 10.2.2 Let {X(t),t > 0} be a submartingale and assume that
supE (X (t))+ < 00. (10.2.4)
t20

Then there exists a random variable X (00) such that, with probability 1,

gl_lgxo X(t) = X(o0) (10.2.5)
and E | X (00)| < 00. If, additionally,

supE X%(t) < o0, (10.2.6)

20

then
E X%(x0) < o0, Jim E X (¢) - X(c0)| =0. (10.2.7)
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Proof Let {tx} be a strictly increasing sequence of positive numbers such
that &y — oo. Because {X:} with X; = X(fx) is a submartingale in
discrete time, Theorem 9.1.3 guarantees the existence of an integrable random
variable X (oo) such that limg_,c X (£x) = X(00). Let now {t;} be any other
increasing sequence such that t; — oo. By the same Theorem 9.1.3 there
exists a random variable ¥ such that limg_,, X(#,) = Y. Let {vx} be the
increasing sequence such that {t;} U {t;} = {vi}. Because limg_, o X (vk)
exists we must have Y = X (o0). But this proves lim; o, X(t) - X(o0). The
rest of the theorem follows from Theorem 9.1.3. (]

10.2.3 Optional Sampling Theorems

Consider an arbitrary filtration {¥;}, a stochastic process {X(f)} and a
stopping time 7. Define X, : @ — R by

X(r(w),w) if r(w) < 00,

X (w) = { o 1) = oo, (10.2.8)

where X is a certain random variable. We put X = X (oo} = limi—e X(t)
if this limit is well-defined as, for example, in the submartingale case of
Theorem 10.2.2. It is generally not obvious that X, is a random variable.
However, for processes with right-continuous sample paths, it is easy to give
a positive answer to this question.

We first construct a standard discrete approximation to the stopping time
r. For n = 1,2,..., define the random variable (" by

2n

7 = k+1 if k27"<r<(k+1)27"forsomek=0,1,...,
00 if 7=oc.

(10.2.9)
Then for k27" <t < (k+ 1)2™" we have
(F™ <t} = {r™ < k27"} = {1 < k27"} € Fpo-n C Fo (10.2.10)

and hence the random variables 7{") are stopping times. Moreover, with
probability 1, we have 7(0 > 72 > . | r.

Theorem 10.2.3 If 7 < o0 or X{(00) ezists then X, is a random variable.

Proof Since {X(t)} is assumed to be cadlag, we have X, = limp_y00 X;n)-
Thus it suffices to prove that X ,(») is measurable. However, for each Borel set
B € B(R),

{X,m € B} = {X(c0)€ B, =00}

oU{x(EE) epfnfrm =2 e
k=0
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Let ¢ > 0 be fixed. If 7 is a stopping time, then also the random variable
t AT = min{t,7} is a stopping time, as the reader can easily show. The
following theorem is concerned with the “stopped” version {X(t A 7),t > 0}
of the stochastic process {X (t)}. We first deal with an auxiliary result.

Lemma 10.2.1 If {X(t)} is a submartingale, then the sequence X1 A
t), X(® At),... is uniformly integrable for each t > 0.

Proof Let Y = sup,»; X (™ A t). Note that P(]Y| < o0) = 1. Indeed,
apply Doob’s inequality (10.2.1) to the submartingale {|{X(t)|,t > 0} to find
P(Y| > 1) < P(supge,< |X(v)| > 2) < o~'E|X(t)] and, consequently,
lim,_, P(|Y| > z) = 0. Since
, k+1 -
EX™ans Y E|x(2—n At)l +E|X ()] < o,
{k:(k+1)2-" <t}
it remains to show that (10.1.16) is fulfilled. By the result of Theorem 9.1.7,

sup E[| X (™ A t)); X (7™ A t) > 2]
n>1

< supE[IX(®) X(r™M At) > 2] <supE [[X(1)];Y > 7]
n>1 n>1
= E[X@LY >4.
Furthermore, lim, ., E{|X(t)];Y > z] = 0 since E|X(t}| < 00 and |Y]| < o0
with probability 1. O

Theorem 10.2.4 Let {X(t)} be a martingale and 7 o stopping time. Then
also the stochastic process {X (7 At),t > 0} is a martingale.

Proof We have to prove that
E|X(TAt)] <oo (10.2.11)
for each ¢t > 0 and that
E[{X(rAt); Al = E[X(7 Av); 4] (10.2.12)

for all 0 < v < t and A € F,. As in the proof of Theorem 9.1.7, we can show
that
E[X(r™ At); A = E[X ('™ Av); 4]. (10.2.13)

On the other hand, by Lemma 10.2.1 the sequences {X (7{™) Av), n > 1} and
{X (™ At), n > 1} are uniformly integrable, and since {X (t)} is cadlag we
have lim, ., X (7(™ At) = X (7 At) and limy 00 X (7¢™ Av) = X(T Av). By
Corollary 10.1.1, both (10.2.11) and (10.2.12) hold. o
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We remark that Theorem 10.2.4 on stopped martingales can easily be
extended to submartingales. It suffices to replace (10.2.13) by

E[X (™ At); A] 2 E[X (7™ Av); 4]
to conclude that forall 0 <wv < tand A € F,
E{X(TAt); A] 2 E[X(1 Av); 4]. (10.2.14)

We turn to continuous-time versions of the optional sampling theorems as
derived in Section 9.1.6 for discrete-time martingales. In the same way as in
Section 9.2.3 the reader can show that the family of events F, consisting of
those A € F for which AN{r <t} € F, for every t > 0 is a o-algebra. We call
F. the c-algebra of events prior to the stopping time 7. Note that formally
there is a difference between this definition and the definition of F, given in
(9.2.19) for the discrete-time case. However, in the latter case we can use both
approaches.

Theorem 10.2.5 Let {X(t)} be a martingale and 7 an arbitrary stopping
time. Then, for each t > 0,

E(X(t) | Fr)=X(TAtL). (10.2.15)

Proof Let 7(™ be given by (10.2.9). It then follows that E (X (t) | F,m) =
X (7™ At), as can be shown by the reader. Now, since 7, C F,(»), we have

E(X(®) | F) =EEX® | Fm) | F) =EXFT™ At | F).

By Lemma 10.2.1, the sequence {X(r(™ At),n > 1} is uniformly integrable.
But {X(#)} is cadlag and so Corollary 10.1.1 shows that

E(X(t)| Fr) = ’}i_)rr;cE(X(r(") At) | F) =B(X(TAt)| F) = X(TAL),

which completes the proof. a

Theorem 10.2.8 If {X(t)} is a martingale and 7 a bounded stopping time,
then
EX(r)=EX(0). (10.2.16)

Proof Putting A = Q and s = 0, (10.2.16) is an immediate consequence of
(10.2.12) if we choose ¢ > 0 such that P(r < ¢) = 1. O

The following result is a continuous-time counterpart of Theorem 9.1.5.

Theorem 10.2.7 Let {X(t)} be a martingale and 7 a finite stopping time
such that E|X(7)] < co and limyc E{[X(t)[;7 > t] = 0. Then

EX(r) =EX(0). (10.2.17)
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Proof Apply Theorem 10.2.6 to the bounded stopping time 7 A ¢, where ¢ > 0
to obtain E X (7 A t) = E X(0). By the dominated convergence theorem,

EX(0) = lim EX(r A¢)
= tl_i)noloE[X(T);rst]+tl_i_)r{.1°E[X(t);7'>t]=EX(T). (]

10.2.4 The Doob—Meyer Decomposition

Our next result provides a continuous-time analogue to the Doob-Meyer
decomposition which was derived in Section 9.1.8 for discrete-time submar-
tingales. We employ the concept of a uniformly integrable family of random
variables from Section 10.1.5, with 7 the family of all {F;}-stopping times.
We say that the submartingale {X(¢)} belongs to the class DL if for each
t > 0, the family {X (¢ A7), € T} is uniformly integrable. Examples of such
submartingales can be found as follows. Let {X ()} be a right-continuous
submartingale. Then {X(t)} belongs to the class DL if {X (t)} is a martingale
or if {X(t)} is bounded from below. The reader is invited to show this as an
exercise.

The Doob—Meyer decomposition stated below is unique up to indistin-
guishability where we say that the stochastic processes {X(t),t € T} and
{X'(t),t € T} are indistinguishable if they are defined on the same proba-
bility space (2, F,P) and if there exists 4 € F such that {w : X(t,w) #
X'(t,w)for somet € T} C A and P(A4) =0.

The aim of the Doob-Meyer decomposition is to represent the
submartingale {X(¢)} in the following way: X () = X(0) + M(t) + A(¢) for
all ¢ > 0 where
o {M(t)} is a martingale with respect to the filtration {F;},

o {A(t)} is an increasing process, that is, for each w € , the sample path

{A(w,t),t > 0} is a nondecreasing function and A(0) = 0, where as usual
we assume that {A(t)} is adapted to {F;}.

Note that every right-continuous nondecreasing function a : R, — R, with
a(0) = 0 determines a Borel measure m, on B(R4) by m4([0,t]) = a(t) for
all t > 0. For each measurable function ¢ : Ry — R we define the integral

Jy 9(v) da(v) by
t
[ se)da) = [ gtw)maa)
0 [0.¢)
provided that the integral on the right-hand side exists.

Theorem 10.2.8 Let {F;} be right-continuous, and let {X(t)} be a
submartingale of class DL. Then:
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(a) there exists an increasing process { A(t)} and a martingale {M(t)} fulfilling
forallt >0
X(t) = X(0)+ M(t) + A(2) (10.2.18)

and, for all nonnegative right-continuous martingales {Y (t)} and 7 € T,

tAT

E / Y =) dAm) =E [ Y(v)dA) = E(Y(EADAEAT),
’ ° (10.2.19)

(b) up to indistinguishability, there exists only one right-continuous increasing
process {A(t),t > 0} which satisfies (10.2.18) and (10.2.19).

The proof of Theorem 10.2.8 goes beyond the scope of this book. It can be
found, for example, in Tkeda and Watanabe (1989), Theorem 6.12.

10.2.5 Kolmogorov’s Extension Theorem

In this section we discuss a variant of Kolmogorov’s extension theorem for the
continuous-time case. As a canonical model we take @ = RI®®) to be the
set of all functions w : Ry — R. A filtration on  is introduced as follows.
Let Ay, t.(B1,...,Bp) = {w € Q: w(ty) € By,...,w(ta) € B,}, where
th £...<ty, By,...,B, € B(R). We call A,,. ;. (Bi,...,B,) a cylindrical
set. Define now F; to be the smallest o-algebra containing all cylindrical sets
Ay, 2. (B1,...,By) such that ¢; < ... < t, < t. Let the o-algebra F of all
events in £ be given by F = (>0 Fe)-

Theorem 10.2.9 Suppose that, for each n > 1 and for all t; < ... < t,,
there is a probability measure P, . on (R",B(R")) for which the family
{Pi,,....t. } satisfies the following consistency condition:

P taitos1(Brx ... xBy xR)=Py,, . (Byx...xBy), (10.2.20)

Joralln > 1t <...<t, eand By,...,B, € B(R). Then there exists a
uniquely determined probability measure, P say, on (Q, F) such that
tn (Bl, ey Bn)) = Ph,m,l-u (B] X ... X Bn), (10221)

.....

foraln>1,4 <...<t, and By,...,B, € B(R).

The proof of Theorem 10.2.9 is omitted and can be found, for example, in
Shiryayev (1984). The probability space (2, F,P) with the filtration {F;}
and the stochastic process X (t,w) = w(t) considered in Theorem 10.2.9 is
called a canonical probability space for {X(t)}. In the following corollary we
assume that {X(t)} and {F;} are given by this canonical model.
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Corollary 10.2.1 Let {X(t), t > 0} be a nonnegative {F:}-martingale such
that EX(0) = 1 and, for each t > 0, let P, be the probability measure on
F, defined by P:(4) = E[X(t); A]- Then there exists a unique probability
measure P on (Q, F) such that, for all A€ F; and t > 0,

P(4) = P, (4). (10.2.22)

The proof is similar to the proof of Corollary 9.2.1 and is therefore omitted.

10.2.6 Change of the Probability Measure

The change of the probability measure considered in Section 9.2 turned out
to be useful when studying ruin probabilities of discrete-time risk processes
as shown in Section 9.2.4. Here is a continuous-time version of this concept.

Consider an arbitrary probability space (2, F, P) and an arbitrary filtration
{F:} on it. Put Foo = 0(Us>0Ft). Let {M ()} be a positive {F;}-martingale.
Without loss of generality we assume that E M(0) = 1. Let ¢ > 0 be fixed.
Then, as in Corollary 10.2.1, we can define a new probability measure P, on
the o-algebra F; by

P (A) =E[M(t);4)], AcF. (10.2.23)

Lemma 10.2.2 (a) If t,h > 0, then P, = Pyyn on Fy. In particular, for
Ae R
E[M(t); A] = E[M(t+ h); 4].

(b) Assume that there exists a probability measure P on Fo, such that P = P,
on Fi for all t > 0. Let T be a stopping time and A C {r < oo} such thet
A e F,. Then _

P(A) = E[M(r); 4]. (10.2.24)

Proof (a) By conditioning on F; we have

fl

E[M(t + h); A) E(E[M(t+h);A] | 7)) =E[EM({¢+h) | F); 4]

E[M(t); A].

(b) Recall that An {r <t} € F;. Thus, by (a),
P(AN{r <t}) =E[M();An{r <t}].
Hence, from Theorem 10.2.5 we conclude that

P(AN{r <t}) =E(E[M@);AN{r <t}]| F;)
EEMQO) | F)An{r <t} =E{MGFE At AN{r <t}]
EM(T);An{r<t}].
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Thus, the assertion follows from the monotone convergence theorem. o

Later on, we will need the conditional expectation E (Y | G) under P,,
where Y is F-measurable, G C F, and 7 is either deterministic or a stopping
time bounded by ¢. If 7 is unbounded we consider the conditional expectation
E(Y | G) under P, where we have to assume that the measure P on Fu
exists. For clarity of notation we sometimes write E , instead of E, and P
instead of P.

Theorem 10.2.10 Let t < 0o. Consider the random veriable M, defined in
(10.2.8). Let Y be an F,-measurable random variable such that Y 1s integrable
under P;. If T <'t, then

. E(M.Y _
E(Y|G)= f(@#'gg)) : (10.2.25)

In perticular, for t,h >0,
EonY | F)= EM@E+ Y | 7o) (10.2.26)

M(t)

Proof Let Z be a bounded G-measurable random variable. Note that (10.2.24)
implies

E.(YZ) = E(MYZ)=E(E(MYZ|G)

= EEMY|6)2) =E (%%?E(MT 16)2)

. Y |G
. (E(M.Y |G)
= By E((MTIG) z),

where we used the fact that E (M.Y | G)Z/E (M, | G) is G-measurable. 0O

Most of the results derived in Section 9.2.3 hold in the continuous-time case
as well. For instance, for each ¢ < oo, {M(v)7},0 < v < t} is 2 martingale
under P;. Indeed, (10.2.26) implies

B M0 7 = BT DUEENTIR) _ gyt goza)

for all ¢ > v + h > v. Moreover, (10.2.24) implies that

E(M(0)™") =E(M(©0)'M(0) =1
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and the martingale {M (v)~1,0 € v < t} can be used to change the measure
P,. It then readily follows that, on F,

—

(Pt)t =P;, t<oo. (10.2.28)

Let {S(¢)} be a stochastic process, as for example the claim surplus process
introduced in Section 5.1.4 and assume that P exists. We then interpret
{S(t)} as a generalized surplus process. Assume that there exists an R-valued
process {T'(t)} for which {M(t}} given by M(t) = exp{s[S(t) — g(T(t))]} is
a martingale for some s € R and for some measurable function g : R > R;
d > 1. Without loss of generality, we assume that g is chosen in such a way that
E M(0) = 1. Furthermore, assume that the probability space on which the
processes {S(t)} and {T(t)} are defined is small enough such that the first
entrance time 7(u) = inf{t > 0 : S(t) > u} is a stopping time and S,(,),
T.(u) are well-defined random variables. Consider the “ruin probabilities”
Y(u;z) = P(r(u) < ) and ¥(u) = P(7(u) < oo). By changing the measure
P and usu}§/ (10.2.28), Lemma 10.2.2b applied to P and to the “changed

measure” (f’) = P gives

W(u;z) = E [e—aS(r(u))+su+y(T(T("))); T(u) < zje™*". (10.2.29)
Furthermore,
W(u) = E[e—aS(r(u))+su+§(T(T("))); T(u) < oole™*. (10.2.30)

The latter formula is in particular useful if s is chosen in such a way that ruin
occurs almost surely under the measure P, in which case

Y(u) = E (e-sS(T(u))+su+g(T(,.(u))))e_su. 10231
If 3 > 0, an upper bound for the ruin probability ¥ (u) follows easily:
Y(u) < E(@Trg-ou

However, in most cases the hard problem will be to find an estimate for
EedT(r(w)

Remarks 1. If 7(u) is not a stopping time, we have to replace 7{u) by
the modified first entrance time 7*(u) = inf{t > 0: §(t—) > u or S(t) > u}
of {S(t)} to the interval [u,00). Recall that 7*(u) is always a stopping
time by Theorem 10.1.1. Also ruin probabilities are modified to ¥*{(u;z) =
P(r*(uv) < z) and ¢¥*(u) = P(7"(u) < o0). In many cases these modified
ruin probabilities are equal to the ruin probabilities ¥(u; z) and ¥(u) related
with the “usual” ruin time 7(u). In particular, when the claim surplus process
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{S(t)} is that of the compound Poisson model it is not difficult to show that
P(r*(u) < z) = P(7(u) < z) and consequently P(7*(u) < 00) = P(r(u) <
oo) for all u,z > 0.

2. Using Theorem 10.2.9 with Corollary 10.2.1, one can give sufficient
conditions that ensure that the probability measure P considered in this
section exists. The following situation will repeatedly occur in Chapters 11
and 12. Assume that the stochastic process {(S(t), T(t)),t > 0} is defined on
its canonical probability space (2, F, P), where  is a certain {(Borel) subset of
the set of all right-continuous functions w : Ry — R%! with left-hand limits
and F = B(Q) is the Borel o-algebra on Q2. Furthermore, assume that {F;}
is the (uncompleted) history of {(S(t), T'(t))}. Then, F = Foo = 0(Uyo Ft)-
Theorem 10.2.9 ensures that the probability measures P, can be extended to
a probability measure P on Foo.

3. Note that this argument does not work if the filtration {F;} is complete.
We will observe in Theorem 11.3.1 that in fact P and P may be singular on
Fxo, 1.€. there exists aset A € Fo such that P(A) =1 =1-P(4). If Fp is
complete then 4 € Fy and P(4) = P(4) = 1 because P and P are equivalent
probability measures on Fy. Hence the P; cannot be extended to F..

Bibliographical Notes. For some of the results presented in this section,
the proofs are only sketched and the reader can find them in a number
of textbooks, for example, in Dellacherie and Meyer (1982), Ethier and
Kurtz (1986) and Karatzas and Shreve (1991).

10.3 RUIN PROBABILITIES AND MARTINGALES

That the computation of finite-horizon ruin probabilities is a difficult task
was already illustrated in Section 5.6, and in Section 9.2.4 for the discrete-
time risk process. In Theorem 9.2.5 we were able to derive a bound on the
ruin probability P{74(u) < z). We now use an optional sampling theorem for
continuous-time martingales to prove an analogous result for the finite-horizon
ruin probability P(r(u) < z) in the compound Poisson model. The martingale
approach will also lead to similar bounds for level-crossing probabilities of
additive processes. As a special case, we show that the supremum of Brownian
motion with negative drift is exponentially distributed.

10.3.1 Ruin Probabilities for Additive Processes

In this section we suppose that the stochastic process {X(t),t > 0} satisfies
the following conditions:

¢ X(0)=0,
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{X(t),t > 0} has independent and stationary increments,

there exists some sp > 0 such that Ee’¥X ® <ooforallt>0,

E X(t) = —ut for some >0 and all t > 0,

as(t) = Ee’X () is a right-continuous function at 0, for each s € [0, o) and
some 8g > 0.

The above conditions define the class of additive processes with negative drift.
We say that {X'(t),t € T} is a version of the stochastic process {X(t),t € T}
if both processes are defined on the same probability space (2, F,P) and
P(X(t) # X'(t)) = 0 for each ¢t € T. From this definition we immediately
conclude that each version {X'(t)} of {X(¢)} has the same finite-dimensional
distributions as {X(¢)}. It is known (see, for example, Breiman (1992),
Chapter 14.4) that an additive process {X(¢)} always has a version which
is cadldg. In the same way one can show that there is a version of {X(t)}
with left-continuous sample paths having right-hand limits. That a.(t) is a
continuous function of the variable ¢t > 0 can be proved by the reader.

Note that both the claim surplus process in the compound Poisson model
with p < 1 and the (—u,a?)-Brownian motion with negative drift fulfil the
five conditions stated above and so are additive processes.

Lemma 10.3.1 There ezists a function g : Ry — R such that for allt € Ry,
s € [03 80)7
Ee'X®) = etl0), (10.3.1)

Proof Recall that a,(t) = Ee**(® is a continuous function of the variable ¢.
Since {X(t)} has independent and stationary increments, the function a,(t)
fulfils the functional equation as(t + h) = a,(t)as(h) for all t,h > 0. As the
only continuous solution to this equation is a,(t) = e*9(*) for some constant
g(8) the lemma is proved. ]

For the claim surplus process in the compound Poisson model g(s) =
M7y (s) — 1) — Bs, by formula (5.2.1) in Corollary 5.2.1. For the (—u,02%)-
Brownian motion with negative drift we have E e*X{¥) = exp(t(—us+(0)%/2))
and consequently g(s) = —us + (0's)?/2.

Lemma 10.3.2 The following process {M(¢)} is an {F}X }-martingale, where
M(t) = e*X®—tels) 4>, (10.3.2)

The proof of Lemma 10.3.2 is analogous to the proof given in Example 3 of
Section 10.1.3 and is therefore omitted.
Consider the modified first entrance time 7*(u) of {X (¢)} to the set [u, 00)
- see (10.1.1) for definition - and let 7(u) = inf{t > 0 : X(¢) > u}. We
showed in Theorem 10.1.1 that 7*(u) is a stopping time. Recall also that for
all u,z >0
P(r*{u) < z) = P(r{u) < z) (10.3.3)
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and in particular
P(r*(u) < 00) = P{1(u) < 00) (10.3.4)

if {X(t)} is the claim surplus process in the compound Poisson model; see
Remark 1 in Section 10.2.6. We leave it to the reader to show that (10.3.3)
and (10.3.4) also hold if {X(t)} is the (-, o%)-Brownian motion.

Now assume that {X(t)} is cadlag and apply Theorem 10.2.6 to the
stopped martingale {M (¢t A 7*),t > 0}, where {M{(t)} is given by (10.3.2)
and 7* = 7*(u). Then (10.2.16) gives

1 = M@O)=EM(@EAT"

E[MEATYET <t]l+E[M{EAT)m >t). (10.3.5)

1

From (10.3.5) we can directly draw a few interesting results. Using (10.3.3) the
first of them gives explicit formulae for the ruin probability y¥(u) = P(7 < o0)
and for the Laplace-Stieltjes transform of 7 = 7(u) when {X(t)} is the
(-, 02)-Brownian motion with negative drift. Put

v =sup{s >0, g(s) <0}. (10.3.6)

Then we have v = 2u/o? and g(y) = 0. Note that, according to the
terminology of Chapter 6, +y is called the adjustment coefficient if there exists
sp > 0 such that g(sg) = 0. Clearly, in this case we have v = sq.

Theorem 10.3.1 Let {X(t)} be the (~p, 0?)-Brownian motion with negative
drift. Then,
Y(u) =e ™ (10.3.7)

and
Ele™*";7 < o0 = exp(—a-%(p +p?+ 2028)) , $20. (10.3.8)

Proof Note that {X(¢)} has continuous trajectories and that consequently
X (7) = u. Then, applying (10.3.5) to the martingale {M(t)} given by (10.3.2)
and using (10.3.3), we obtain

1=M(0)=E [e"‘“‘r("z"g/z_“’);r <t]+E [e’x(‘)“("z’zﬂ"“‘);f >t.
(10.3.9)
Since limy_yo0 X(f) = —00, we have e?X(M-t(e*#*/2-ua) (7 > t) — 0 with
probability 1, for 0 < s < «. Moreover,

eaX(t)-t(a’sz/Z—us) I(T > t) < esu—t(azsz/z—,ua) I(T > t) ,
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which is an integrable bound a.nd hence by the dominated convergence
theorem, lim;_,oo E [e?X () Ho?s?/2-us). 1 > t] = 0. Thus, letting t — oo,
(10.3.9) implies

= ) [e“"(”z‘z/z_“‘);'r < oo]. (10.3.10)
Now setting s = v we get (10.3.7). It remains to show (10.3.8). Turn once

more to equation (10.3.10) and take s = g~!(s’), where 0 < &' = g(s) =
—us + (05)%/2. Then the inverse function g~ (s") of g(s) is well-defined in the

interval (1/0?,00), where g7(s') = 072 (1 + /11? + 202¢'). m)

10.3.2 Finite-Horizon Ruin Probabilities

We begin with a formula for the finite-horizon ruin probabilities of a Brownian
motion with drift.

Theorem 10.3.2 Let u > 0 be fired. Let {X(t)} be the (—pu,0%)-Brownian
motion with negative drift and let 7(u) = inf{t > 0, X (t) > u}. Then, for all
z2>0,

P(r(u) > z) = @(%j—f) - exp(ilz‘;u)q»(%‘;}/-z-“f) (10.3.11)
and d ( 2
P <2) =~ \/;E? exp(_ u%g: ) (10.3.12)

where ®(z) denotes the distribution function of the standard normal distribu-
tion.

Proof In view of (10.3.8) and the uniqueness property of Laplace transforms
it suffices to show that

/oooe"”?'é—\/u_?rﬁexp( (u—p.:z) )dx-exp(——(u+ \/mﬂ—))

202z

This can be done by using, for example, the fact that the Laplace transform
of

h(z) =

£ exp(-5)
2vnz? "%
is given by
DO
/ e **h(z)dz = exp(—k/s), 8>0,
0
see the table of Laplace transforms in Korn and Korn (1968), for example. O

In the proof of Theorem 10.3.1 the continuity of the trajectories of {X(¢)}
has been crucial. Within the class of additive processes this is only possible for
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{X (t)} being a Brownian motion with negative drift. However, if we are using
(10.3.5) for additive processes with jumps, then we can get upper bounds of
the Lundberg-type for the probability P(r* < z). Equation (10.3.5) implies
that
1 > EMat) | <z)P(r*<z)
= E(eX(™)-7790) | < )P(r* < 7)

and since X(77) > u, we have 1 > E (e**~7'9(3) | 7* < 2)P(r* < ). Hence

P(r*<1) < E (e’f'ge(ﬂ)“l‘ <o) <e ™ O;l:gm ev9ls), (10.3.13)
Let z = oo, then
P u) =P(r" < o0) <e it;;;e”"(’). (10.3.14)
Note that (10.3.14) implies that, with probability 1,
sup X (t) < co. (10.3.15)
>0

We try to make the bound in (10.3.14) as sharp as possible, at least in
the asymptotic sense. We therefore choose s as large as possible under the
restriction that sup,,e"9¢®) < oo, i.e. we choose s = 4, where « is defined in
(10.3.6). But this then yields the Lundberg bound 1*(u) < e~"* for all u > 0.

We now investigate the finite-horizon ruin function ¢(u;z) = P(r(u) < z)
in the compound Poisson model. So, the claim surplus process { X (t)} is given
by X(t) = S(t) = Ei(f) U; — ft, where A is the arrival rate, 8 the premium
rate and Fy the claim size distribution. Using (10.3.3), from (10.3.13) we have
¥(u;7) < 7" supg, <, €99, where in this case g(s) = A(rhy(s) — 1) — Bs.
For y > 0, consider the function fy(s) = s — yg(s) and let

Yy = supmin{s, fy(s)}. (10.3.16)
>0

Ifﬁ"g)('ﬂ < oo let yo = (g (7)) 7 = (Mhpy(y) ~ B) 1. We call yo the critical
value. The following results are called finite-horizon Lundberg inegualities.

Theorem 10.3.3 For all u,y > 0,
Y(u;yu) < e (10.3.17)

and .

¥(u) — Y(u;yu) < e’ (10.3.18)
where ¥ = SuPg<,<y fy(3). Moreover, if iy (s) < oo for some s > v then
Yoo =7 = Ify <yo then vy >y and v¥ = . If y > yo then vy = v and
YW > .
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Proof Suppose first that v < s, i.e. g(s) > 0. Setting z = yu, by (10.3.13)
we have ¥(u;uy) < e "¥e¥*9() = e~u(5-¥9(») for all u > 0. If s < v, then
g(s) < 0 and by (10.3.13) we have ¥(u;uy) < e™** for all u > 0. Hence
Y(u; yu) < e~vmin{s.s=y9(s)} for all 4 > 0 which yields (10.3.17). In order to
show (10.3.18) we need a finer estimation procedure. Let ' > z and consider
the bounded stopping time z' A 7*. Then, as with (10.3.5), we get

1 = EME AT >EME AT)|z< <2 )Pz < < 2)
EMT)jz<m <z )Plx<7 <)
Thus 1 > e**E (e 790 | z < * < 2')P(z < 7* < z’) and hence, by (10.3.3),
Pz <7 <2') < e *sup,cp<ar e’99), Let 2’ — oo to get
wu) — ¥lu;z) = P(z < 7 < 00) < e *¥supe¥d(®),
>z

For x = yu this gives
e=h it g(s) <0,

Y(u) — v(uiyu) < e *“sup{e”*) :z > y} = { o0 if g(s) > 0.

Since g(s) < 0 if and only if 3 < -« we obtain (10.3.18). Assume now that
there is an 8 > < such that 7y (s) < oo. Then mg)h) < oo. Note that
f,gl)(s) = 1-yg‘!(s) and f,§2) (8) = —yg‘®(s), showing that fy(s) is a concave
function. Moreover, f,(0) = 0 and f,(y) = 7. Thus it follows that y, > v and
1Y > 7. Iy =yo then fi)(v) =0, ie. f5,(5) < fyo(7) =7 and 7y, = ¥¥0 = 7
follows. If y < yo then f,(,”('y) > 0. Thus there exists s > v such that f,(s) > 7.

This gives v, > 7. If y > yo then fél)('y) < 0. Thus there exists s < v for
which f,(s) > «. This gives v¥ > . a

Corollary 10.3.1 Assume that there 13 an 3 > -y such that iy (s) < 0o. Then
u~lr(u) = yo in probability on the set {T(u) < 0}, as u — oco.

Proof Let £ > 0 such that my(vy,—e) < 00 and My (Yye+e) < 00. This will be
the case for ¢ small enough. Recall that min{vy,—¢,vyo+<} > 7. Then

P(IL:) —y|>e¢ | T{u) < oo)

V(y; (yo — €)u) + ¥(u) — ¥(u; (yo +€)u)
¥(u)
e_’Yyn—e“ + e Yvotelt e"("lvg—s"?)" + e‘("’yo-l': -7)u

b(w) B $ujer !

where we used (10.3.17) and (10.3.18). But the latter expression tends to 0 as
u — 00 by (5.4.4). a
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10.3.3 Law of Large Numbers for Additive Processes

We need the notion of a reversed martingale. Let 7 C R be an arbitrary but
fixed subset of the real line, and consider a family of o-algebras {F;,t € T}
such that

e FfCFforallteT,
o FrnCFforallt,heT.

We call {F;,t € T} a reversed filtration. Let {X*(t}, t € T} be a stochastic
process with left-continuous trajectories, adapted to {F;} and such that
E|X*(t)] < oo for each t € T. We say that {X*(t), ¢ € T} is a reversed
martingale if, for all t,h € T,

E (X*() | Frop) = X*(t+h). (10.3.19)

Similarly, {X*(t)} is a reversed submartingale if in (10.3.19) we replace = by
>. Note that {|{X*(t){} is a reversed submartingale if {X*(t)} is a reversed
martingale.

All results of this section are valid for right-continuous processes. However,
as we will later apply an optional sampling theorem in reversed time, the
subsequent formulations are for left-continuous processes.

Lemma 10.3.3 Let to > 0 be fired and let {X*(t),t > to} be a reversed
martingale. Then there exists a random variable X*(oo) such that, with
probability 1,
lim X*(¢) = X*{00). (10.3.20)
t—o00

Proof Analysing the proof of Theorem 10.2.2 we see that it suffices to show
the following. For all ty < a < b and increasing sequences {t}.} converging to
infinity with ty = to one has

P(Ux(a,b) =00)=0 (10.3.21)

where Ux(a,b) = limp—yoo Un(a,b) and Uy(a,b) denotes the number of
upcrossings of (a,b) by the reversed martingale {X*(t}),j = 0,...,n}.
Indeed, if we apply Lemma 9.1.3 to the martingale {X;,j = 0,...,n} with
X; = X*(n — j), then (9.1.27) implies

EX"(to) +la] _

EUn(a”b) S b_a L)
that is EUsx(a,b) = limpy0o EUn(a,b) < 0o and therefore (10.3.21) holds.
This proves the lemma. a

In the rest of this section we deal with the process {X*(t), t > 0} defined
by
X*(t)=X(@t)/t, (10.3.22)
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where {X(t),t > 0} is assumed to be an additive process with left-continuous
trajectories. Furthermore, the reversed filtration {¥;} is chosen by taking
F¢ to be the smallest o-algebra of subsets of {1 containing the events
{w: (X(t1,w),...,X(ta,w)) € B} for all Borel sets B € B(R"), for all
n =1,2,... and arbitrary sequences t;,2s,...,¢, witht <#; <t; <...

Lemma 10.3.4 Let {X(¢),t > 0} be a stochastic process with left-continuous
trajectories. Assume that {X(t)} has stationary and independent increments
such that E|X(1)| < oc. Then

lim E(X(tn) | X(¢+ h) = E(X(t) | X(t +h)), (10.3.23)

for all t,h > 0 and for each sequence t,13,... of nonnegative real numbers
such that ¢, <t andt, 1¢.

Proof Use the fact that {X'(¢),t > 0} with X'(t) = X(t) —tEX(1) is a
martingale. Then, proceeding similarly as in the proof of Lemma 10.2.1, it is
not difficult to show that the sequence X (¢1), X (f2), . .. is uniformly integrable.
Now, (10.3.23) follows from a well-known convergence theorem for conditional
expectations; see, for example, Liptser and Shiryayev (1977), p.16. @]

Lemma 10.3.5 If0 < v < ¢, then

X(v) _ X()
E( . [X(t)) === (10.3.24)
Proof Let B € B(R+) be a Borel set and suppose that v = 2¢ for some

m,n € IN with m < n. Note that the random variables
. kt (k—1)t _ .
X _X(;) —X(T), k=1,...,n,
are independent and identically distributed. Thus,

E (z{—t()v—)I(X(t) € B))

_ %EE(X,.I(gxkEB))=;E(xln(gxieB))

= 1y e(xa(X xen)) =k (Xixe e ).
i=1 k=1

This shows (10.3.24) for v = mt/n. Now for arbitrary v < ¢, let v, =
(my/ne)t T v. Since the trajectories of {X(t)} are left-continuous with
probability 1, we have X(v;) — X(v). By Lemma 10.3.4 we also have
E (X(vk) | X(t)) = E (X(v) | X(t)). Thus, equation (10.3.24) holds for all
v <t ]
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Lemma 10.3.6 The process {X*(t), t > 0} defined in (10.3.22) is a reversed
martingale.

Proof We first show that for 0 < v <t =14 < <... <1y,
X() | . e (X
E(—v— [ A(tl),...,X(t,,)) _E(—v— lX(t)).
Indeed, since the process {X(t)} has independent increments, the random

vector (X (v), X(t1)) is independent of X (¢2) — X (t1),...,X(tp) — X(tn-1)
and hence

(X2 | x@),... x()
= E(X | x(). x @) - X0, X(tn) - X(ta-)

- (%2 x) =5 (2 x0).
Now the statement follows from Lemma 10.3.5. o

Summarizing the results of Lemmas 10.3.3 to 10.3.6, we arrive at the
following strong lew of large numbers for additive processes.

Theorem 10.3.4 Let {X(t),t > 0} be an additive process with left-continuous
trajectories. Then, with probability 1,

. X(t)
Proof From Lemmas 10.3.3 and 10.3.6 we have
. ‘Y(t) _ *
tl_x’r& e X*(00), (10.3.26)

for some random variable X*(occ). However, applying the usual law of
large numbers to the sequence X(1),X(2) — X(1),... of independent and
identically distributed random variables, we have limpco ™' X(n) = —p
with probability 1. This and (10.3.26) gives (10.3.25). ]

10.3.4 An Identity for Finite-Horizon Ruin Probabilities

The aim of this section is to derive an identity for finite-horizon ruin
probabilities in terms of the aggregate claim amount. We consider the claim
surplus process {S(t)} with S(t) = Z:;(f) U; — Bt in the compound Poisson
model with arrival rate X, premium rate 8 and claim size distribution Fy. As
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usually, let 7(u) = min{¢ : S(¢) > u} be the ruin time and, as in Section 10.3.2,
consider the finite-horizon ruin function ¥(u; z) = P(r(u) < z). Let {Y (#),¢t >
0} with

N(t-0)

Y)= Y U, t>0, (10.3.27)
i=1

denote the left-continuous version of {Ziv:(: YUy;t > 0} and consider the last
time 7% = sup{v : v < z, S(v) > u} in the interval [0, z] where the claim
surplus is above level u. We put 7% = 0if S(v) < u for all v € [0, z]. With these
notations we can formulate the following representation formula for ¥{u; z);
see also Theorem 5.6.2.

Theorem 10.3.5 For allu >0 and z > 0,

1-p(wiz) =B (1- Y(z) )++E[[:X@m%@dv; S@) <u].

u+ Bz v
(10.3.28)
In partscular, foru=20
2 =E(1- Y&
1-9(0:;z) = E (1 e )+. (10.3.29)

The proof of Theorem 10.3.5 relies on the notion of a reversed martingale as
introduced in Section 10.3.3. Suppose first that u > 0 and put

* — Y(t) z Y(’U) u

Let {F;X, 0 <t < z} be the filtration generated by the (time-reversed) process
{X(t), 0 <t <z}, where

X(t)=X"(z-1), (10.3.31)

i.e. the g-algebra F¥ is generated by the events {X*(t1) € By,..., X*(t,) €
Bp}, where z —t < t; < ... < t, < z, By,...,B, are Borel sets and
n = 1,2,.... In this case the process {X(t),t € [0,z)} is cadlag.

Lemma 10.3.7 Let u > 0. Then the process {X(t),t € [0,z)} given by
(10.3.30) and (10.3.31) is an {F/*}-martingale.

Proof By Lemma 10.3.6, {Y(t)/t, 0 < ¢t < z} is a reversed martingale.
By Example 5 in Section 10.1.3 applied to the continuous function f(v) =
v/(u + Bv) we see that {f v(u + Bv)~'d(Y(v)/v), 0 < ¢t < z} is a
reversed martingale. But then by Examples 6 and 7 in Section 10.1.3 also
{Y(z)(u + Bz)~! — [Jo(u + Bv)~1d(Y(v)/v), 0 < t < z} is a reversed
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martingale. This proves the lemma, since by an integration by parts we obtain

that
Y(z) v Y(v)y _ Y(8) Y (v) u
u+ﬂz-/, u+ﬂvd( v )—u+ﬂt+/t v (u+ﬂv)2dv' o

Proof of Theorem 10.3.5. Consider the process {I{S(z—) < u)X(t),0 <
t < z} which is an {F }-martingale by the results of Lemma 10.3.7 and
Example 7 in Section 10.1.3. Note that  — 7° can be seen as the modified
first entrance time of this process to the set [u, 00). Since z — 7° is an {FX}-
stopping time by the result of Theorem 10.1.1, using Theorem 10.2.6 we have

E [ul:f?z;}’(:t) <u+ ,Bx]

_ E[ Y (%) T Y() u
- u+B30  Jo v (u+pPv)?

dv; $(z-) < u]. (10.3.32)

On the other hand, we have
P(r(u) > z) = P(S(z) < u,7° = 0) = P(S(z) < u) — P(S(z) < u,7° > 0)

and, since Y(7%) = u + 37° for 7° > 0,

E [%; S@) < u} = E [%;S(x) <u,7"> 0}
= P(S(z) <u,7°>0).

Thus, for « > 0, (10.3.28) follows from (10.3.32). The verification of formula
(10.3.29) by letting u | 0 in (10.3.28) is left to the reader. a

Corollary 10.3.2 For allu > 0 and x > 0,

wuz) <1-E (1 - u};(agz)+ =E (min{l, %}) . (10.3.33)

Proof The inequality (10.3.33) immediately follows from (10.3.28). =]

Bibliographical Notes. Section 10.3.1 on additive processes is in the spirit
of Grandell (1991a). Inequality (10.3.17) was first proved in Arfwedson (1955),
and (10.3.18) in Cramér (1955). A stronger version of Corollary 10.3.1
can be found in Segerdahl (1955). The martingale proof of (10.3.17)
goes back to Gerber (1973) and (10.3.18) to Grandell (1991a); see also
Grandell (1991b). Further bounds for finite-horizon ruin probabilities can be
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found in Centeno (1997). Formula (10.3.29) for the finite-horizon ruin function
¥(0,z) is attributed to H. Cramér. Formula (10.3.28) for the finite-horizon
ruin function ¥(u,z) with an arbitrary initial risk reserve u > 0 has been
derived in Delbaen and Haezendonck (1985); see also Aven and Jensen (1997)
and Schmidli (1996) for some ramifications of the proof. In Mgller (1996),
martingale techniques have been used for analysing prospective events in risk
theory, in cases with random time horizon.
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CHAPTER 11

Piecewise Deterministic Markov
Processes

We now extend the concept of Markov processes from the case of denumerable
many states to a possibly uncountable state space. Special emphasis is
put on piecewise deterministic Markov processes (PDMP). Of course, the
denumerable state space remains a special case. Typical illustrations from
insurance are included in this and the next chapter.

We assume that the stochastic processes {X(t),t > 0} considered in the
present chapter are cadlag, i.e. their sample paths belong to the set D(R+.) of
right-continuous functions g : Ry — E with left-hand limits, where E denotes
the state space of {X(t)}.

11.1 MARKOV PROCESSES WITH CONTINUOUS
STATE SPACE

In order to avoid technical difficulties, we only consider the case of a finite-
dimensional state space E. More precisely, we assume that E = R? for some
d > 1 or that E consists of possibly disconnected components in RY, as
given in Section 11.2. Let B(E) denote the g-algebra of Borel sets in E, and
M(E) the family of all real-valued measurable functions on E. Further, let
My(E) C M(E) be the subfamily of all bounded functions from M(F) with,
for each g € My(E), its supremum norm ||g|| = sup_. g |g(z)]| -

11.1.1 Transition Kernels

In Chapter 8, we defined Markov processes on a denumerable state space E
by a probability function and a family of stochastic matrices, describing the
probability of being in a finite set of states. Now, in the case of an uncountable
state space E, we have to consider more general subsets of E.

Let P(E) denote the set of all probability measures on B(E). A function
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P:R, x E x B(E) = [0,1] is said to be a transition kernel if the following
four conditions are fulfilled for all h, hy,hy > 0, 2 € E, B € B(E):

P(h,z,') € P(E), (11.1.1)

P0,z,{z}) =1, (11.1.2)

P(-,-,B) e M(R4 x E), (11.1.3)

P(hy + hy,z,B) = / P(ha,y, B)P(hy,z,dy) . (11.1.4)
E

Condition (11.1.4) corresponds to the Chapman-Kolmogorov equation (8.1.1).
At this moment we refrain from requiring a continuity property of P, that
would correspond to (8.1.2).

Definition 11.1.1 An E-valued stochastic process {X(t),t > 0} is called a
(homogeneous) Markov process if there erxists a transition kernel P and a
probability measure a € P(E) such that

P(X(O) € B07X(t1) € Bl,'-'aX(tﬂ) € Bn)
= / / i Pty = tacr, Zassdmn) .. Ptr, 30, dz1 al(dzo)
By VB, B,

foralln=0,1,.., Bo,B],...,BneB(E), to=0<t £...<t,.

The probability measure ¢ is called an initial distribution and we interpret
P(h,z, B) as the probability that, in time h, the stochastic process {X(t)}
moves from state z to a state in B.

In Sections 7.1.3 and 8.1.3 we were able to construct a Markov chain and
a Markov process with finite state space from the initial distribution and
from the transition probabilities and the transition intensities, respectively.
For Markov processes with continuous state space such a general construction
principle is not always possible. However, using a continuous-time version of
Kolmogorov's extension theorem (see Theorem 10.2.9) one can show that, in
the case E = R, there exists a Markov process {X(t)} such that a is its
initial distribution and P its transition kernel, whatever the pair (o, P). Note
that this existence theorem remains valid if E is a complete separable metric
space (see, for example, Ethier and Kurtz (1986)).

Analogously to Theorem 8.1.1, we have the following conditional independ-
ence property.

Theorem 11.1.1 Let {X (¢),t > 0} be an E-valued stochastic process. Then,
{X(t)} is a Markov process if and only if there erists a transition kernel
P = {P(h,z,B)} such that for all t,h > 0, B € B(E)

P(X(t+h) e B|FX) = P(h,X(t),B), (11.1.5)
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or equivalently for all t,h > 0, g € My(E)

E (g(X(t+h) | F¥) = /E )Pk, X (8), dy). (11.1.6)

The proof of Theorem 11.1.1 is omitted. The sufficiency part follows
immediately from Definition 11.1.1. A proof of the necessity part can be found
in Chapter 4 of Ethier and Kurtz (1986).

In Section 10.1.4, we introduced the notion of a Markov process with respect
to an arbitrary filtration. Theorem 11.1.1 shows that each Markov process of
that type is a Markov process in the sense of Definition 11.1.1. Consistent with
the concept in Section 10.1.4, we call the { X (¢)} a strong Markov process with
respect to its history {FX}, if with probability 1

P(X(r+h) € B| FX)= P(h,X(7),B) (11.1.7)

on {r < oo}, for all h > 0, B € B(E) and for each {F }-stopping time 7.

11.1.2 The Infinitesimal Generator

Our main goal will be to construct martingales from a given Markov process.
We will do this by subtracting the infinitesimal drift from the process,
which generalizes the idea from Example 4 of Section 10.1.3. For this
purpose we define the infinitesimal generator of a transition kernel which is a
generalization of the notion of an intensity matrix introduced in Section 8.1.1
for Markov processes with discrete state space. Let {T'(h),h > 0} be a family
of mappings from M, (E) to My(E). Then, {T'(h)} is called a contraction
semigroup on My,(E) if

TO)=1, (11.1.8)
T(hy + hp) = T(hy)T(hs), (11.1.9)
T (R)gll < ligll (11.1.10)

for all h,hy,hy > 0 and g € M,(E), where I denotes the identity mapping.

Lemma 11.1.1 Assume that {X(t)} s an E-valued Markov process with
transition kernel P = {P(h,z,B)}. Let

T(h)g(z) = /E oW)P(h,z,dy) =E(g(X(W) | X(0) =2)  (11.111)

for any g € My(E). Then {T(h)} is a contraction semigroup on My(E).
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Proof First note that T(0)g(z) = g(z) by (11.1.2) for all z € E, g € Mp(E),
i.e. T(0) = I. For hy, hs > 0 we have by (11.1.4)

I

T(hy + ha)g(x) / 9(y)P(hy + ha,z,dy)
[ 9 [ Pita 2, c)Ps 2,42

/ T(ha)g(2)P(hs,, dz) = T(hy)T(h2)g(z)

Il

and (11.1.9) follows. Note that [T(h)g(z)| < [llgllP(h,z,dy) = |lgl|, where
we used (11.1.1) in the equality. This gives (11.1.10). o

Consider a contraction semigroup {T'(h)} and define

— 1 -1 -
Ag—lﬁgh (T(h)g —9) (11.1.12)

for each function g € My(E) for which this limit exists in the supremum
norm and belongs to M,(E). Let D(A) C Mp(FE) denote the set of all
functions from My, (E) which have these two properties. Then, the mapping
A : D(A) = My(E) given by (11.1.12) is called the infinitesimal generator of
{T'(h)}. The set D(A) is called the domain of A. For the semigroup given in
(11.1.11) we find

Ag(z) = lgiroxh‘lE (9(X(h)) — g(z) | X(0) = x) (11.1.13)

for all functions g € D(A).

For a mapping B : (a,b) - My(E), where (a,b) C R is an arbitrary open
interval, we define the notions of the derivative and the Riemann integral in
the usual way, considering convergence with respect to the supremum norm.
We leave it to the reader to check that such an integral exists for right-
continuous semigroups. In particular, let {T'(h),h > 0} be the contraction
semigroup given in (11.1.11). If g € My (E) such that limsyo T'(h)g = g then
it is not difficult to show that the mapping h — T(h)g is right-continuous
and the Riemann integral fot T(v + h)gdv exists for all t.h > 0.

The next theorem collects a number of important results for contraction
semigroups.

Theorem 11.1.2 Let {T(h)} be e contraction semigroup and A its
infinitesimal generator. Then the following statements hold:

(a) If g € My(E) such that the mapping h — T(h)g is right-continuous at
h =0, then fort >0, fot T(v)gdv € D(A) and

T(t)g—g= A/ot T(v)gdv. (11.1.14)
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(b) If g € D(A) and t > 0, then T(t)g € D(A) and

a+

5T (09 = AT()g = T(t) Ag, (11.1.15)
where d¥ /dt denotes the derivative from the right.

(¢) If g€ D(A) and ¢t > 0, then fot T(v)gdv € D(A) and

T{tyg—g = A/: T(v)gdv = /Ot AT(v)gdv = /ot T(v)Agdv. (11.1.16)

Proof (a) Since {T'(h)} is a contraction semigroup, it is not difficult to show
that the mapping v — T'(v)g is right-continuous for all v > 0. Moreover, the
Riemann integral fot T(v + h)gdv exists for all t,h > 0. Let t? = ti/n. Then

liMp00(t/1) Yfy T(tP)g = fot T(v)gdv. Since
t
T(h)/(; T(v)gdv
! t o n t n
= 70 T0ado- L3 T6g) + L TWT@s,

we have T(h) f; T(v)gdv = [ T(h)T(v)gdv = [} T(v+ h)gdv which follows
from the contraction property (11.1.10) of {T'(h)}. Thus,

¢ t
%(T(h)_l)./o T(v)gde = %/O(T(v-i—h)g—T(v)g)dv

1 t-+h 1 h
= = T(v)gdv——f T(v)gdu.
h Ji h Jo

The right-continuity of v — T'(v)g implies that the right-hand side of the last
equation tends to T'(t)g —g as h } 0.

(b) We have h=1(T'(h)T'(t)g — T(t)g) = T(t)h~*(T(h)g — g). Thus, (11.1.10)
yields T'(t)g € D(A) and AT (t)g = T(t) Ag. Moreover

h™H(T(h+t)g - T(t)g) = h™'(T(h) - )T (t)g,

which gives the right-hand derivative in (11.1.15).
(c) The first part follows from (a) by noting that g € D(A) implies T(h)g = g
as h | 0. The second part follows from (b) and from the fact that

t da+
/ % (T(®)g)dv = T()g - T(0)g,
o U

which can be proved as in the case of Riemann integrals of real-valued
functions. O
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11.1.3 Dynkin’s Formula

There is a close relationship between martingales and the infinitesimal
generator as defined in (11.1.12). In particular, using Theorem 11.1.2 we
can easily construct a class of martingales. This leads to the following
generalization of Dynkin’s formula; see (10.1.7).

Theorem 11.1.3 Assume that {X(t)} is an E-valued Markov process with
transition kernel P = {P(h,z, B)}. Let {T'(h)} denote the semigroup defined
in (11.1.11) and let A be its generator. Then, for each g € D(A) the stochastic
process {M(t),t > 0} is an {FX }-martingale, where

4
M(t) = g(X(8)) - (X (0)) - [o Ag(X(v)) dv. (11.1.17)

Proof Recall that for each g € D(A), we have Ag € M,(E) and therefore Ag
is measurable. Since {X (t)} is cadlag, the function Ag(X(-,w)) is measurable

as well. Thus, the Lebesgue integral fot Ag(X(v,w)) dv is well-defined for each
w €  because Ag is bounded. The assertion is now an easy consequence of
Theorem 11.1.2. For t,h > 0 we have

E (M(t+ h) | FX) + g(X(0))
t+h

1

t
E(o(x(+m) - [ AgX@)dv| FY) - /0 Ag(X(v)) dv

t+h
f a(y)P(h, X(8), dy) - / Ag(y)Plv — t, X(t), dy) dv
t
-/0 Ag(X(v))dv

h '3
= T(R)g(X(t)) - /0 T(v) Ag(X (t)) dv - /0 Ag(X(v))dv

¢
(X () - /0 Ag(X(v)) dv = M(t) + 9(X(0)),

where (11.1.16) has been used in the last but one equality. a

Examples 1. Let {N(t)} be a Poisson process with intensity A and let the
process {X(t)} be defined by X (t) = N(t) — ct for some ¢ > 0. Then {X(t)}
is a Markov process since it has stationary and independent increments;
E = R. Furthermore, Theorem 5.2.1 implies that the transition kernel
P = {P(h,z,B)} of {X(t)} is given by

o= (AR
P(h,z,B) = Te""‘](z +k—cheB). (11.1.18)
k=0 )
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Consider the semigroup {T'(h)} given in (11.1.11). Then, (11.1.18) implies that
T(h)g(z) = Y peo((AR)E/KNe P g(z + k — ch) for z € R and g € My(R).
It follows readily that D(A) consists of all continuous bounded measurable
functions which are differentiable from the left with a bounded left derivative
and

Ag(z) = Mg(z + 1) — g(z)) — cgM(z), (11.1.19)

where we use the same notation for the left derivative as for the derivative
itself. By Theorem 11.1.3, the process {M(t)} with

t
M) =g(X(®) - [ Mo(X(v) +1) = g(X () - eV (X (v))] dv,
0

is a martingale for each g € D(A). In particular, if Ag = 0 then g(X(¢)) is a
martingale. Therefore it is interesting to solve the equation

Mgl +1) — g(z)) — cg'P(z) = 0. (11.1.20)
Let us try the function g(z) = e** for some s € IR. Then the condition
A*—1)—cs=0 (11.1.21)

has to be fulfilled. Since the function g'(s) = A(e® —1) —cs is convex, (11.1.21)
admits a (nontrivial) solution s # 0 if and only if A # ¢. Let sg denote this
solution. If A = ¢ then g(z) = z i3 a solution to (11.1.20). But Theorem 11.1.3
cannot be applied because the functions g(z) = e** with s 2 0 and g(z) = =
are unbounded. However, from Examples 2 and 3 of Section 10.1.3, we see
that the processes {exp(seX(t))} in the case A # c and {X(t)} if A = ¢ are
{F{ }-martingales.

2. Assume {W(t)} is a standard Brownian motion. Let ¢ be a bounded,
twice continuously differentiable function such that g € My(R). Then it
is not difficult to see that g € D(A) and Ag = 1g®, where A is the
infinitesimal generator of {W(¢)}. To show this, one can use the fact that
g(z +y) = g(z) + ygW(2) + 1429P(z) + ¥®r(y), where r(y) is a continuous
bounded function converging to 0 as y — 0.

11.1.4 The Full Generator

We generalize the notion of the infinitesimal generator, keeping the same
symbol A as before since no confusion is possible.

The example considered in Section 11.1.3 shows that it would be desirable
to also allow unbounded functions g in Ag. An auxiliary definition is that of
a multivalued linear operator. This is simply a set A C {{(9,3) : 9,9 € M(E)}
such that, if (gi,§;) € A for i € {1,2} then also (ag: + bg2,ad1 + bd2) € A
for all a,b € R. The set D(A) = {g € M(E) : (g,§) € A for some § € M(E}}
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is called the domain of the operator A. The multivalued operator A that
consists of all pairs (g,§) € M(E) x M(E) for which

t
{o(x (1)) - 9(X(0)) - /0 §(X@)dv, 20} (11.1.22)

becomes an {F;* }-martingale, is called the full generator of the Markov
process {X(t)}.

Sometimes one requires that the process in (11.1.22) is only a local
martingale. In that case, the set consisting of all pairs (g, §) € M(E) x M(E)
with this weaker martingale property is called the eztended generator of
{X(t)}. The concept of an extended generator will be studied in more detail
in Chapter 13.

Theorem 11.1.3 implies that the domain of the infinitesimal generator of a
Markov process is always contained in the domain of its full generator. In the
sequel, the generator will always mean the full generator. In what follows, we
give criteria for a function g to be in the domain D(A) of a generator A. We
derive a formula showing how to obtain a function § such that (g,§) € A.
The resulting martingale will then be used to determine ruin probabilities for
risk models, that are more complex than those already studied in this book.

Trying to simplify the notation, we will write Ag if we mean a function g
such that (g,8) € A. The reader should keep in mind that this § is only one
version of all functions § for which (g,§) € A.

Bibliographical Notes. For a broader introduction to Markov processes
with general state space and their infinitesimal and full generators, see Ethier
and Kurtz (1986) and Rogers and Williams (1994).

11.2 CONSTRUCTION AND PROPERTIES OF PDMP

The compound Poisson and the Sparre Andersen model are prime examples for
stochastic processes having sample paths that are deterministic between claim
arrival epochs. In the compound Poisson model, both the risk reserve process
{R(t)} and the claim surplus process {S(t)} are even Markov processes. This
is no longer true in the Sparre Andersen model. However, { R(t)} and {S(t)}
can be easily “Markovized” by considering the “age” of the actual inter-
occurrence time at time ¢ as a “supplementary variable”. Another possible
supplementary variable is the (forward) residual inter-occurrence time up to
the next claim arrival epoch. Even more general risk models can be forced
within this Markovian framework, as will be seen later in this and the next
chapter. These models include the following situations (see also Figure 11.2.1):
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4

Ve

Figure 11.2.1 Possible modifications of the risk reserve process

e nonlinear deterministic paths between claim arrival epochs,

¢ additional jumps caused by reaching a boundary,

e claim arrival intensity and distribution of claim sizes depend on the actual
value of the claim surplus or of a stochastic environmental process.

The goal is to describe the evolution of such models by a Markov process
{X(t)} whose trajectories have countably many jump epochs. The jump
epochs and also the jump sizes are random in general. But, between the jump
epochs, the trajectories are governed by a deterministic rule.

We again assume that the state space E for the piecewise deterministic
Markov process {X(¢)} to be constructed can be identified with a subset
of some Euclidean space R®. More specifically, let I be an arbitrary finite
non-empty set and let {d,,v € I} be a family of natural numbers. For each
v € I, let C, be an open subset of R%. Put E = {(v,2) : v € I, z € C,}
and, as before, denote by B(E) the o-algebra of Borel sets of E. Thus I
is the set of possible different external states of the process. For instance,
in life insurance one could choose I = {“healthy”, “sick”, “dead”}. C, is
the state space of the process if the external state is . This allows us to
consider different state spaces in different external states. For simplicity, we
only consider finite sets I even though the theory extends to infinite but
countable I. Then d = ), d, = oo, i.e. E is an infinite dimensional state
space. In what follows, we use the notation X (t) = (J(t), Z(t)), where {J(t)}
describes the external states of {X(f)} and {Z(t)} indicates the evolution of
the external component.

11.2.1 Behaviour between Jumps

Between jumps, the process {X(t)} follows a deterministic path, while the
external component J(t) is fixed, J(f) = v, say. Starting at some point
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z € C,, the development of the deterministic path is complete specified
by its velocities at all points of C,, i.e. through an appropriate function
¢, = (e1,-..,¢4,) : C» = R%, called a vector field. If a sufficiently smooth
vector field is given, then for every z € C, there exists a path ¢, (¢, 2), called
an integral curve, such that ¢,(0,z) = z and (d/dt)p.(t,2) = c.(wu(t, 2)).
We need to assume that the function ¢, satisfies enough regularity conditions
to ensure the uniqueness of all integral curves, regardless of initial conditions.
Sometimes it is convenient to describe a vector field as a differential operator
X given by Xg(z) = Zf;l ci(z) (Bg/8z;)(z) acting on differentiable functions
g. If g is continuously differentiable, then for z{t) = . (t,z) we have
(d/dt)g(z(t)) = T, ci(2(£))(8g/02)(z(2). In other words, the integral
curve {p,(t,2),t < t*(v,2)}, where

t* (v, 2) = sup{t > 0: @, (t,2) exists and @, (t,2) € C,},

is the solution to the differential equation

d
FI(t2)) = (Xg)w(t,2),  w(02)=2. (11.2.1)
Denote by 8C, the boundary of C, and let

8*C, = {2€8C,:%=,(tz2) for some (t,z) e R* xC,},
I' = {(v,2)€dE:vel,z€dC,}.

We will assume that ¢, (t*(v,2),2) € T if t*(v,z) < co. The set T is called
the active boundary of E. More transparently, I' is the set of those boundary
points of E, that can be reached from E via integral curves within finite time
and t*(», 2) is the time needed to reach the boundary from the point (v, 2).
The condition . (t*(v,z),2) € ' if t*(v,2) < oc ensures that the integral
curves cannot “disappear” inside E.

Examples 1. For the compound Poisson model, consider the risk reserve
process { R(t)} defined in (5.1.14). Then the deterministic paths between claim
arrival epochs have the form p(t,2) = 2+ 8t ; 83> 0. Let ¢ : R - R be
differentiable. Since (Xg)(z + 8t) = (d/dt)g(z + Bt) = B¢V} (z + 5t), the
operator X has the form X = d/dz. Another choice is to use the integral
curves ¢'(t,(z, h)) = (z + Bt, h +t) where the state vector (z, h) describes the
actual risk reserve z and the time parameter h. For a differentiable function
¢ :R xR — R we have

1l

d
(X'g'Y(z+ Bt,h +1t) &g'(z + Bt,h +1)

8g' g’ .
ﬂE(z""Bt’hH) + %(z + 3t,h+t).
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Thus we formally write that X' takes the form X = 3(8/9z) + (8/6h). A
more general case will be discussed in the next example.

2. Let {X(t)} be a PDMP with full generator A; see Section 11.2.2 for
further details on the construction of {X(t)}. It is easy to incorporate
an explicit time-dependence in the model. Note that the process {X'(t)},
where X'(t) = (X(t),t) is also a PDMP, now acting on E' = E x R. Let
2" = (21,...,20,h) € C, x R and let 2' = ¢'(z') € R be a differentiable
function. For each h > 0, denote the function C, 3 z — g¢'(z,h) by gs. Then

(X'9) (@t,2),0) = <o lult2))

dy ’ ’
= Y et D (0620 + Bpu62),0

i=1
= Koot N+ Dot )0). (1129

Hence formally we write X' = X + (8/8h), for the differential operator X'
acting as in (11.2.2). We add a remark. Let A’ denote the full generator of
{X'(t)} and suppose that g’ € D(A'). Then, g, € D(A) for each h > 0, where
gn(z) = g'(z, h). Moreover, a representative of (A'g')(z, h) is given by

(Ag)(z ) = (Ag)(&) + (2, ), (1123

as can be shown by the reader.

11.2.2 The Jump Mechanism

To fully define a PDMP on (E, B(E)), we need more than a family of vector
fields {e,,v € I'}. We also require a jump intensity, i.e. a measurable function
A:E - Ry, and a transition kernel Q : (EUT) x B(E) — [0,1], i.e. Q(z,-)
is a probability measure for all z € EUT and Q(-, B) is measurable for all
B € B(E). Note that in actuarial terminology, the jump intensity A can be
interpreted as a “force of transition”, whereas Q{z,-) is the “after jump”
distribution of a jump from state x (if z € E) or from the boundary point x
(ifzel).

We construct a stochastic process {X (¢)} with (deterministic) initial state
zo = (10, 20) € E. Let

t
R =1-exp( - /0 At Pro v, 20)) dv) K(z < *(z0)).

Further, let oy be a nonnegative random variable with distribution function
Fy(t), and (N1, Z;) an E-valued random vector with conditional distribution
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P((*’le Zl) € - ! 0]) = Q(‘pvo(ali zO)v : )' Let X(t) = (V07‘puo (t) ZO)) if
0 < t < oy. Assume now the process { X ()} is constructed up to time 05— —0.
Let

t
Fk(t) =1- exp(—[) ,\(Nk_l,gaN,‘_‘(v,Zk_l)) dv) I(t < t'(Nk..l,Zk_l)) s

and let ox > o1 be a random variable such that P(oy < ox—1 +1 |
fjf__l = Fy(t). Furthermore, let (Ng,Z;) be an E-valued random vector
with conditional distribution

P((Nk, Zx) € - | FX_ . 0k) = Qlon,_, (0% — k-1, Zk-1),") -

¥ or1 <t < o let X(#) = (Neg—1,9N,_,(t — 0k—1,2Zk-1)). Denote by
{N(t),t > 0} the counting process given by N(t) = Y2, K(o; < t). We
assume for all £ € R, that

EN(t) < o0, (11.2.4)

so that limg_,0 0x = 00 and the random variables X (t) are well-defined for
each t > 0 by the above construction. To construct a process with a random
initial state X(0), sample with respect to an arbitrary initial distribution a.

We leave it to the reader to show that (11.2.4) holds if (a) the jump
intensity A(z) is bounded and if one of the following conditions is fulfilled:
(by) t*(x) = oo for each = € E, i.e. I' = @, meaning that there are no active
boundary points, or (bs) for some £ > 0 we have Q(z,B;) =1 forallz €T,
where B, = {z € E : t*(z) > €}, i.e. the minimal distance between consecutive
boundary hitting times is not smaller than ¢.

Theorem 11.2.1 The stochastic process {X(t),t > 0} defined above is a
strong Markov process with respect to its history {FX}.

The proof of Theorem 11.2.1 is omitted since it goes beyond the scope of
this book. It can be found in Davis {1984), p. 364. Since the behaviour
of the trajectories of {X(t)} between the jump epochs is governed by a
deterministic rule, one says that {X(¢)} is a piecewise deterministic Markov
process (PDMP).

11.2.3 The Generator of a PDMP

Our next step is to construct martingales associated with a PDMP {X(t)}.
According to the definition of the full generator given in Section 11.1.4, we
have to find a function in the domain D(A) of the generator A of {X(¢)}.
This raises two problems:

e to find conditions for a measurable real-valued function g on E to belong
to D(A) and
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¢ to determine a function Ag such that (g, Ag) € A.

These problems are generally hard to solve. Fortunately, solutions are possible
if we restrict ourselves to a subset of D(A}, amply sufficient for the insurance
setup. Example 1 in Section 11.1.3 shows a clear way on how to find a
function Ag for which (g, Ag) € A. For {N(t)} a Poisson process, the process
{X(t)} with X(¢t) = N(t) — ct is easily shown to be a PDMP. Moreover, in
Section 11.1.3 we showed that (g, Ag) € A if both the function g is bounded,
measurable and differentiable from the left with a bounded derivative and if
Ag is given by (11.1.19). The following theorem yields an extension which is
crucial for many results derived further in the present chapter. Recall that
a function g¢{y) is called absolutely continuous if there exists a Lebesgue
integrable function f(y) such that g(y) = g(y) + ;; f(z)dz. As usual in

analysis, we use the identity fo: f(z)de=—[ :" f(2)d=.

Theorem 11.2.2 Let {X(t)} be a PDMP and let ¢* : EUT - R be a
measurable function satisfying the following conditions:

(a) for each (v,z) € E, the function t — g*(v,p.(¢, 2)) is absolutely
continuous on (0,t"(v, z)),

(b) for each x on the boundary T’

g*(z) = / 9" (y)Q(z,dy), (11.2.5)
E
(c) for each t > 0,
E( Y lo'(X() - " (X(ei-))]) < oo (11.26)
i:o; <t

Then g € D(A), where g denotes the restriction of g* to E, and (g, Ag) € A,

where Ag is given by
(49)(@) = (Xo)(@) + 3a) [ (00) - o(e)Qedy).  (112)

Praof Inserting (11.1.22) into (10.1.3), we have to show that

t+h
E(o(xX(e+ 1) -gX@) - [ (Aa(X@)ao |7 =0 (128

for all ¢,h > 0. The above condition only makes sense if the random variable
on the left-hand side of (11.2.8) is absolutely integrable. Our first attention
goes to the verification of this integrability property. By Theorem 11.2.1, the
left-hand side of (11.2.8) can be written in the form

t+h

E (90X @+ 1) - 9(X (@) - [ ((Xo)X@) +MX()

t
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< /E (9() — 9(X (©)) QX (v), dy) ) dv | FX)
t+h

= B (gx+m) - ox@) - [ ((X9(X)+AX )

t

x [ (6 - ox @) QX W), ) dv | X(1).
E

We now condition on X(¢) =z € E. Then

t+h
E (g(X(t+ 1) - 9X(®) - [ ((Xa)(X@) +AX)
t
x [ (60 - g(xe))Qx ), ) dv | X(0 = =)
h

= E (900 - (X - [ ((X9)X()+AXW)

[1]
x [ atv) - 9 X)) QX (), a0)) do | X(0) = ).
E

It therefore suffices to show that for each £ > 0

t

E (9(X() - 9XO) - [ ((Xa)X()

0
+AMX (@) | (9(y) — 9(X(v)))Q(X(v),dy)) dv) = 0.
E

If no jump takes place at time v, then any integral curve of the differential
operator X satisfying condition (a) yields (Xg}(X(v)) = (d/dv)g{X(v)).
Therefore

i
9(X(@) - 9XO0) - [(XOX @) dv= 3 g(X(0) - 4"(CX(ei - 0),
h o<t
and we need to show that

E(Y (9(X(0:) - ¢*(X(0s - 0)))

o <t

t
- [3xo) [ 6w - sXENX W av) =0. (11.29)
0
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For notational convenience, assume X(0) = z, where ¢ = (v,z) € E is
an arbitrary (deterministic) initial state of {X(¢)}. Let us first consider the
expression E (g(X (a1 A t)) — ¢*(X((e1 A t) — 0))). Condition (11.2.5) implies
that E [g(X (01 At)) — ¢*(X((o1 At) = 0));01 > tAt*(z)] = 0. From the
construction of the PDMP {X (t)} we have

E [¢9(X(01)) — 9" (X (01 = 0));01 <t At (z)]

At () —
= [o [ (0) - 010, 0, )09 v:2),89) X0 00 (0, ) Fi 0) o

where F) (v) = fu°° A(v, o, (w, 2))F1 (w) dw thanks to the definition of F; in
Section 11.2.2. We split the above expression into two parts to obtain

tAL" ()
]0 [ (9 = 50100, 2)Q00, 4 (0:2), A4 240, 2)
tntt (z) _
x/ A, po(w, 2)) Fi(w) dw dv

tAL* (z) pw
~ / AW, 00 (v, 7)) / (0) - 9, 0.0, 2)Qv, (v, 2)) dy dv
0 0 FE
x A, (w, 2))F1 (w) dw

i

E[[xx0) [ (06) - sX oD@, ) dvior < ta @]
Q
and

EALT () —_ )
/0 /E (0) - (00 v, 2)) Q0 (v, 2), dy)A (0 (v, )L (¢ A £°(2)) A
ai At

= E[ [ AxX0) [ (60 - sXDQX @) dg) dvios 2 EAF ()]
4 E

Thus we find

E(g(X(o1 At)) — g"(X(01 A2) - 0))

tAoq

= E( [ Axe) [ (64) - X)X @), dy) dv)

o

As the last expression is also valid for a random initial state, we can drop
the assumption X (0) = z. The reader should show that, for each k£ > 1, the
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jump epoch oy, is an {F¥ }-stopping time. Moreover, from the strong Markov
property of {X ()} in Theorem 11.2.1, we conclude that
E(g(X(ox A1) — g"(X(ox A L) - 0))
= E(E(g(X(oxAt) —g"(X(oxAt)=0)| For_,))
tAok
E(E( [ 2xe) [ 60) - sX@NAXE),d)dv

tATR-1

)

tAcy,

E( [ 2xo) [ 60 - sxmNex ). a ).

thop_1

This yields

N(t)an

E( Y o(X()) -9 (X(o: - 0)
i=0
than

= E( [ 2x0) [(60) - (X)X ), dy) dv).
0

Analogously, it follows that
N(t)Aan

E( Y 19(X(@) - g"(X(e: - 0)])
=0
tAGH

= E( [ Axo) [ 1a0) - dX(NIQUX (). 1) )
0
and by the monotone convergence theorem
N(t)

E (3 19(X(0:) - g"(X(os — 0))

i=0
= B([2x0) [ 1s0) - (X O)IQUX (), d)av).
1]

In particular, by (11.2.6), the random variable on the left-hand side of (11.2.9)
is absolutely integrable. Hence (11.2.9) is valid and the assertion of the
theorem has been proved. o

Note that in the proof of Theorem 11.2.2 we could not use the infinitesimal
generator and (11.1.17) because we did not want to assume that g is bounded.
Also, the finiteness condition in (11.2.6) is fulfilled when g is bounded.
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In forthcoming applications of Theorem 11.2.2, we will frequently use the
following method. Let {X(t)} be a PDMP with generator A. We look for
a measurable function g* satisfying the conditions of Theorem 11.2.2 and
for which Ag = 0. The process {g(X(¢)) — g(X(0)) : t > 0} is then an
{F¥}-martingale; see (11.1.22). For the extended PDMP {X '(t)}, we have
the following easy consequence of Theorem 11.2.2.

Corollary 11.2.1 Let {X(t)} be a PDMP on the state space E with active
boundary T'. Consider the PDMP {X'(t)} with X'(t) = (X(t),t), acting on
the state space E' = E x R with the active boundary I' = I' x R. Let
g" : E'UT' = R be a measurable function which satisfies the conditions of
Theorem 11.2.2 with respect to the extended PDMP {X'(t)}. Then g € D(A'),
where g denotes the restriction of g* to E', and (g, A'g) € A', where A'g is
given by

(A'g)(z,1) = (Xgo)(=)+ % (5c t)+Alz) /(gt(y) 9:(2))Q(z,dy) . (11.2.10)

Proof The jump intensity A(z,t) and the transition kernel Q((z, t),d(y,t)) of
the extended PDMP {X'(¢)} are given by

Az, )= Mz),  Q(z,1),d(y, 1)) = Q(z,dy), (11.2.11)

where A(z) and Q(z,dy) are the corresponding characteristics of {X (¢)}. By
using (11.2.2), (11.2.10) follows from Theorem 11.2.2.

Example Here is an application of Theorem 11.2.2 to nonhomogeneous
Markov processes. In Section 8.4 we considered a class of nonhomogeneous
Markov processes {X(t)} with state space {1,...,¢} and measurable matrix
intensity function Q(t). We took the function max; <;<¢ |g:i(t)| to be integrable
on every finite interval in R... Under these assumptions, the number of
all transitions of the process {X(¢)} in any finite interval is bounded and
integrable. A crucial observation is that the extended process {(X(t),¢)} is
a homogeneous Markov process and moreover a PDMP with I = {1,...,¢},
Co =R, A1) = — ¥z, aui(t), QU t), (7,0)) = g (/A0 ), (' # ).
From Theorem 11.2.2 we get the following extension of Dynkin's formula
derived in Section 10.1.3 for the homogeneous case; see (10.1.7). Let g :
I x Ry — R, be such that for each ¢ € I the function g(i,t) is absolutely
continuous with respect to . Then the process {M(¢)} with

M@ = g(X().6)-g(X(0).0
- [(Baom+ 3 6060 -sX0)0) ax ) o

X (v)
g(X@),t) - 9(X(0),0)

I
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¢
_/ (%g(X(v),v) +(Q(v)(g(”))T)X(u)) do
)

is an {F/ }-martingale, where g(t) = (g(1,%), ..., g(¢,t)). Further martingales
of the same type can be obtained as follows. Let i,j € I be fixed with ¢ # j
and consider the number Nj;(t) of transitions of the nonhomogeneous Markov
process { X ()} from ¢ to j by time ¢; see also Section 8.4.3. The process {X'()}
defined by X'(t) = (X (t), Ni;(t),t) is again a PDMP whose characteristics
can be easily specified. Consider the function ¢’ : 7 x IN x R, — R given by
¢'(i,m,t) = n which satisfies the conditions of Theorem 11.2.2. The process
{ﬂf,’j (£)} defined by ."/fij(t) = N,‘j(t) fO (X)) = z)qu (v)dv is an {]:X}

martingale. Hence, for any locally integrable function a : Ry — R,

E (/j a{v) dN;;(v) l X(t) = 1) = '/ttl a(v)p;j(t,v)gi;(v)dv.  (11.2.12)

In various apphcatlons partlcularly in optimization problems, expectations
of the form E ( fo exp(— fo (X (v),v)dv)v(X(t),t) dt) have to be computed
for some fixed time horizon fg, where A(t) = exp(— fot k(X (v),v)dv) can be
interpreted as a discounting factor and v{X (¢),t) as a cost function. For this
purpose we need the next result.

Theorem 11.2.3 Let {X ()} be a PDMP with state space E and generator A.
Forty > 0 fized, let & : Ex[0,t0] & Ry and v: Ex[0,t) = R be measurable
Junctions. Furthermore, consider the measurable functions g : ExR = R
and gier * E — R, where the latter function models terminal costs. Suppose
that

(a) g(z,t) fulfils the conditions of Corollary 11.2.1,

(b) g(:c to) = gier(z) for allz € E,

(x t) + (Ag)(x) — k(x, t)g(z,t) + v(z,t) =0 for all t < t5. (11.2.13)

(c)
ot
Then

9(X(0),0) = E( /:Oexp(— /otn(X(v),v)dv)~7(X(t),t)dt

+exp(— /0 e k(X (), ) dv) gter(X(to))). (11.2.14)

Proof From (11.2.3) we have that the generator A’ of the extended PDMP
{X'(t)}, where X'(t) = (X(t),¢) is given by (A'g)(z,t) = (Ag)(z) +
(0/0t)g(z,t), where gy(z) = g(z,t). Thus Corollary 11.2.1 implies that the
process {M(t),t > 0} with

t
Mt) = o(X (1))~ 9(X(0),0) - [ (FL0X()0) + (Ag) (X)) do
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is a martingale. Note that {M(t)} is pathwise absolutely continuous by
condition (2} of Theorem 11.2.2. Thus, in differential terms we can write
dg(X(t),t) = dM(t) + ((8g/3t)(X(t),t) + (Age)(X(t)))dt. Then, for the
function A(t) = exp(— f; k(X (v),v) dv) we have

AAMF(X(2),1)) = Al)dgX(2),1) - (X (2),1) g(X(2), ) dt)

A (am + (Zx .0 + (As)X(0) - <X, Da(X(0).1) de)
~ AW (X (8),0)dt — dM D)

where we used (11.2.13) in the last equality. This yields

1l

to
E (A(t0)g(X (to): to) — 9(X(0),0)) = —E /0 A@(X(8),8)dt,

see Example 5 in Section 10.1.3. The assertion follows. a

11.2.4 An Application to Health Insurance

Suppose that an insurance contract guarantees the insured an annuity
payment at constant rate during sickness. However, there is an elimination
period of length yo, by which we mean that the annuity payment only starts
when the insured is sick for longer than yo units of time. Suppose that the
insured can be in any one of three states: healthy (1), sick (2), dead (3).
Transitions from state 1 are assumed to depend only on the age ¢ of the
insured, those from state 2 also depend on the duration of sickness at time ¢,
while state 3 is absorbing. Define the stochastic process {X (¢),t > 0} by

(1,8 if the insured is healthy at ¢,
X(t)=1<¢ (2,(t,y)) if the insured is sick at ¢ for a period y, (11.2.15)
(3.) if the insured is dead at ¢.

We assume that {X(t)} is a PDMP, with I = {1,2,3},C; =R, C> = R® and
Cs; = R. The active boundary I' is the empty set. The transitions from one
state to another are governed by the following transition intensities. Let Ay;(t)
denote the transition intensity from state (1,t) to state (2, (¢,0)) if i = 2 and
to state (3,) if ¢ = 3. Further, A ;(f,y) is the transition intensity from state
(2,(t,y)) to state (i,t), where y denotes the duration of sickness at time ¢.
With the notation introduced in Section 11.2.2, we have

A(:l:t) Q((17 t)a (27 (t70)))3 ifi = 2:
Mlt) = { ’\(l)t) Q((l’t): (3, t))’ fi=3,

— ’\(2! (t’y)) Q((Zr(t7y))?(lxt)); ifi=1,
AZi(t’ y) - { A(2$ (t’y)) Q((z’ (t, y))a (31 t))i ifi=3.
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Lemma 11.2.1 The generator A of the PDMP {X(t)} is given by

91 = B0+ 200240 + halo(3.1)
- (A12(t) + /\13(t))g(1,t) '

(A0@6) = @40+ @ t) + Mt 1)o(3.
+ /\21 (t7 y)g(]: t) - (A2l (tr y) + ’\23(t))g(2: t, y) ’

(Ag)(3,8) = %‘tl(a, .

Proof Due to the special structure of the PDMP {X(t)} defined in (11.2. 15),
the statement immediately follows from (11.2.7).

Suppose that, if the insured is in state 2, the insurance company pays an
annuity at rate a(t,y) = I(y > yo) after the elimination period of length yo.
Thus, we use here the annuity rate as a monetary unit. Let 0 < t < 5. We are
interested in the expected payment in the interval [t, {p] knowing the state at
time ¢. As before, the external state component of X (t) is denoted by J(t).
Clearly, if J(t) = 3 then there is no payment after ¢ and therefore we have the
expected payment usz(t) = 0. We want to know the expected payments py (t)
and p2(t,y) defined by

m(t) =E (/tto I(J(v) = 2,Y(v) 2 yo) dv | J(t) = 1),

to
ualtn) =B ([ LU =2.Y0) 2w)dv | J)) =2Y() =),

where Y (t) denotes the duration of sickness at time £.

The current model is essentially different from the life insurance model in
Section 8.4.3. There, the nonhomogeneous Markov process {X(t)} could be
extended to a homogeneous Markov process by simply adding the time ¢,
i.e. by replacing X (¢) by X'(¢) = (X(2),t). To get a homogeneous Markov
process, we needed the additional state variable Y(s) to deal with the
elimination period yo during which the insured does not get any annuity
payment even though he is in state 2. Also, the current model discards the
economic context originally present in the discounting.

The derivation of the next result is similar to that of Theorem 11.2.3.
However, we do not directly apply Theorem 11.2.3 to the presently studied
PDMP {X(t)} since the time variable ¢ is already included into X (2).
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Theorem 11.2.4 Assume that the functions gi(t) and go(t,y) solve the
Jollowing system of partial differential equations:

%(‘) + A2(t)g2(¢,0) — (az(t) + M3 () =0,  (11.2.16)
892 Bgz

e b y) + Ey_(t’ ¥) + At 1) (t)
— Qa1 9) + Aes(t,9))g2(t,9) + Ly 2 o) =0,  (11.2.17)
with boundary conditions g,(to) = g2(to,y) = 0. If for x = (v, z) the function

() Hv=1Lz2=t<t
g(z) =14 g@ty) fr=2,z2=(y) endt <t
0 otherwise

satisfies conditions (a)-(c) of Theorem 11.2.2, then

to
Eg(X () = E [ 1(J(w) = 2,Y (1) 2 yo) dv) . (11.2.18)

Proof Theorem 11.2.2 implies that the process {M(t), ¢ > 0} with

M(t) = g(X (1)) - (X (0)) - /o (Ag)(X(v)) dv

is a martingale. Thus, in differential terms we have dg(X(t)) = dM(¢) +
(Ag)(X(t))dt. Using Lemma 11.2.1 and the system of partial differential
equations (11.2.16)-(11.2.17), this leads to dg(X ()} = dM(t) — I(J(t) =
2,Y(t) > yo)dt. Integrate this equation over the interval [t,¢5] and use the
fact that {M(¢)} is a martingale to obtain

to

E(5(X(t0)) - 9(X(0) = ~E (| " KJ(@) =2,Y(0) 2 o) dv).

By the boundary conditions we have E g(X(tg)) = 0, and hence (11.2.18)
follows. This finishes the proof of the theorem. ]

Corollary 11.2.2 If the function g considered in Theorem 11.2.4 satisfies the
conditions of Theorem 11.2.2 for every (degenerate) initial distribution of the
PDMP {‘X(t + 8),8 2 0}1 then N (t) = ul(t) and 92(tr y) = ﬂ?(t7 y)

Proof Conditioning on X (), the statement follows from Theorem 11.2.4. O

Theorem 11.2.4 and Corollary 11.2.2 show that we have to determine
the functions g;(t) and g»(t,y) if we want to compute the conditional
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expected payments u; () and pq(t,y) or the unconditional expected payment
considered in (11.2.18). This then requires the solution to the system of partial
differential equations {11.2.16)-(11.2.17). Under some regularity conditions
on the transition intensities X;;(¢) and Ay;(t,y), this system admits a unique
solution which is bounded on compact sets. For instance, this is the case
if Ai;(t,y) are uniformly continuous on bounded intervals; see, for example,
Chapter 1 of Forsyth (1906).

In the rest of this section we assume that these regularity conditions hold
as well as the conditions of Corollary 11.2.2. The following approximation
technique can then be invoked when solving the equations (11.2.16)-(11.2.17)
numerically.

Consider the sequence {0} of all consecutive instants when the external
component {J(t)} jumps and let N(¢) denote the number of these jumps in
the interval (0,¢]. Start with g%(¢) = g3(¢,y) = 0 for all ¢ € [0,2o] and define
the functions gf(t) and ¢7(t,y) recursively by

gt'(t) = E(gHoAt,01(J(0)=2)|J(t)=1),  (11.2.19)

%ty = E(eVy -y V)
+gt(eAte) W{J(o) =1) | J(t) = 2,Y(t) = y[11.2.20)
Here, ¢ = opn(;)41 denotes the next jump epoch of the external state

component after ¢. It is easily seen by induction that gf(to) = g% (to,¥) = 0
for all n > 1.

Theorem 11.2.5 Let g1 (t) and ga2(t,y) be the solutions to (11.2.16)-(11.2.17).
Then

H n —_ : n —
Jim gr(t) =gu(8),  lim g2(t,y) = g2(t,0) - (11.2.21)

Proof The reader should prove that the functions g*(t) and g% (t,y), defined
in (11.2.19) and (11.2.20), can be represented in the form

an Aty
fO=E([" 100 =2Y0) 2w |J0) =1, =0),
(11.2.22)
In Ao
gty = E([ 100 =2Y0) 2w
Jt)=2,Y(t) =y, N@t) = o) . (11.2.23)

By Corollary 11.2.2, the statement of the theorem then follows from the fact
that {X(¢)} is Markov and that lim,_,o 0, = inf{¢ : J(t) = 3}. a

In a simulation of the PDMP {X (t)}, estimates of g7*(t) and g3 (¢,y) can be
directly computed from (11.2.19) and (11.2.20). An alternative is to use the
following result.
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Theorem 11.2.6 The functions g}(t) and g3 (t,y) defined in (11.2.19) and
(11.2.20) solve the following system of differential equations:

;tgl“(t) + A2 (0)g3(®) — (A12(t) + As(8))gr (1) =0, (11.2.24)
n+1 n+1
W (t) + 2 (0) + (a0

at
- (A2t (t,y) + /\23(t ezt (ty) + Iy > ) =0, (11.2.25)

with the boundary conditions g+ (to) = g5%  (te,y) =

The proof of this theorem is left to the reader. Notice that the system
(11.2.24)-(11.2.25) has a simpler structure than the original system (11.2.16)—
(11.2.17) since the equations (11.2.24)-{11.2.25) can be solved separately.

Bibliographical Notes. The general class of PDMP was introduced
in Davis (1984), where Theorem 11.2.3 was proved for the first time.
For (partially) more specific classes of Markov processes with piecewise
deterministic paths and for other related results, see also Dassios and
Embrechts (1989), Davis (1993), Embrechts and Schmidli (1994), Franken,
Kénig, Arndt and Schmidt (1982), Gnedenko and Kovalenko (1989),
Miyazawa, Schassberger and Schmidt (1995) and Schassberger (1978). Notice
in particular that Dassios and Embrechts (1989, p. 211) used Theorem 11.2.3
to determine an optimal dividend barrier in the compound Poisson model.
The representation of the permanent health insurance model considered in
Section 11.2.4 in terms of a PDMP is due to Davis and Vellekoop (1995).
They also showed that the solution to the system (11.2.16)—(11.2.17) can be
found numerically. For an application of PDMP to disability insurance, see
Moller and Zwiesler (1996).

11.3 THE COMPOUND POISSON MODEL REVISITED

We first reconsider the compound Poisson model of Section 5.3 and demon-
strate on simple examples how the method of PDMP works in the context of
risk theory. In this section, the net profit condition (5.3.2) is taken for granted
and we look for new expressions for characteristics of the time of ruin. The
extension to the usual economic environment is considered in Section 11.4,
while in Chapter 12 a stochastic environmental process controls the risk model.

11.3.1 Exponential Martingales via PDMP

We again apply the method of PDMP to get martingales related to the risk
reserve process in the compound Poisson model, paving the road for more
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general risk models considered in Chapter 12.

Let {R(t)} with R(t) = u + Bt — Zf‘;(f) U; be the risk reserve process in
the compound Poisson model considered in Section 5.3. It is easy to see that
{(R(t),t)} is a PDMP with state space E = R?. The set I of external states
consists of only one element and is therefore omitted. The characteristics of
the PDMP {(R(t),t)} are given by

Xolu,0) = (B3 + 33) )

and A(y.t) = A, Q((y,t), By x B:) = I(¢ € Ba)Fy(y — B), wherey — B =
{y —v:v € B}; B; € B(R) for i = 1,2. The active boundary I is empty.

We are interested in functions g € D(A) or more specifically functions that
satisfy the conditions of Theorem 11.2.2. Condition (a) is fulfilled if and only if
g is absolutely continuous. Condition (11.2.5) becomes trivial because I’ = §.
Suppose now that g satisfies (11.2.6). Then, by Theorem 11.2.2,

Agw.) = (352 + ) w0+ A([ 900 - v aFo(0) - atwot).

By Theorem 11.1.3, we need to solve the equation Ag = 0 if we want to find
a martingale of the form {g{R(t),t),t > 0}.

If we would be interested in a martingale {g(R(¢))} that does not explicitly
depend on time, then the equation to solve would be

8¢V (y) + z\(/ow g(y - v) dFy(v) - g(y)) =0. (11.3.1)

The latter equation is similar to (5.3.3). Indeed, if we put g(y) = Oforally < 0
and g{y) = ¢¥(y) for y > 0, then we recover (5.3.3). But the only absolutely
continuous function g(y) satisfying (11.3.1) with boundary condition g{y) = 0
for y < 0 is the function g(y) = 0, as can be easily shown by the reader.

We now try a function of the form ¢(y,t) = exp(—sy — 6t}, where we
assume that My (s) < co. We will see in a moment that @ has to depend on
s, i.e. @ = 6(s). Then the equation Ag = 0 yields

~Bsg(y,t) — 6(s)g(y, t) + /\( / " e atv-0) dFy(v)e™ ()t — g(y, t))= 0
]

or, because g(y,t) > 0, equivalently —3s — 8(s) + A(hy (s} — 1) = 0. Hence
8(s) = Ay (s) — 1) - Bs. (11.3.2)

Notice that this function was already considered in Section 5.4.1 in connection
with the adjustment coefficient in the compound Poisson model. Moreover, the
stochastic process {M(t)} with

M(t) = exp(—=sR(t) — (\(rrr(s) — 1) — Bs)t) (11.3.3)
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has already been obtained in Example 3 of Section 10.1.3. Trying to apply
Theorem 11.2.2 in an attempt to get a martingale, it still remains to verify
that (11.2.6) holds for g(y,t) = exp(—sy — 8(s)t), where 6(s) is given by
(11.3.2). This can be seen from the following computation:

N(t)
E (z (e="R(e:) _ g=sR(s: —0))e—ﬂ(s)oa)
=1
N(t)
< E (Z e""R("‘)) max{1,e~%(*)}
t=1
;v(z) é
< B (E exp(s z Uj)) ma.x{l,e—ﬂ(s)t}
i=1 Jj=t
N(t)
< E (N(t) exp(s 3 U.J-)) max{1, =)}
j=1

= E (N(t)E (exp(sNz(t:) Uj) l N(t))) max{l,e—ﬂ(s)t}
i=1

= E(N@)(my(s)N®) max{1,e 4t}

= z:ln(ﬁzu(s))"-———():!) e M max{1,e"%(®*}
n=

= Migy(s)te?™u =D may(1 e~} < oo.

11.3.2 Change of the Probability Measure

In this section we consider the canonical probability space (2, F,P) of the
risk reserve process { R(t),t > 0} in the compound Poisson model, where Q2 is
the (Borel) subset of D(IR ;) consisting of all possible sample paths of {R(t)},
and F = B(Q). Let {F;} be the (uncompleted) history of {R(t)}.

Recall that by Ty, U,, we denote the interoccurrence times and claim sizes,
respectively, where in the compound Poisson model {T,} is a sequence of
independent random variables with common exponential distribution Exp()),
independent of the sequence {Uy,}. The sequences T, and Uy, are considered as
random variables on the canonical probability space (Q, F,P) of {R(¢)}. It is
rather obvious that for each n € IN, the claim arrival epoch o,, = T1 +...+T,
is an {F;}-stopping time.

Let 3 € R be fixed such that /my(s) < oo. Then, for the martingale
{M(t),t > 0} given in (11.3.3) we consider the family of probability measures
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(Pt > 0} defined as in (10.2.23), that is
P(A) =E[M(t);4], AcF. (11.3.4)

From Kolmogorov's extension theorem, see Remark 2 in Section 10.2.6, we
get that there exists a “global” probability measure P® on (Q, F) such that
the restriction of P to F; is Pg’). Let E (%) denote the expectation under
P,

Lemma 11.3.1 For allt > 0 and A € Fy,
P8 (4) = E[e*RO-1-0(); 4) (11.3.5)

and
P(A) = E D [e?(RO)-u+blat, 4] (11.3.6)

where 0(s) is given by (11.3.2). Moreover, if T is an {F;}-stopping time and
A C {r < 0o} such that A € F;, then

P (A) = E[es(R(1)—u)—8(a)7, 4 (11.3.7)

and
P(4) = E® [es(R(T)—uH@(s)T; 4]. (11.3.8)

Proof Observe that (11.3.5) is an immediate consequence of the defining
equations (11.3.3) and (11.3.4). Furthermore, using (10.2.28) we get (11.3.6).
Formula (11.3.7) follows from Lemma 10.2.2b. To show the validity of (11.3.8)
we use (10.2.28) and apply Lemma 10.2.2b to the martingale {M ~(¢),t > 0}
given on the probability space (€2, F,P(®)). a

The change of measure technique stated in Lemma 11.3.1, combined with
the method of PDMP, is a powerful tool when investigating ruin probabilities.
In the present chapter we illustrate this for the compound Poisson model,
leaving further examples to Chapter 12. We show first that, under the
measure P, the process { R(t}} remains a risk reserve process in a compound
Poisson model. For convenience, we denote the original probability measure
by PO = Pp.

Theorem 11.3.1 Let s € R such that iy (s) < oo. Consider the probability
space (0, F,P®). Then, the following statements are true:
(a) Under the measure P, the process {R(t)} is the risk reserve process
in the compound Poisson model with premium rate 3, claim arrival intensity
X&) = Miy(s) and claim size distribution Fé,')(a;) = [y e dFy(y)/u(s).
In particular,

E®R(1) —u=-00)s). (11.3.9)
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(b) If s' € R such that my(s') < oo and s # ', then P® and P are
singular on F.

Proof (a) Since the set of trajectories of the risk reserve process {R(t)} is the

same under the measures P® and P®, it is clear that the premium rate is 3
under both measures. Let n € IN be fixed and let B;.B. e B(R),1<i<n.

Notice that o, = Y"1, T; is an {F;}-stopping time which is finite under P(?.
Thus, from (11.3.7) we get that

P(s) (ﬁ{Tg € B;,U; € B:})

i=1

EO [exp(sZU,) exp( Ay (s) — 1) ET) ﬂ{T €B,U; € B'}]
=1 i=1
= H(E ©) [e*V;U; € Bi] E O[e~>mu(s)-VT:. 0 ¢ B.))

i=1
n

I/ e drstimote) [ sho(e o an),

i=1 i

and the first part of assertion (a) follows. The expression E(R(1) — u =

— (Mg (s)) (P (s)/u(s)) = —81(s) is now obtained from (5.2.8)
because E (O, = f0°° ye®¥ dFy (y) /iy (s) = ﬁag)(s) /My (s). In order to prove
(b), observe that from (11.3.9) and from the law of large numbers for additive
processes (see Theorem 10.3.4) it follows that

P® (t]_lﬂ;lo t—l(R(t) —u) = tl_l,ngo t—l(R(t—) —u)= —0(1)(3)) =1,

where {R(t-)} is the left-continuous version of {R(t)}}. Thus, the measures
P® and P are smgular unless §(1)(s) = 6(1)(s'). However, the latter can
only happen if s = s' since 8(s) is strictly convex, which means that 6 (s) is
strictly increasing for all s > 0 where 8(s) is finite. (]

Using Lemma 11.3.1 one can easily show that the ruin probabilities ¥(u)
and ¥(u; z) can be expressed under the new measure | QOB

Theorem 11.3.2 For each s € R such that y(s) < oo,
'lp(u) = E (S)[eSR(T(u))+6(8)T(ﬂ);T(u) < oo]e—su (113'10)

and _
Y(u;z) = E(‘)[e’R(T(")H'e(’)T(“); T(u) < zje™ ™. (11.3.11)
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The proof of this theorem is left to the reader.

Formula (11.3.11) constitutes a continuous analogue to (9.2.23) and is useful
to simulate ruin probabilities. Indeed, if the event {r(u) < z} has a large
probability under P{*), the right-hand side of (11.3.11) can be simulated
efficiently and yields an estimator for ¥(u; =), see also Section 9.2.5. Equivalent
representations for 1(u) and ¥(u; z) in terms of the claim surplus process were
derived in (10.2.29) and (10.2.30).

11.3.3 Cramér-Lundberg Approximation

In this section we show how (11.3.10) can be used to recover the Cramér-
Lundberg approximation spp(u) to ¥(u) given in (5.4.16). Assume that the

adjustment coeflicient y > 0 exists and ﬁzg)('y) < 0. First note that (11.3.10)
is not very useful for s # v because then the joint distribution of R{7(u))
and 7(u) is needed. However, we can get rid of the term involving r(u) by
choosing an s such that 8(s) = 0, that is s = +y. Since the function 8(s) defined
in (11.3.2) is convex, we have 8()(y) > 0. From Theorem 11.3.1 we know that
EMR(1) — u = —6M(y) < 0 and thus P (r(u) < 00) = 1. Using (11.3.10)
this gives

¥(u) = e "™E O exp(yR(r(u))). (11.3.12)
Comparing (5.4.10) and (11.3.12) we still have to show that

Jim E® exp(yR(r(u))) = (8 - Mu)(Wnfy (v) - B)7".

Let g(u) = EM exp(yR(1(v))), 7- = inf{t > 0 : R(t) < u} and F(y) =
P™M(u — R(r_) < y). Notice that 7_ = 7(0) and that F is the ladder-height
distribution at the first descending ladder epoch 7_ of {R(t)}. Moreover,

o) = E (E(v)(evﬂ(r(u)) |7_,R(r_)))
= EO (EO@RO) | R )I(R(r-) >0))
+E® (EO@R |+ R(r ) K(R(r-) < 0))

[ sw-varw+ [ " w9 apy).
0 u

Thus, the function g(u) satisfies the renewal equation
373
o) = 2 + [ o) aF ),

where z(u) = [° €Y% dF(y) = ¢ [° e~ dF(y). Furthermore, we have

o0 00 poo o0 Py
/ z{u)du = / / N 4F(y) du = / / e"(v=%) 4y dF (y)
0 0 Ju o JO
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1

= (1 -EMeRIO)
e
= Lo EOp-rReOREO), 1(0) < o))
~
1 1 Au 8- Au
= -1-POF0) <o) ==(1-5) = ,
- (0 <o) =~ (1-F) = =7

where we used (5.3.11) in the last but one inequality. Thus, by Lemma 5.4.2,
z(u) is directly Riemann integrable. In order to apply Theorem 6.1.11 we
finally need the expectation of the ladder height distribution F:

il

EO(-R(r(0) = EO[Rr(0)e " ®;r(0) < ool
/0 ye“’”%ﬁu(y) dy = % /0 /0 ye" dy dFy (v)

A X . A7 (1) _
= ) - Gw(y) - 1) = —@7‘%@-

where we used (5.3.18) in the second equality and the definition of vy (see
(5.4.3)) in the last equality. Thus, using Theorem 6.1.11 we obtain (5.4.10).

11.3.4 A Stopped Risk Reserve Process

A rather useful way of modelling is to stop the risk reserve process {R(t)} at
the time of ruin 7(u) and to let it jump to a cemetery state. In other words,
we consider the PDMP {(X (t),t),t > 0}, where

[ WRE) s
x0={ QR 45 oy (11:313)

Here we have I = {0,1}, where 0 means that the process is in the cemetery
state, Cp = (—00,0) x R and Cy = R2. Since the external state is uniquely
determined by the continuous component of X (t), we can and will simplify the
notation by omitting the external state. The vector field of {(X{t),t)} is given
by Xg(y,t) = 8X(y > 0)(89)(8y)(y,t) + (89)(8t)(y, t). The jump intensity is
My.t) = Xy > 0)A and the transition kernel is Q((y,t), By x B2) = It €
B2)Fy(y — B) for By, B; € B(R).

Notice that the introduction of the cemetery state within the stopped risk
reserve process entitles us to apply Theorem 11.2.2 to an essentially broader
class of test functions. Indeed, now a function g(y.t) fulfils condition (a) of
Theorem 11.2.2 if and only if it is absolutely continuous in y on [0, 00) and
absolutely continuous in ¢. However, what is important, there is no need to
assume that g(y,t) is continuous in y at y = 0, in contrast to the situation
discussed in Section 11.3.1. Furthermore, the active boundary I is empty
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and therefore condition (11.2.5) becomes trivial. Now, assuming (11.2.6) from
Theorem 11.2.2, the generator of the PDMP {(X(t),t)} is given by

Ao = 2,016 2 0 (822w 00 [ sr-0.)dFo()-90.)).

(11.3.14)
We show how this representation formula for the generator of the PDMP
{(X(2),t)} can be used to determine the probability ¥(u) = P(7(u) = 00) of
survival in infinite time. We will indeed prove that, under some conditions,
the survival function ¥(u) in the compound Poisson model is the only solution
to the integro-differential equation considered in Theorem 5.3.1.

Theorem 11.3.3 Let {(X(t),t)} be the PDMP defined in (11.3.13) with
generator A given in (11.3.14). Let g(y,t) be a function which satisfies the
conditions of Theorem 11.2.2 for this PDMP. Then the following statements
are true:

(a) If g(y) = g(y,t) does not depend on t, then the only solution g(y) (up
to a multiplicative constant) to Ag = 0 such that g(0) > O and fulfilling the
boundary condition g(y) = 0 on (—o00,0) is the survival function ¥(y).

(b) Let z > 0 be fized. Let g(y.t) solve Ag = 0 in R x [0, z] with boundary
condition g(y,z) = Ly > 0). Then g(y,0) = P(r(y) > z).

Proof (a) Assume that g(y) = g(y,t) does not depend on t and that g(y) =0
for y < 0. In view of (11.3.14}, equation Ag = 0 reads then for y > 0

8009 +A( [ 9= 2) 4Fu(e) - o)) = 0. (11315)

From Theorem 5.3.1 we see that g(y) = ¥(y) is a solution to (11.3.15). Suppose
that there is another solution g(y) to (11.3.15). Since g(0) > 0 and g(y) has
to be absolutely continuous on [0,00), we have limyog(y) = g(0) > 0 =
limyo fo" g(y — v)dFy(v). Thus, (11.3.15) implies that g{t)(y) > 0 for all
sufficiently small y > 0, i.e. g(y) is strictly increasing in a right neighbourhood
of the origin. Let yo = inf{y > 0 : gV (y) < 0} and suppose yo < 0o. The
continuity of g(y) and (11.3.15) imply that g(*)(yo) < 0. Then, using (11.3.15)
we have 0 > 83~ g (yo) = 9(y0) ~ J5° 9(yo — v) dFy(v) and consequently

Yo Yo
0 < g(ye) < /0 9(yo —v)dFy(v) < /0 9(yo) dFy(v) < 9(yo)

which is a contradiction. Thus, g(y) is strictly increasing on the whole
nonnegative halfline Ry = [0,00). Recall that by the net profit condition
(5.3.2), R(t) & oo as t — oo. Thus, the possibly infinite random variable
R(r(u)) = limsyoo R(T{u) A t) is well-defined. Since 7(u) is a stopping
time and since the stochastic process {g(R(t)),t > 0} is a martingale by
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Theorem 11.2.2, we get from Theorem 10.2.4 that {g(R{7(u) A t)),t > 0}
is a martingale too. Using Theorem 10.2.5, we have g{u) = E g(R(t)) =
E g(R(r(u)At)) for each t > 0. Thus, Theorem 10.2.2 implies that g(R(r(u)))
is integrable. Since P{7(u) = oo) > 0 the latter is only possible if g is bounded.
Moreover, since g is increasing, the limit g(co) = limy,_,o g(y) exists and is
finite. But then by the dominated convergence theorem

g(w) = Jim Eg(R(r(x) A1) = Eg(R(r(w)) = g(o0)P(r(u) = o),

where the last equality follows from the fact that g(R(7(u))) = 0, whenever
7(u) < oo. This finishes the proof of the first part of the theorem.

(b) We are now interested in P(r(u) > z), where we assume that z > 0 is
fixed. The equation to solve is then

y
-aa—tg(y, t)+ 53%,9(31, t) + /\(/; g9(y — z,t) dFy(2) — g(y, t)) =0. (11.3.16)

As in the proof of part (a) it follows that {g(R(r(u) A t),t),t > 0} is a
martingale. By Theorem 10.2.4 the process {g(R(t(u) Az At),z At),t > 0}
is a martingale too. Thus, using the boundary condition g(y,z) = I(y > 0)
in the second inequality, we finally get that g(u,0) = Eg(R(r(u) A z),z) =
P(r(u) > z). a]

11.3.5 Characteristics of the Ruin Time

In this section we study several characteristics of the ruin time 7(u), in
particular the conditional expectation of 7(u) provided 7(u) is finite, and
the Laplace-Stieltjes transform I, (,)(s) = E exp(—s7(u)), s > 0. Let nu(u) =

E 7™ e=" dv and notice that then
ne(w) =w(1-lew), u>0,w>0. (11.3.17)

We first show how Theorem 11.2.3 can be applied to determine the
Laplace transform L, (s) = fo Nw{u) e~ du of 7y (u). The idea of using
Theorem 11.2.3 is suggested by the fact that 7,(u) can be represented in
the form of equation (11.2.14). Namely, from the definition of #,(u) we
immediately get

Mw{u) = E /ooo e YE(7(u) > v)dv. (11.3.18)

Since the risk reserve process {R(t)} in the compound Poisson model has
independent and stationary increments, the reader can rewrite (11.3.18) to
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obtain

to
M(w) = B ( /0 e X(r(w) > v) dv + e~ L(r(u) > to)u (R(%0)))

(11.3.19)
for each ty > 0. Now, putting

9(y,9) = 9(y) = Ny > 0)nu(y), (11.3.20)

&(y,v) = w, 7(y,v) = Ly > 0) and gier(y) = Ly > 0)nw(y), we see that
(11.3.19) is identical with (11.2.14). Notice, however, that the function g(y, s)
defined in (11.3.20) does not fulfil the conditions of Theorem 11.2.3 with
respect to the PDMP {R(t)} since g(y, s) is not continuous at y = 0. Using
the procedure of Section 11.3.4, we can get rid of this problem by replacing
{R(t)} by the stopped risk reserve process defined in (11.3.13). Before we state
Theorem 11.3.4, we formulate a technical lemma.

Lemma 11.3.2 There ezists a function g : R = R, which is absolutely
continuous, bounded, positive and increasing on [0,00) satisfying the integro-
differential equation

Bg(l)(u)+/\(/u g{u—v) dFu(v)—g(u)) —wg(u)+1=0, »>0.(113.21)
0

The proof of this lemma is omitted but can be found in Schmidli (1992).
Theorem 11.3.4 For all 5,w > 0, '

. gt — g~1
L, (5) = Vg ey (11.3.22)

where 3., is the unique positive solution to the equation

Bs — A(1 —ly(s)) —w=0. (11.3.23)

Proof Consider the stopped risk reserve process defined in (11.3.13). Because
Tw(u) can be represented in the form (11.2.14) corresponding to this PDMP,
we are looking for a function g{u,s) = g(u) for which g{u) = 0 for u < 0
and that satisfies the conditions of Theorem 11.2.3. Specifically, (11.2.13)
and (11.3.14) imply that g(u) should be a solution to equation (11.3.21).
Since 1,,(u) is absolutely continuous, bounded, positive and increasing on
[0, 00), it suffices to look for a function g(u) which shares these properties
and satisfies (11.3.21). The existence of such a function is guaranteed by
Lemma 11.3.2. Multiply (11.3.21) by e™*¥ and integrate over (0, c0) to find
that for Ly(s) = f;° g(u)e™** du,

B(—g(0) + 8Ly(s)) — AL, (s)(1 = ly(8)) — wly(s) + 571 =0.
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See also the proof of Theorem 5.3.3. This gives

Bg(0) — s7!
Bs—A(1—ly(s)) —w

Since g(u) should be bounded, f/g(s) has to exist for all s > 0. The
denominator in (11.3.24), however, has a unique positive root s, since the
function 6,,(s) = 8s—A(1—Iy(s)) —w is convex, negative at 0 and converges to
o0 as s — o0o. Hence 3g(0) = s! because otherwise L (s,,) would be infinite.
With the choice «(z,t) = w, v(z,t) = I(z > 0) and gier(x) = I(z > 0)g(z),
g(u) also fulfils conditions (a) and (b) of Theorem 11.2.3, because g(u)
is bounded and absolutely continuous on [0,00). Thus, by the result of
Theorem 11.2.3, we get that

Ly(s) = (11.3.24)

T(u)Atg
glu)=E (/;) e~ ds +e Yo I(r(u) > to)g(R(to))) (11.3.25)

for each tg > 0. Notice that, by letting to — oo, the second term in (11.3.25)
disappears because g is bounded. This gives g(u) = n.(u). Now, (11.3. 22)
follows from (11.3.24).

Using the result of Theorem 11.3.4 we can express the conditional expected
ruin time E (7(u) | 7(u) < 00} in terms of the ruin function ¢(u) = P(r(u) <
00).

Theorem 11.3.5 Assume that “(2) < 0o. Then for eachu > 0
1 '\#(2)
B - ( 2(8 -

E [r(w); r{u) < o0] = B - [ vl - 0)70) d).

(11.3.26)

Proof Let w > 0 and put r(u)e” ") = 0 if 7(u) = co. By the monotone
convergence theorem, we have

/ E [r(u); 7(u) < oole™®* du / E (li% r(u)e " (W)e™*% du
0 0 w.

X
lim / E (r(u)e e ¥ dy.
40 Jo

Ee~*"(¥ is an analytic function for w > 0. In particular, E (r(u)e v*(#)) =
—(0)(ow)Ee=vT™ and

. 5 -
/ —E e—wr(u) e % du = a_'l; / Ee-—wr(u) e " du.
0
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Thus, using (11.3.17) or equivalently lﬁr(u) (w) =1 — wny(u), we have
e o]
/ E[7(u); 7(u) < oole™** du
0

= —lim 9 /m(l — wny(u))e™** du
T wiodw he

7] 17/
= -lim (s - WLy, () = lim(Ln. () + w- L (9))
- lim (s;1 8~ wss,})s"z w(sy! s -1) )

wio\ Bs — A(1 — Iy (s)) — (Bs = A1 = ly(s)) — w)?
where we used Theorem 11.3.4 and the implicit function theorem in the last
equality. Indeed, from the implicit function theorem (see Theorems 17.1.1
and 17.4.1 in Hille (1966)) we get that the function s,, defined by (11.3.23) is

twice continuously differentiable and ,Bsm + Af(l)(sw) ) _1 = 0, which gives
sO = =(8+ /\i(l)(.sr,,,))‘1 Moreover limy, ¢ 8., = ¢ = 0. By L'Hospital’s rule

. j(1)
Ll’%wsw —hmﬁ-ﬂ+)\t (0) =8 -y
and consequently
w(sg! —s71) _ B = Apu

Lim = >
wio (Bs — A1 - y(s)) —w)?  (Bs— A(1 - ly(s)))?
Using L'Hospital’s rule again, we get

. Sw ws,(}) — i wsg) im w,\i(2)(sw)
wio 82 B N O R P FOTARS
w 28,84 030 28y 80w’ (B + My’ (3w))
- i)
(8 = Auv)

Putting the above together we find that

1 B8 — Ay
B~ Apu Bs — M1 - iy(s))

A#(z) _ 8-
(2(;3 Apy) ( l_53—,\(1 -p;“]U(s))))'

Using (5.3.13) and (5.3.14), this gives

/w E{r(u);7(u) < cole™** du =
0

> . cougy o L Mgy
/0 E[r(u); 7(u) < ocle™®du = Y LE(S)(z(ﬂ o) L,;,(s)) .
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Since the right-hand side of the last equation is the Laplace transform of the
right-hand side of (11.3.26), this proves the theorem. m]

Corollary 11.3.1 If ug) < 00, then
u(2)
E(r(0) | 7(0) < 00) = o— 20— (11.3.27)

2uy(8 - M)
Proof Tt suffices to put u = 0 in (11.3.26) since (5.3.11) gives (11.3.27). O

Corollary 11.3.2 If ug) < 00, then for each z > 0

P <
($<T(U)<OO)_'2Q:('B_—APU)2.

Proof From Markov’s inequality we have

(11.3.28)

Pz < 7(u) < 00) = P(r(u)I(7(s) < 00) > z) < 27 E (7(1) X(7(u) < 00)).
Now the assertion is an immediate consequence of Theorem 11.3.5. [mi

We remark that Theorem 11.3.5 and (5.3.8) imply that for the compound
Poisson model with exponential claim size distribution Exp(d), we have
E(r(u) | T(u) < 00) = (8 + Mu)(B(B5 — \))~! for each u > 0.

Bibliographical Notes. The risk reserve process in the compound Poisson
model was first treated as a PDMP in Dassios and Embrechts (1989).
The results for the ruin time presented in Section 11.3.5, in particular
Theorem 11.3.5 and Corollary 11.3.2, can be found in Schmidli (1996).

11.4 COMPOUND POISSON MODEL IN AN
ECONOMIC ENVIRONMENT

11.4.1 Interest and Discounting

When studying economic phenomena, the effects of interest and inflation have
to be taken into account. By interest we mean that the capital increases in
time due to investments as in money markets or riskless bonds. In Sections 7.3
and 9.1.4 we considered the case of discrete-time interest or discounting. Then,
in Section 8.4.3, we took up the idea of an instantaneous interest rate and
showed how this can be obtained as a limit of the corresponding operations
in discrete time. In the present section we consider the risk reserve process in
the compound Poisson model in a continuous-time economic environment.
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We first introduce the necessary notation. In case of inflation, a monetary
unit at time 0 has the value e~7(*) at time ¢, where I : Ry — Ry is a certain
function with I(0) = 0. We call e~1t) a discounting factor. If I(t) is absolutely
continuous, that is I(t) = fot i(v) dv for some function ¢ : Ry — Ry, then
i(t) is called the (instantaneous) inflation rate at time ¢. Interest is modelled
by eB® as the value at time ¢ of a monetary unit invested at time 0, where
B : R, — Ry is an increasing function with B(0) = 0. If B(t) is absolutely
continuous, then B(f) = fg’ &(v) dv for some function ¢ : R, — R, and 4(2)
is called the force of interest at time t or spot rate; see also Section 8.4.3.

As a first illustration of the effects of inflation and interest, we treat a
simple but useful example. Suppose that we have a risk reserve process with
initial risk reserve X (0) at time ¢ = 0 and with income rate z(t) € R
at time ¢ > 0 which can be deterministic or random. if we would ignore
the economic environment, then the risk reserve X(#) at time ¢ would be
given by X(t) = X(0) + fot z{v)dv for ¢ > 0. However in the model
with interest the income in the interval {v,v + dv) yields the risk reserve
z(v)exp(B(t) — B(v)) dv at time ¢. In this case the risk reserve X(t) at time
t is given by X (t) = X(0)eB® + [} z(v)eB®-B() du. If we want to consider
inflation and interest jointly, then we need to introduce the economic factor
e(t) = elW-B(®)_

11.4.2 A Discounted Risk Reserve Process

In prior chapters, we assumed that the effects of interest and inflation were
cancelling out. We now introduce a more general class of risk reserve processes
where this is no longer valid. Denote by e/*) the inflated monetary unit at
time ¢, and by €2(*) the value at time ¢ of a unit invested at time 0. Suppose
that the claim sizes have to be adjusted to inflation. Then the aggregate claim
amount process {X (¢)} is given by X (t) = Efi_(lt ) Use? (@) for ¢ > 0, where o
denotes the arrival epoch of the ith claim, and U; its size at time 0. Keeping
track of inflation, the premium rate also has to increase with inflation, i.e. the
premium rate at time ¢ is assumed to be Be’*). This leads to the following
risk reserve process {R'(t)} with

N{t)
¢ - t I(v) _ ¢ oI(o¢)
Rt)=u+ [ Be''Vdv Z Use .
0 i=1

Usually the insurer has to invest the surplus. Then the resulting risk reserve
process {R"(t)} is given by

¢ N{t)
R'(t) = ueB® 4 / BelM)eBO-BO) gy _ 3" y;l(0)B0I~Blon)
o

i=1



PIECEWISE DETERMINISTIC MARKOV PROCESSES 473

As the process {R"(t)} is a bit clumsy to analyse, we consider its discounted
version {R(t)} given by

t N(t)
R(t) = R"(t)e B® =y + / Be(w)dv - Y Use(ai), (11.4.1)
o i=1

where e(v) = e/(W/=B(¥)_ Notice that the event of ruin is the same for both
processes {R(t)} and {R"(t)}.

Assume as before that the claim arrival process is a compound Poisson
process. All stochastic processes considered in this section are defined on the
canonical probability space of the claim arrival process.

Recall that the function e(t) = ef(¥=B() is deterministic. In a nondeter-
ministic ecopomic environment, {e(¢)} is a stochastic process. We then take
{e(t)} independent of {N(¢)} and {U;} and condition on {e(t)}. As a last
constraint we assume that e(t) is continuous.

The process {X(t)} with X(t) = (R(t),t) is a PDMP. Here, I = {1},
Ci =R x R, ’\(y)t) = A and Q((y,t)aBl X BZ) = I(t € B2)FU(y - Bl))
where the external state is omitted. Since the deterministic paths between
claim arrival epochs have the form @(¢, (y, h)) = (y + f,f+h Be(v)dv,t + k) we
have, for a differentiable function g(y, k),

(Xo)(ot, (v, 1)) = 52 p(t, 4, W) + Bt + WYL (0, (0 W), (1142

Hence we find the following auxiliary martingale.
Lemma 11.4.1 Let 3 € R be fized and assume that 7y (se(t)) < oo for all .
t > 0. Then the process {M(t)} with

M(t) = exp (-—sR(t) - /ot B(se(v)) dv) (11.4.3)

s a martingale, where the function 8(s) is given by (11.3.2).

Proof Consider the PDMP {(R(t),#)}. Then, (11.4.2) implies that the
equation Ag = 0 for a function g fulfilling the conditions of Theorem 11.2.2
is

200,0) + 860 220,) + 2| oy - et ) AFuo) - 9t0,0) =0.

Trying a function of the form g(y,t) = a(t)e™*Y, where a(t) is positive and
differentiable, yields the equation

)~ — Boe(tlg(u,t) + A( [ " 90,8) dFu(v) - 90.8)) =0,
(1}
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or equivalently a'V)(t) + 8(se(t))a(t) = 0. The latter equation has the solution
a(t) = a(0)exp(— fot f(se(v)) dv), where we can assume that a(0) = 1.
Condition (a) of Theorem 11.2.2 is fulfilled since g(y,t) = a(t)e™ is
absolutely continuous, (11.2.5) is trivial since I' = @, and (11.2.6) follows
as in the case of the martingale given in (11.3.3). By Theorem 11.2.2, the
process given by (11.4.3) is a martingale. |

The ruin probability ¢(u) = P(inf;>¢ R(t) < 0) can be estimated using the
result of the next theorem.

Theorem 11.4.1 The following statements are true:
(a) If s > 0 is fized and iy (se(t)) < oo for allt > 0, then

w(u) < e~ ilzlgexp('/o‘t B(se(t))) dv) . (114‘4)

(b) Let v = sup{s > 0: sup,5q f; O(se(v))dv < oo}. Then for alle >0
lim (u)e™"9* =0. (11.4.5)
u—00

Proof Using Lemma 11.4.1 and Theorem 10.2.4 we get that the stopped
process {M(7(u) At),t > 0} is a martingale where 7(u) = inf{t > 0: R(¢) <
0}. Thus, for each z > 0

T(u)Az
e tu E exp(-—sR('r(u) Az) - / " B(se(v)) dv)
0

v

E [exp (——sR(r(u)) - /0 e B(se(v)) dv);r(u) < a:]

v

E [exp (-— /:M B(se(v)) dv) iT(w) < z]

v

inf exp(— /t 8(se(v)) d-v)P(‘r(u) <z),
0

0<t<z

where we used in the second inequality that R(r(u)) < 0. Let z — oo to
obtain (a). Further, (b) is trivial if v = 0. Now let 0 < € < ¥ and choose

s =7 —¢/2. Then ¢ = sup,5 exp (fot 0(se(v))dv) < 00 and P(u) < ce™%.

Thus limy, 0 ¥(w)e(?™% < limy_,o ce~%/2 = 0. O

11.4.3 The Adjustment Coeflicient

As before, the adjustment coefficient (or Lundberg ezponent) for a ruin function
Y¥(u) is a strictly positive number +y for which (11.4.5) and

ulgxgo P(u)elT+)% = oo (11.4.6)
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hold for all ¢ > 0. We leave it to the reader to show that this definition is
equivalent to the notion of the Lyapunov constent ~ defined for a ruin function
¥(u) by o (u)

. —logy(u
The constant v in Theorem 11.4.1b can only be called an adjustment
coefficient, if we prove that (11.4.6) is true for all ¢ > 0. However, this
requires additional assumptions on more specific economic factors as have
been discussed in Section 11.4.4.

Remarks 1. For the compound Poisson model without economical environ-
ment as well as for the Sparre Andersen model, Theorems 5.4.2 and 6.5.7
show that, under appropriate conditions, lim, .. ¥{u)exp(yu) = ¢ holds for
a certain positive finite constant ¢. Hence (11.4.5) and (11.4.6) are clearly
satisfied. In these two special cases the adjustment coefficient v turns out to
be the solution to equations (5.4.3) and (6.5.21), respectively.

2. The converse statement is, however, false. It does not follow from (11.4.5)
and (11.4.6) that the limit lim, o ¥(u) exp(yu) is positive. We illustrate this
by considering a compound Poisson model without economical environment,
i.e. e(t) = 1 for all £ > 0. Consider the function given in (11.3.2) and suppose
that for some vy > 0

f(s) <0ifs<v, B(s)=o00ifs>~, (11.4.8)

and that 8 (y) > 0. Then by Theorem 11.3.1 we have E(™MR(1) —u < 0.
Under P the ruin time r(u) is therefore finite and 7(u) — 0o as u — occ.
Thus by (11.3.10) we have lim,_, . ¥(u) exp(yu) = 0, from which (11.4.5)
immediately follows. To check that (11.4.6) is also true, we use the integral
equation (5.3.9) to obtain

oo
gt{)(u)e(”""e)“ > e(rHe)u f Fy(z)dz, u>0. (11.4.9)
u

However, if iy (7 + €) = oo for all € > 0, then the right-hand side of (11.4.9)
tends to infinity as u — oo; see Lemma 2.3.1. Using similar considerations the
reader can show that we can even drop the assumption 8(1)(y) > 0.

3. A similar situation holds if 6(7) = 0 for some v > 0, but 8(}(y) = 00. In
this case we have lim,,_, », ¥{u) exp(yu) = 0 by Theorem 5.4.2.

4. There exist models for the claim arrival process where the limit (u)e™ as
u — 00 does not exist or is infinite even if + is the adjustment coefficient.

11.4.4 Decreasing Economic Factor

We return to the discounted risk reserve process {R(t)} in the compound
Poisson model in an economic environment introduced in (11.4.1). We
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explicitly deal with two special cases where the function e(t) is decreasing
and where the constant v, occurring in Theorem 11.4.1, is the adjustment
coefficient. To show the latter, we only need to prove that in both cases (11.4.6)
also holds.

First we consider the case of discounting at constant rate § > 0, that is
e(t) = e~%. Assume that s* > 0 and that 8 > Auy, where s* = sup{s >
0 : My (8) < 00}, i-e. there exists an s > 0 such that #(s) < 0. Furthermore,
6(se~%) < 0 for all v large enough. Thus sup;, fot 8(se~%")dv < oo if s < 57

and sup,;s fot 0(se~%*}dv = oo if s > st. Hence it follows that v = s*. On
the other hand,

N(t)
P(u) = P(U{Z Uie %% > u+ %(1 - e“”)})
= ;V:;tl) 0o
> P(U{Z Uie™%% >y + g}) = P(Z Uie ™% >u+ 2—3) )
t>0 i=l i=1

If s > s*, then it is clear that Eexp(sY i, Uie %) = oo and by
Lemma 2.3.1 also im,_,o P(Zf:l Uie=%% > u + B/6)e®* = oc. Thus, we
have limy-,s ¥(u)e®™ = oo for all s > s*. This means that for e(t) = e~% the
constant 7y occurring in Theorem 11.4.1 is the adjustment coefficient.

We next consider a more general economic factor. Suppose that e{t) is
decreasing and denote by e(oo) the limit of e(t) as t — 0o, As before assume
that st > 0 and @(s) < O for some s > 0. Then v = sup{s € [0,s7] :
8(se(oc)) < 0}. In particular, if e(co) = 0 then v = st and, as in the special
case that e(t) = e~% for some 6§ > 0 which we discussed before, we get that
limy 00 ¥ (u)e™ = oo for s > st.

Assume now that v < s* and let ¥ < 8 < s*. Then, in the same way as in
the proof of Theorem 11.4.1, we get

oo E exp(—sR('r(u) Az)— /-of(u)/\z B(se(v)) dv)
= E [exp(—sR(T(u)) - /OTM f(se(v)) dv);'r(u) < .z']
+E [exp(—sR(z) - /03 B(se{v)) dv);r(u) > a:] .

The random variable in the second expectation is bounded by 1. Moreover,
this random variable tends to 0 with probability 1 as £ — oo since, for the
terms in the exponent, we have f: f(se(v))dv - oo and R(z) — co. By the
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dominated convergence theorem we get

(u)

e =E [exp(-sR(T(u)) - /0 9(se(s))ds);r(u) < oo] ,

and therefore

e—au

E (exp(—sR(r(w)) — [ 8(se(v)) dv) | 7(u) < 00)

Note that, using e(t) < e(0) = 1, we have for all u,y > 0

¥(u) = (11.4.10)

f°/°e () eslve(r(u)—v) 4 Fy; (v)

Y

Fy(y/e(r(w)))
o - T

o Jee@ TN AR e dFy (o)

E (e **) | 7(u), R(r(w) = 0) = y) =

z

Fy(y/e(r(u))) T 220 e=Fy(z)

and therefore

; e*Fy(x) 1

220 [ e dFy(v) E (exp(— [T 8(se(v)) dv) | 7(u) < o0)
i e**Fy(z) 1

>0 fz°° es? dFy (v) E (exp(—6(se(00))7(u)) | 7(u) < 00) ’

P(u)e™

v

2

where the last inequality follows from the fact that 8(se{o0)) > 0 for s > v,
e(v) > e(oo) for all v > 0, and consequently 0 < 8(se(00)) < O(se(v)).
Note that the infimum in this bound for i(u)e*® is positive. Furthermore,
limy— 00 E (7(¢) | 7(1) < 00) = o0, as can be shown as an exercise. It therefore
follows that lim, o ¥(u)e®™ = 0o and + is the adjustment coefficient.

Bibliographical Notes. An early paper on the compound Poisson model
within an economic environment is Gerber (1971). The martingale given
by (11.4.3) has been introduced by Delbaen and Haezendonck (1987). In
Schmidli (1994) the concept of PDMP has been applied to this model.
Bounds and asymptotic approximations to ruin probabilities in the case
of a constant interest force are obtained in Boogaert and Crijns (1987),
Boogaert, Haezendonck and Delbaen (1988), Gerber (1971), Harrison (1977a),
Kliippelberg and Stadtmiiller (1998), Segerdahl (1942, 1954), Sundt and
Teugels (1995, 1997) and Vittal and Vasudevan (1987). In the literature,
further classes of modified risk reserve processes with a compound Poisson
claim arrival process have been studied. For the case where the premium rate is
a function of the current reserve, see, for example, Asmussen and Bladt (1996),
Davidson (1969), Harrison (1977a), Petersen (1990) and Taylor (1980). It is
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clear that also in this case the risk reserve process can be described as a
PDMP. For risk processes where the limit lim,_,o ¥(u)e™ does not exist or is
infinite even if v is the adjustment coefficient, see, for example, Embrechts and
Schmidli (1994). Asmussen and Nielsen (1995) considered the notion of a local
adjustment coefficient for ruin probabilities in the compound Poisson model
with state-dependent premiums. The probability of ruin under different types
of dividend barriers is studied in Boogaert, Delbaen and Haezendonck (1988),
Dickson (1991), Dickson and Gray (1984), di Lorenzo and Sibillo (1994),
Gerber (1979, 1981) and Vittal and Vasudevan (1987). The equivalence
between characteristics of storage and risk processes with state-dependent
release and premium rates, respectively, has been discussed in Asmussen
and Petersen (1988) and Harrison and Resnick (1978), for example. For
relationships between reliability and risk models, see Aven and Jensen (1998).

11.5 EXPONENTIAL MARTINGALES: THE SPARRE
ANDERSEN MODEL

In this section we show how to change non-Markov risk processes into Markov
processes by adding supplementary components to the process. We start
with the previously discussed Sparre Andersen model. The Markovization of
stochastic processes in other risk models will be studied in Chapter 12. In the
case of the Sparre Andersen model we consider two types of supplementary
components and obtain the corresponding martingales. The first approach
is natural, but needs an additional assumption on the distribution of inter-
occurrence times. The second type of supplementary components easily leads
to simple martingales. This preferred approach is considered in Section 11.5.3.

Assume that the claim counting process {N(t)} is a renewal process where
the inter-occurrence times are denoted by T},, and the claim arrival epochs by
On = 3.5y Ti, where gg = 0.

The (continuous-time) risk reserve process { R(¢)} is not a Markov process,
unless the inter-occurrence times are exponentially distributed. But the reader
can show that considering the process { R(t)} only at the claim arrival epochs
o, yields a (discrete-time) Markov process. Furthermore, the behaviour of
{R(t)} is piecewise deterministic in the intervals between claim arrival epochs.
For the Markovization of {R(t)} we therefore have to add information on
the neighbouring claim arrival epochs. The two possibilities mentioned above
consist of either adding information on the arrival epoch of the last claim or
to include information on the arrival epoch of the next claim. We only discuss
the martingales resulting from these two ways of Markovization. To prove
Lundberg bounds or the Cramér-Lundberg approximation, one can proceed
as in Section 11.3.
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11.5.1 An Integral Equation

We begin with an auxiliary result on the solution to an integral equation. The
latter is similar to the equation (6.5.21) that defines the adjustment coefficient
in the Sparre Andersen model.

Lemma 11.5.1 Let s € R such that my(s) < oo. Then, the following
statements are true:
(a) There exists at most one solution 8 = 6(s) to the equation

iy (s)ir(@ + Bs) = 1. (11.5.1)

More specifically, if s > 0 then there exists a unique solution 6(s) to (11.5.1).
(b) Let st = sup{s > 0: mip.(s) < oc} > 0. Then, the function s — 6(s) is
strictly convez on [0,s%) provided not both U,, and T, are deterministic. In
any case, §0(0) = Auy — B, where A = u3’.

Proof (a) The function Ir(s) is monotone. Thus, (11.5.1) admits at most one
solution. Assume s > 0. Because the function iz : [0,00) — (0, 1] is one-to-
one and iy (s) > 1, there exists a unique solution 2(s) to Ir(2) = (1hy(s))~1.
Thus 8(s) = z(s) — Bs is the unique solution to (11.5.1).

(b} By the implicit function theorem, see Hille (1966), 8(s) is differentiable
on [0,5%) and has the derivative

g ()T (0(s) + Bs) _
g (8)i (8(s) + Bs)

For s = 0, this gives 8(1)(0) = Auy — 8. Moreover, it follows that 8(s) is
infinitely often differentiable. Let us rewrite (11.5.1) in the form log iy (s) +
logiT(6(s) + 8s) = 0. Differentiating twice, we find

(log i ()2 + (80 (s) + 8)2(10gir ()|, _y (41150
+6%)(5)(1og ir (v)) ], _p(py450 = 0-

We first observe that 8(s) + 8s > 0 for s € [0,s%) and (logir(v))V) =
f(qf) (v)/ir(v) < 0 for v > 0. The second derivative of logy(s) can be
represented as the variance of an associated distribution, see Lemma 2.3.2,
and is therefore nonnegative and strictly positive provided U, is not deter-
ministic. Note that (logiz(v))® = (logrhr(—v))® > 0. Thus, in the same
way as before, we can conclude that (loglr(v))® | v=b(s)+8s > 0 if T}, is not

deterministic. From (11.5.2) it follows that 8(1)(s) + 8 # 0. If we assume that
at least one of the random variables U, and T, is not deterministic we find
that 8(®(s) > 0. 0

9(1)(8) =

(11.5.2)
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11.5.2 Backward Markovization Technique

We now consider the backward Markovization technique. Let T'(t) = t —ony)
be the time elapsed since the last claim arrival. Often T'(t) is called the age
of the inter-occurrence time at time £. It is not difficult to see that the process
{X(t)} with X(t) = (R(t),T'(t),t) is a PDMP. The only problem is to find
the jump intensity A(z). Observe that A(z) only depends on the component
w of z = (y,w,t) and so write A(w) instead. From the construction of the
PDMP {X(t)}, it follows that

Fr(t) = exp(— /Ot Alw) dw); (11.5.3)

see Section 11.2.2. This is only possible if the distribution of the inter-
occurrence times T, is absolutely continuous. We therefore have to assume
that Fr is absolutely continuous with density fr. Differentiating (11.5.3) we
obtain .

Alw) = My, w, t) = fr{w)/Fr(w). (11.5.4)
To determine the other characteristics of the PDMP {X(t)} is left to the
reader. We find the following martingale.

Theorem 11.5.1 Let s € R such that 7y (s) < co and the solution 6(s) to
(11.5.1) exists. Then, the stochastic process {M(t),t > 0} with

(B +6)T' (1) oo

—_— —(8(s)+Bs)v —aR(t) ,—0(s)t
= e T(v)dve e
Fr@®) Jro fr(v)

M(t) =y (s)
(11.5.5)
s a martingale.
Proof With regard to Theorem 11.2.2 we have to solve the partial differential
equation
d 0 0
il ¢ — —_
59w w,t) +ﬁayg(y,w, )+ 5-9w,)
Jr(w) / * 4 _
e (] 9= v0.0dFu0) - gy w,0) =0, (1156)

where we used the representation formula (11.5.4) for the jump intensity A(w).
The general solution to this equation is hard to find. Motivated by the results
obtained in Section 11.3.1 for the compound Poisson model, we try a function
of the form g(y, w,t) = a(w)exp(—sy — 6t). Then

—fa(w) — Bsa(w) + aM(w) + (Fr(w))~! fr(w)(a(0)my(s) — a(w)) =0,

which has the solution

aw) = (Fr(w) e+ (aOymu(s) | " e @49 fr(v) du + o)

w
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for some constant ¢ € R. It is possible {but not trivial) to show that condition
(11.2.6) cannot be fulfilled if ¢ # 0, hence choose ¢ = 0. Letting w = 0 yields
the equation

a(0) = a(0)hy (s)ir(6 + Bs) ,
which shows that (11.5.1) has to be fulfilled. We can assume a(0) = 1. Thus

e(0(3)+ﬂa)w 00
9y, w,t) =y (s)—=——— | e COHN s ) due~2v-00)  (115.7)
FT(’U)) w
The verification that this function g satisfies the conditions of Theorem 11.2.2
is left to the reader. O

11.5.3 Forward Markovization Technique

Next to the approach discussed in Section 11.5.2, we consider the alternative
forward Markovization technique. Let T(t) = ox(¢)41 —t be the time remaining
to the next claim arrival and which is also called the ezcess of the inter-
occurrence time at time ¢; see Section 6.1.2. The use of the stochastic
process {T(t)} seems to be rather strange because {T'(t)} is not measurable
with respect to the natural filtration of {R(t)} unless the inter-occurrence
times are deterministic. The natural filtration of the PDMP {X(¢t)} with
X(t) = (R(t),T(t),t) is therefore different from the natural filtration of
{R(t)}, and the process {T'(t)} is not observable in reality. We will, however,
see that the approach considered in the present section is much simpler than
that of Section 11.5.2.

First note that A{y,w,t) = 0 because claims can only occur when T'(t)
reaches the boundary 0. The active boundary consists of all points ' =
{(,0,) : (v,t) € R’}

According to Theorem 11.2.2, we will arrive at a martingale of the form
{g(R(t),T(t),t),t > 0} if the partial differential equation

) 8 8 _
(.Ttg(y, w,t) + ﬂggg(y,w, t) - 6—wy(y, w,t) =0 (11.5.8)

is satisfied together with the boundary condition (11.2.5)

o0 o
9(y,0,t) = / / 9(y — v,w,t) dFr(w)dFu(v). (11.5.9)
o Jo
Note that the differential equation (11.5.8) is much simpler than (11.5.6).
But we get the additional integral equation (11.5.9).

Theorem 11.5.2 Let s € R such that 1hy(s) < oo and the solution (s) to
(11.5.1) ezist. Then the stochastic process {M(t),t > 0} with

M(t) = e~ (B()+82)T ()= sR{t) g~ (e}t (11.5.10)
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is an {F }-martingale.

Proof We solve (11.5.8) and (11.5.9) by a function of the form g{y,w,t) =
b(w)e~*¥e~ 9%, Plugging this function g(y,w,t) into (11.5.8) yields —8b(w) —
Bsb(w)—g'(Y (w) = 0 or equivalently b(w) = b{0)e~9+#9)¥_ Note that b(0) = 0
would imply g(y,w,t) = 0, and hence we put 5(0) = 1. Substitution of this
solution to (11.5.8) into (11.5.9) shows that (11.5.1) is satisfied. The remaining
conditions of Theorem 11.2.2 can easily be verified by the reader. O

Theorem 11.5.2 amply shows the advantages of the forward Markovization
technique. First of all, no condition on the distribution of inter-occurrence
times is needed. Secondly, it is much easier to arrive at the martingale in
(11.5.10) than at that of Section 11.5.2.

Bibliographical Notes. The Sparre Andersen model was first investigated
by means of PDMP in Dassios (1987); see also Dassios and Embrechts (1989)
and Embrechts, Grandell and Schmidli (1993).



Stochastic Processes for Insurance and Finance
Tomasz Rolski & Hanspeter Schmidli
Copyright ©1999 by John Wiley & Sons Ltd,

CHAPTER 12
Point Processes

In earlier chapters of this book we introduced four classes of claim arrival
processes in continuous time: homogeneous Poisson processes and compound
Poisson processes in Section 5.2, renewal point processes in Section 6.1,
and mixed Poisson processes in Section 8.5. For each one of these claim
arrival processes, at least one of the following stationarity properties holds:
the claim counting process {N(t),t > 0} has stationary increments or the
sequence {T,n > 1} of inter-occurrence times is stationary. The point
processes considered in Section 12.1 provide a general model for claim arrival
processes with such stationarity properties. In Section 12.1.4 we generalize
these models further by considering marked point processes, giving us the
possibility to include the claim sizes into the model as well. In Section 12.2 we
extend the class of homogeneous Poisson processes in a different direction by
introducing a notion of nonhomogeneity. The corresponding claim counting
process {N(t)} has independent but not necessarily stationary increments.
Nonhomogeneous Poisson processes are an appropriate tool to define Cox
processes, a wider class of claim arrival processes that can be seen as a mixture
of nonhomogeneous Poisson processes. For this reason Cox processes are often
called doubly stochastic Poisson processes. We also discuss other constructions
of new point processes obtained by several kinds of compounding, in particular
superposition and clustering. This general point-process approach is later
combined with techniques from piecewise deterministic Markov processes and
subexponential distributions in order to study ruin probabilities.

In this chapter, a point process is usually understood to be a two-sided
sequence {op.n € Z} of random variables, where ... < o1 < 09 <
0 < oy < .... Furthermore, we consider the two-sided infinite sequence
{T,,n € Z} of inter-occurrence times T, = ¢, — 0,—1 where we interpret
{Ta,n < 0} and {T,,n > 0} as the sequence of past and future inter-
occurrence times, respectively. We also consider the random counting measure
{N(B),B € B(R)} with N(B) = }_;.» K(o; € B). Notice that there is a
one-to-one correspondence between {o,} and {N(B)}. The elements of the
sequence {0y} are called claim arrival epochs but we will also speak of claim
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arrival points, or briefly of points of the point process {o,}.

The introduction of point processes and their corresponding random
counting measures on the whole real line rather than on the more usu-
al nonnegative halfline, is particularly useful when studying stationarity
properties of point processes.

12.1 STATIONARY POINT PROCESSES

In this section we study point processes having general stationarity prop-
erties. Hitherto we have usually assumed that the sequence of inter-occur-
rence times {T,,} consists of independent and identically distributed random
variables. However, we met two exceptions: the delayed renewal point process
considered in Section 6.1.2, where the distribution of T} could be different. from
the distribution of 75,T3,..., and the mixed Poisson process considered in
Section 8.5.5, where the inter-occurrence times T1, T, ... were exchangeable.
It turns out that these two point-process models can be embedded into a
general stationary framework.

12.1.1 Definition and Elementary Properties

We will discuss two kinds of stationarity. In the first case we assume that
{T»} is stationary, i.e. for all n > 1 and k € Z the (joint) distribution of the
random vector (Ti4k,.-.,Tatk) does not depend on k. We also assume that
0 < ET < oo. For simplicity we suppose that the T, are positive random
variables, that is P(T = 0) = 0.

If there is a point at 0, then we have o, = z:l:l T;forn>0,00 =0,
and o, = ~ Yo, 4+1 L for n < 0. If {T},} is stationary and if there is a claim
arrival at the origin, we call {o,n € Z} a Palm-stationary point process.

However, from the insurer’s point of view, it might sometimes be more
convenient to put the origin of the time axis differently, so that this choice is in
a sense “independent from data”. The origin is then put “at random” between
two consecutive claim arrival epochs. This alternative model of stationarity of
a claim arrival process is defined with the help of the random counting measure
{N(B)} corresponding to {o,}. Assume that the distribution of {N(B)} is
invariant under (deterministic) time shifting, that is, for B+t = {v+t, v € B},

{N(B+t),BeBR)} £ {N(B),B € BR)} (12.1.1)

for all ¢t € R. This means in particular that for all n > 1, ¢t € R
and bounded B,...,B, € B(R), the distribution of the random vector
(N(By +1t),...,N(B, +t)) is independent of ¢. Then {N(B)} is called a
time-stationary counting measure and the sequence {o,} corresponding to
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{N(B)} is called a time-stationary point process. In this case, the counting
process {N(t),t > 0} with N(¢) = 372, I(¢; < t) has stationary increments.
We assume that the expectation A = E N((0, 1]) is positive and finite and we
call A the intensity of {o,}. We leave it to the reader to show that, for each
time-stationary counting measure {N(B)},

EN(B) = \|B| ' (12.1.2)

for all bounded B € B(R), where |B| denotes the Lebesgue measure of B. In
particular, for each ¢t € R we have P(N({t}) > 0) = 0.

Examples 1. Homogeneous Poisson process. When we introduced the
continuous-time risk model in Section 5.1.4 we assumed for convenience that
oo = 0. However, in the definition of the counting process {N(t),t > 0}
given in (5.1.13) we did not take this claim arrival into consideration. In the
case of a homogeneous Poisson process, see Section 5.2.1, we assumed that
the sequence {T,,n > 1} of inter-occurrence times consists of identically
(exponentially) distributed random variables. Furthermore, we showed in
Theorem 5.2.1 that the corresponding counting process {N(t),t > 0} has
stationary increments. This is the reason that a homogeneous Poisson point
process {o,,n > 1} on the positive halfline, where o, = Y. ; T, can easily
be extended to a time-stationary model on the whole real line. It suffices to
assume that —gg,00 — 06-1,0_1 — 0_2,... i8 a sequence of independent and
identically (exponentially) distributed random variables which is independent
of {on,n > 1}. Anyhow, at the same time the sequence {T,,,n > 1} consists
of identically distributed random variables and therefore can be seen as the
restriction to the positive halfline of the Palm version of the time-stationary
Poisson model.

2. Mized Poisson process. By the result of Theorem 8.5.3, the mixed Poisson
process introduced in Section 8.5.1 is a Palm model. However, as in the case
of a homogeneous Poisson process (see Example 1 above), we obtain a time-
stationary model if we cancel the point at the origin. The fact that by simply
adding a point at the origin one can pass from a time-stationary model to a
Palm model is characteristic for (mixed) Poisson processes. We return to this
later in Section 12.2.3; see Theorem 12.2.7.

3. Renewal process. Here we have to distinguish more carefully between the
time-stationary model and the Palm model, unless we consider the special
case of a homogeneous Poisson process. By Theorem 6.1.8 we arrive at a
time-stationary model if the distribution of T} is chosen according to (6.1.15).
On the other hand, T} must have the same distribution as 73,T3,... to get a
Palm model. Consider now a Palm renewal point process on R. In this case,
{Tn, n € Z} is a sequence of independent and identically distributed random
variables. We denote the common distribution function by F(x). To obtain a
time-stationary renewal point process on R we choose 6g,0; to have a joint
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distribution defined by P(—ao > z,01 > y) = Fé(z + y) for z,y > 0. We
choose 09 —0_1,0-1 — G—3,... and 02 — 01,03 — 02,... to be independent
and identically distributed and also independent of (0o, 01). It is left to the
reader to show that the corresponding counting measure {N(B), B € B(R)}
is time-stationary.

12.1.2 Palm Distributions and Campbell’s Formula

There is a one-to-one correspondence between time-stationary and Palm
models of point processes. To show this, it is convenient to use the repre-
sentation of point processes as counting measures and to consider them on a
canonical probability space.

In this section (2 is the set of all integer-valued measures w : B(R) —
INU {00} such that w(B) < oo for all bounded B € B(RR). Furthermore, let F
be the smallest o-algebra of subsets of {2 that contains all events of the form
{w : w(B) = j}, where B € B(R), j € IN. The canonical representation of a
point process is then given by the triple (22, F, P), where P is a probability
measure on F. Thus, we identify a point process with its distribution PP (on the
canonical probability space). In what follows we only consider simple point
processes, that is P(w : w({t}) > 1 for some t € R) = 0. Furthermore, in
accordance with definition (12.1.1), we say that P is time-stationary if

P(A) = P(T, A) (12.1.3)

for all A € F, ¢ € R where the shift operator T, : @ — Q is defined by
(Tew)(B) = w(B + z). It is left to the reader to show that for each time-
stationary distribution P we have

Pw: w(R_) =w(Ry) =0} U{w:w(R)=0})=1. (12.1.4)
Thus, if
P :w(R)=0)=0, (12.1.5)

then there are infinitely many points on both halflines.

In the rest of this section we take (12.1.3) and (12.1.5) under the probability
measure PP for granted. Moreover, the intensity A = { w((0, 1])P(dw) is taken
to be positive and finite. For brevity, we call P a stationary distribution. The
following symmetry property of stationary distributions is often useful.

Lemma 12.1.1 Let g: @ x R?2 = R be a measurable function. Then

/,R/Q/,R9(Tz“”“”’y)‘”(fh’)l’(dw)dy=/IR fg /m 9(Taw, y, 2)w(de)P(dw) dy.
(12.1.6)
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Proof From the stationarity of P we have

J[[s@0.5,p000P @) ay

///9(T1+yw,a:, y)(Tyw)(dz)P(dw) dy
[Tz - vapwtsarparan

In the same way we get

/ / / (T, y, 2)w(dz)P(dw) dy = / / / (T o097 — y)o(dz)P(dw) dy

This gives (12.1.6) since forallz € R and w € Q

/f(Tzw,y,z -y)dy = /f(Tzw,x -y.y)dy
which follows from the substitution ¢ = z — y. o

We are now ready to introduce the Palm-stationary model corresponding
to a time-stationary point process on the canomical probability space. For
each B € B(R) such that 0 < |B| < oo we define the probability measure
P°:F—[0,1) by

oqy = L 7
P°(4) = 75 fn /B Tow € Awldz)P(dw), A€F. (12.1.7)

Furthermore, using Lemma 12.1.1, we can show that the value P?(A4) does
not depend on the choice of the set B. Indeed, for g(w,z,y) = I(w € A)X(z €
B)I(y € (0,1]), equation (12.1.6) gives

/Q fB UT,w € A)w(de)P(dw) = |B| /Q /w,u LT € A)w(de)P(dw).

The probability measure P° defined in (12.1.7) is called the Palm distribution
corresponding to the time-stationary distribution P. It is not difficult to see
that, under P°, with probability 1 there is a point at the origin, that is
P%(0%) = 1, where 2° = {w : w(R_) = w(R4) = 0o,w({0}) > 0}. Indeed,
this immediately follows from (12.1.7) if we put A = Q° in (12.1.7) and use
(12.1.4) and (12.1.5). However, in some cases it is not very convenient to have
this point at the origin. Besides P° one can still consider another type of a
Palm distribution given by the probability measure P': F 2 [0,1] with

1
P(A) = B /ﬂ /B HT,w -6 € Aw(dn)P(dw), AeF, (12.18)

which is called the reduced Palm distribution.
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We now show that under the Palm distribution P°, the inter-occurrence
times T, = 0y — 0yn_; form a stationary sequence. Denote by 8 : Q° — Q°
the pointwise shift defined by Sw = T,, (,)w; F° = FNQ°.

Theorem 12.1.1 For each A € FP,
P°(A) = PY(S4). (12.1.9)
Proof Let t > 0 and B = (0,t]. Then, (12.1.7) gives

[P°(4) - P°(S4)|
1 N ,
S % / |3 (1T oo € 4) = 1Ty € 4))| Pldw) < -
1=1

Thus, (12.1.9) follows since ¢ can be taken arbitrarily large. o

The following relationship between P and P° is called Campbell’s formula.
It is rather useful when determining characteristics of functionals of stationary
point processes, in particular when computing the ruin probability 4(0) in the
case of an arbitrary time-stationary claim arrival process; see Section 12.1.5.

Theorem 12.1.2 For each measurable function g: Q@ xR - Ry,

LLg(w,z)dzPO(dw)z%\_/‘I/IRg(Tzw,z)w(dz)P(dw). (12.1.10)

Proof We write (12.1.7) in the form

// I(we A,z € BydzP’(dw) = ;// I(T,w € A,z € B)w(dz) P(dw).

This shows (12.1.10) for functions of the form g(w,z) = I{w € A,z € B).
Thus, (12.1.10) also holds for linear combinations of such functions and, by
the monotone class theorem, for each measurable g: 2 x R = R,.. a

In some cases a dual version of Campbell’s formula (12.1.10) is even more
convenient.

Corollary 12.1.1 For each measurable function g: 2 x R = R,

/Q/l;g(T_,w,z)dzPo(dw)=;LAg(w,x)w(dz)P(w). (12.1.11)

Proof The result follows from (12.1.10) applied to the function ¢'(w,z) =
9(T-gw, z). o

This in turn leads to the following inversion formula which expresses P in
terms of P°.
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Corollary 12.1.2 Let g: 2 x R - R, be a measurable function with
Y 9w, onw) =1 (12.1.12)
ifw(R) >0, and g(w,.z) =0 ¢f w(R) = 0. Then, for each A€ F
P(A) =\ / / KT_,w € A)g(T—,w,z) dz P%(dw). (12.1.13)
a/m

Proof Suppose g fulfils (12.1.12) and put ¢'(w,z) = I(w € A)g(w,z). Then,
(12.1.13) immediately follows from (12.1.11). mi

Remarks 1. To give an example fulfilling (12.1.12), consider the function
~_J 1 fr=0(v),
9(w,z) = { 0 otherwise.
In this case, (12.1.13) takes the form

~o-1{w)
P(4) =) /Q /0 I(T_,w € A)dz P°(dw). (12.1.14)

Thus, using (12.1.9) we get that

o1 (w)
P(4) = A /9 /o L(T.w € A)de PO(dw) (12.1.15)

and in particular, for A = Q,
E%, = 7! (12.1.16)

where E° denotes the expectation under P°. This shows that, starting from
the Palm model P? with stationary inter-point distances and with a point
at the origin, the time-stationary model P given by (12.1.15) is obtained by
putting the origin “at random” between gp = 0 and the next claim arrival
epoch o3.

2. The formulae (12.1.7) and (12.1.15) constitute a one-to-one relationship
between time-stationary and Palm distributions of point processes. To see this,
start from an S-invariant distribution Q on F° with 0 < f 03 (w) Q(dw) < oo
and put

o™ 1T € A)dzQ(aw)

Jo 01 (w) Q(dw) (12.1.17)

P(A) =
Defining P? by (12.1.7), we have
P°=Q. (12.1.18)

Notice that by stating (12.1.18) we implicitly assume that the distribution P
defined in (12.1.17) is T-invariant. We leave it to the reader to prove this.
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12.1.3 Ergodic Theorems

The right-hand side of (12.1.7) can be interpreted as a ratio of two intensities.
The integral in (12.1.7) is the partial intensity of those points in B = (0,1]
from whose perspective the shifted counting measure T,w has property A.
This partial intensity is divided by the total intensity A of all points in the
unit interval (0,1]. Thus, taking PP as the basic model, P°(4) can be seen
as the pointwise averaged relative frequency of points with property A. This
interpretation of P® can be stated more precisely if the stationary distribution
P is ergodic. One possible definition of ergodicity is given by the following
nondecomposability property: P is ergodic if each representation

P=pP +(1-p)P", 0<p<1 (12.1.19)

of P as a mixture of stationary distributions P',P" on F must be trivial in
the sense that either P’ = P” or p(1 — p) =

The following basic results of ergodic theory are useful. For their proofs we
refer to Breiman (1992), Krengel (1985) and Tempelman (1992). Let (2, F, P)
be an arbitrary probability space and S : 2 — Q a measure-preserving
mapping, i.e. P(S7'4) = P(A) for all A € F, where S7'A = {w € Q:
Sw € A}.

Theorem 12.1.3 Let g : Q@ — Ry be measurable such that [ g(w)P(dw) < oco.
Then the limit
= lim = Z 9(S*w) (12.1.20)

n—oo 7}

exists and the limit function § : Q@ — Ry is invariant with respect to S,
i.e. §(Sw) = g(w) for all w € N. Moreover, [ G(w)P(dw) < oo and

lim / | 1 i g(S*w) - g(w)}P(dw) =0. (12.1.21)
n—o00 n =1

The first part of Theorem 12.1.3 is called the individual ergodic theorem,
whereas the second part is called the statistical ergodic theorem. We
also observe that there are several equivalent definitions of ergodicity, as
summarized in the following lemma. In its statement, T C F denotes the
sub-o-algebra of invariant events, i.e. SA = A if and only if A € T.

Lemma 12.1.2 The following statements are equivalent.

(a) Each representation of P as a mizture of S-invariant probability measures
is trivial, that is, (12.1.19) implies that either P' = P" or p(1 — p) =

(b) P(A)(1 —P(A)) =0 for each AeT.

(c) E{g | Z) = Eg for each measurable function g: Q@ - R, with Eg < oo.
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An immediate consequence of Theorem 12.1.3 and Lemma 12.1.2 is the
following result. If P is ergodic, then for the limit function § in (12.1.20)
we have

§w)=Eg. (12.1.22)

Furthermore, the following continuous-time analogues to Theorem 12.1.3 and
Lemma 12.1.2 are useful. Instead of a single measure-preserving mapping we
then consider a whole family T = {T';,z € R} of such mappings T, : @ = 2,
where

e P(4)=P(T,A)forallz € R, 4 € F,
e T,T, =T,y forallz,y € R,
e {(w,z): Trwe A} € FOB(R) forall A € F.

The quadruple (2, F,P,T) is called a dynamical system in continuous time.
Let Z C F denote the sub-o-algebra of T-invariant sets,ie. A€ ZifT:A=4
for all z € R.

Theorem 12.1.4 Let g : Q@ — R be measurable such that [ g(w)P(dw) < .
Then the limit

_ 1t
glw) = ¢11)I§>f/0 9(T w)dz (12.1.23)
erists and
§=E(g|7). (12.1.24)
Moreover, [ §(w)P(dw) < co and
t
Jim / |% / o(T2w) dz — §(w)| P(dw) = 0. (12.1.25)
00 0

Lemma 12.1.3 FEach representation of P as a mizture of T-invariant
probability measures is trivial if and only if one of the conditions (b) or (c) of
Lemma 12.1.2 holds.

We now return to the interpretation of the Palm probability P?(A4) as the
relative frequency of points with property A.

Theorem 12.1.5 Let P be a time-stationary distribution on the cenonical
point-process space. Assume that P is ergodic. Then

. -~1 _
Jim t71w((0,8]) = A (12.1.26)
and for each A€ F
_1 I(T.w € A)w(dz) = P°(4). (12.1.27)

lim
t=o0 w((0,1]) 0,9
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Proof Using the inequalities
t—1 ¢
[ @i swon < [ @oo e,

the existence of the limit in (12.1.26) is obtained from (12.1.23) for g(w) =
w((0,1]). Taking into account that by Lemma 12.1.3 this limit is constant,
(12.1.24) implies (12.1.26). Using a similar argument, the limit in (12.1.27)
follows from Theorem 12.1.4 and Lemma 12.1.3. u]

Theorem 12.1.5 provides the motivation to say that, in the ergodic case,
P%(A) is the probability of the event A seen from the typical point of a time-
stationary point process with distribution P. The next result shows that, in
order to have ergodicity of a point process, it is immaterial whether we work
with the time-stationary model or with the Palm model.

Theorem 12.1.8 The time-stationary distribution P is T-ergodic if and only
if the corresponding Palm distribution P° is S-ergodic.

Proof Assume first that P is not ergodic. Thus there is a nontrivial
representation of P as a mixture P = pP’' + (1 — p)P” of two stationary
distributions ', P" with intensities X', A\, respectively. We leave it to the
reader to show that then

pX

_ (1-p)"
PN+ (1=

0 —————————————————————
P pN + (1 —p)a

(P)° + (P")°.
This means that P® can also be represented as a nontrivial mixture (of Palm
distributions). Thus, PP® cannot be ergodic. Conversely, if P? is not ergodic,

then P? can be represented as a nontrivial mixture of the form
PP =pQ +(1-p)Q", 0<p<l1 (12.1.28)

for two S-invariant probability measures Q' and Q" such that 0 < [0, dQ’ <
00, 0 < [0;dQ" < oo. The construction given in (12.1.17) leads to a T-
invariant probability measure. Hence, if we apply the transformation (12.1.15)
to both sides of (12.1.28) we see that P can be represented as a nontrivial
mixture of T-invariant measures. a

Corollary 12.1.3 A Palm renewal point process is S-ergodic. Moreover, a
time-stationary renewal point process is T-ergodic.

Proaf The 0-1 law of Kolmogorov implies that a Palm renewal point process
fulfils condition (b) of Lemma 12.1.2. Hence, such a process is S-ergodic.
Ergodicity of the corresponding time-stationary renewal point process now
follows from Theorem 12.1.6. ]
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Notice that a mixed Poisson process is not ergodic unless the mixing
distribution is concentrated at a single point. This immediately follows from
Lemma 12.1.3 and from the defining equation (8.5.1) of mixed Poisson
processes. Further examples of ergodic point processes will be discussed in
Section 12.2.

We conclude this section with a property on events, invariant under time
shifts T'5.

Theorem 12.1.7 Let P be a T-ergodic distribution on the canonical point-
pro'ocess space and let A € I be a T-invariant set. Then, P(A) = 1 implies
P°(4) = 1.

Proof Since A is T-invariant, the assertion follows from (12.1.7) and

f L(Tow € A)w(dz) = w(B)I(w € A).
B

Since the event {w : limy_oo 7 w((0,12]) exists} is T-invariant, Theo-
rem 12.1.7 entails that, in the ergodic case, the law of large numbers (12.1.26)
also holds under P°. By Corollary 12.1.3, this can be seen as a generalization
of the law of large numbers which had been derived in Theorem 6.1.1a for
(nondelayed) renewal point processes. Other interesting results, whose proofs
are based on Theorem 6.1.1a, remain valid in the general ergodic framework.
As a specific example we mention the law of small numbers staied in Theo-
rem 6.1.3.

12.1.4 Marked Point Processes

Marked point processes are useful when we want the model to include other
information about the claims like their size or type. We first generalize the
canonical probability space introduced in Section 12.1.2. Let K be a complete
separable metric space, for example K = RY, and let K be the o-algebra
of Borel sets in K. Let Qx denote the set of all integer-valued measures
w: B(R)®K — INU{oco} such that w(B x K) < oo for all bounded B € B(R).
Furthermore, let Fi be the smallest o-algebra of subsets of g containing
all events of the form {w : w(B x C) = j}, where B € B(R), C € K, j € IN.
Note that there is a one-to-one correspondence between the counting measures
w € Qx and the set of sequences {{on(w), Xn(w)),n € Z}, where the mark
X, of o, is a random variable with values in K.

The canonical representation of a marked point process is given by the
triple (Qk,Fk,P), where P is some probability measure on Fx. As in
Section 12.1.2, we only consider simple marked point processes, for which
Pw : w({t} x K) > 1 forsomet € R) = 0. We call P time-stationary
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if (12.1.3) holds for all A € Fk, z € R, where now the shift operator
T, : Qx — Qg is defined by (T,w)(B x C) = w((B + z) x C), i.e. the
marks are not changed under the time shift T,.

In what follows we assume that P is a time-stationary distribution on Fk.
All notions and results stated in Sections 12.1.2 and 12.1.3 can be transferred
into the framework of marked point processes. In particular, for each C € K
we cousider the intensity A(C) = [w((0, 1] x C)P(dw) of points with a mark
from C. If A(C) > 0, then we assume P(w : w(R x C) = 0) = 0. In the
same way as in (12.1.7), for each C € X with A(C) > 0, we introduce the
(conditional) Palm distribution Pc by

1
Pe(d) = 575 /Q ) /(O,l] L(Tw € Aw(dz x C)P(dw), A€ Fx.

(12.1.29)
Then, Pc(Q%) = 1, where

0 = {w: wR- x C) = w(Ry x C) = o0, w({0} x C) > 0}

and Pc(A) = Po(ScA), A € FZ, where F§ = Fx NQE, S¢ : O - 0%
with Scw = T4, (,)w and oc(w) = min{t > 0: w({t} xC) > 0}. Furthermore,
for each C € K with A(C) > 0, we introduce the (conditional) Palm mark
distribution Do by

Dc(C') = (ACHINC), € eKo (12.1.30)

where K¢ = KNC. I C = K, then we use the notation D® = Dg and
P° = Pg. It is clear that D¢ can be used to establish a relationship between
Palm distributions taken with respect to different mark sets.

Theorem 12.1.8 Let C,C’ € K such that A(C),MC’) > 0 and C' C C.
Then,

Pci(A) = (De(C)) 'Pe(AN{Xe € C'}), Ae Fg, (12.1.31)

and, in particular,

Dc(C') =Pc(Xo € c". (12.1.32)
Proof From (12.1.29) and (12.1.30) we get
Po(d) = ﬁ / L(T,w € A)w(dz x C')P(dw)
_ AC) 1 , ' ‘
= /\—-(C_’jz\—(?)/ I(T,w € A, Xo(T,w) € C"w(dz x C)P(dw)

Po(AN{Xo € C'})
Dc(CH : o
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Analogously to (12.1.10) and (12.1.11), for each C € K such that A(C) > 0

and for each measurable function g : %x x R — R.., we have the Campbell
formulae

1
/{;K /;‘g(w,a:) dzPc(dw) = m/n,( /]Rg(Tzw,:c) w(dz x C)P(dw),

(12.1.33)
and
/ﬂ ) /;R (T -, z) dz Pe(dw) = 7\(1—0) /Q ) /R g(w, ) w(dz x C) P(dw).
(12.1.34)

Moreover, analogously to (12.1.14) and (12.1.15), we get the inversion
formulae

o)
P(A) = A(C) /Q /0 KT _,w € 4)dz Po(dw), (12.1.35)

where 04 (w) = max{t < 0: w({t} x C) > 0}, and

ocf{w)
P(A) = /\(C')/Q / I{T,w € A)dz Pc(dw) (12.1.36)
x JO
and in particular
/ oc(w)Pc(dw) = (MC)) L. (12.1.37)
Qk

The notion of an ergodic marked point process is introduced in the same way
as in Section 12.1.3 for (nonmarked) point processes.

Examples 1. The compound Poisson process {(on,Uy),n > 1}, introduced
in Section 5.2.2, can be seen as the restriction to the nonnegative halfline
of a time-stationary marked point process {(on,Xn)} with X, = U, and
mark space K = Ry. It is a special case of an independently marked point
process {(on, X»)}, where one assumes that the sequences {0} and {X,} are
independent and that {X,} consists of independent random variables with a
common distribution D. But the (nonmarked) point process {o,} itself can
be arbitrary. If the point process {o,} is also stationary, then the Palm mark
distribution Dy defined in (12.1.30) coincides with D. The proof of this is left
to the reader.

2. The mized Poisson process, introduced in Section 8.3, can also be seen as
a marked point process. Each point o, can be “marked” by a nonnegative
random variable X,,, say, indicating to which mixing component the point
o belongs. In this case, {{on, Xn)} is not independently marked unless the
distribution of the X, is concentrated at a single point.
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12.1.5 Ruin Probabilities in the Time-Stationary Model

In this section we consider the claim surplus process {S(t),t > 0} introduced
in Section 5.1.4. We suppose that {S(£)} is given on the canonical probability
space of the (extended) claim arrival process {(on, Xn),n € Z}. Here X, =
(Un, Vp), where U, > 0 denotes the size of the claim arriving at time o, and
V., > 0 is the type of this claim. The mark space is then K = (R4)%. We
assume {(on,X,)} to be a T-ergodic time-stationary marked point process.
We also assume that the net profit condition

B>z (12.1.38)

is fulfilled, where u® = E°U denotes the expected claim size under the Palm
mark distribution D° = D(g, )2 given in (12.1.32),ie. p° = [ zP°(Up € dz).
By Theorem 12.1.4 and Lemma 12.1.3, we then have lim; S(¢) = —oo and
consequently limy_, oo ¥(u) = 0 for the ruin function

N(t)

Y(u) = P(r{u) < o) = P(igg{; Un— ,’J’t} > u) , (12.1.39)

where 7(u) is the ruin time. Take the initial reserve u to be 0 and consider
the ruin probability

o(2,4,C) =P(r <00, X >z, YT >y, VT € 0). (12.1.40)
Here 7 = 7(0), X+ = X*(0) is the surplus prior to 7, Y+ = Y*+(0) is the
severity of ruin, V*+ = V,+ is the type of the claim that triggers ruin and

vt =min{n > 0: Y., U; — Bo, > 0}. In the next theorem we state a
surprisingly simple formula for the ruin probability ¢(z,y,C). It shows that
p(z,y,C) does not depend on the distribution of {o,,} provided that X is fixed
and that {(o, X»)} is independently marked. This is in agreement with the
results given in (5.3.18) and in Theorems 6.4.4 and 6.5.15, where we obtained
the same type of formulae for ladder height distributions in the compound
Poisson model.

Theorem 12.1.9 For all z,y > 0 and C € B(R.,),

e o]
plz,y,C) = Aﬂ_l/ P'(Uy > v,Vo € C)dv. (12.1.41)
T4y

Proof First note that the probability ¢(z,y,C) and the integral on the right-
hand side of (12.1.41) do not change if we rescale the time axis by the factor
B considering the new claim arrival process {(80,, X,)} with intensity A3~}
instead of {(o5, X»)}. Thus, without loss of generality we can assume 3 = 1.
Introduce the notations

gw,v) =KXt >z, YT >y, Ve O) K1 =v),
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and wy, = T_,w. We then have

P(r<oo,X* > Y >3V e0)= [ T glooitw)P(a)
4]

K j=—00

= [ [ swmetox K@) =2 [ [ gl s)dvBtian
QK R Qx R
Y / PO(w: X*(wy) >, Y (o) > 4,V (we) € C,{wa) = v) dv,
0

where we used Campbell’s formula (12.1.34) in the last but one equality.
Trying to evaluate the integrand in the last expression, it is convenient
to introduce an auxiliary stochastic process {5*(t),t > 0} on the Palm
probability space (2, Fx,P®). Assume that {S*(t)} makes an upward jump
of size U_,, at time —o_, and moves down linearly at unit rate between the
jumps. Assume further that S$*(0) = Uy. This gives for By, B2, C € B(R4),

P%w: X (we) € By, Y (w,) € By, VH(wy) € C,7(wy) =)
= P°(Up - S5*(v) € B, 5" (v) € By, Vo € C,5°(v) < 5*(v — t) V£ € (0,v))
PO({U() - S*(v) € By,S8*(v) € Bo,Vo € C} N 4,),

where A, = {S*(v) < S*(t) Vt € (0,v)} is the event that {S*(t)} has a
relative minimum at v. Consider the random measure {M*(B), B € B(R)}
given by

M*(B) = fo 15" (v) € B)I(Ay) dv.

Since S*(0) = Uy, the support of {M*(B)} has right endpoint Uy. Moreover
PP is S-ergodic by Theorem 12.1.6, and E°U,, < E%(0,,4; —0,) by (12.1.37)
and (12.1.38). Henceforth, we get from Theorem 12.1.4 and Lemma 12.1.3 that
limy,00 S*(v) = —oo. Thus, the left endpoint of the support of {M*(B)}
is —oo and consequently {M~(B)} is the Lebesgue measure on (—oo,Up].
Putting the above together, we have

o0
o(z,y,C) = A/ P({Uo — 5*(v) > z,5%(v) > y, Vo € C} N A,) dv
(4]

/\EO(I(% €Q) /oo I{y < S™(v) <Up—z}NA,) dv)
0

OO0
,\E"(I(V0 € C)/ Iy <z < Up — z)dz)
[1]

il

[» o] o
)\/ PO(Vy € C,Us >m+z)dz=/\/ PO(Vy € C,Up > 2)dz.
v z+y
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Corollary 12.1.4 Let p = A3~'4® and let U™ = X+ + Y+ denote the size
of the claim that triggers ruin. Then the following statements hold:

(a) The time-stationary ruin probability v(0) for the initial reserve u = 0 is
given by ¥(0) = p.

(b) The conditional distribution of (UT,V*) given T < oo is obtained from
the Palm mark distribution of (Up, Vo) by change of measure with likelihood
ratio Uy /E%Uy. That is, for each measurable function g: Ry x Ry - Ry,

U

+ ). — 0 0 L

E[g(U*, V)it < 00] = pE (EOUog( 0. Vo ) . (12.1.42)
(c) The conditional distribution of (X*,Y ™) given Ut,V*¥, 1 < oo is that of
(U+2Z,U*(1-Z)), where Z is uniformly distributed on (0,1) and independent
of UT,Vt. 7 < o0.

Proof (a) Putting z = y = 0 and C = Ry in (12.1.41), the assertion is
immediately obtained. (b) Using integration by parts on the right-hand side
of (12.1.41), formula (12.1.42) also follows easily from (12.1.41). (c) Suppose
for a moment that statement (c) is already shown. Then

PXt>z,Yt>y|Ut=u,Vt €C,7 < 0)
= P(U+Z >, UT1-2)>y|UT = u,Vt e C,7 < 00)
T+

(1-—u—y)1(u>z+y).

Using (12.1.42), this gives

z+y
E[l— e ;

= M'EU-z-y;Us>z+y,VoeC]
{» o]

= Aﬂ“f Po(Us > 8, V5 € C) ds.
z+y

Ut >z+y, VT e Cr <o

In view of (12.1.41), this proves statement (c) because of the uniqueness of
Radon-Nikodym derivatives. ]

Remarks 1. The statements of Theorem 12.1.9 and Corollary 12.1.4 remain
valid if the strict inequality in the net profit condition (12.1.38) is weakened to
B > Ap®. This follows from the fact that both sides of (12.1.41) are continuous
functions of 3 in the interval [Au®, oc). We leave the verification to the reader.

2. A closer analysis of the proofs of Theorem 12.1.9 and Corollary 12.1.4 show
that their statements can be proved in the nonergodic case as well. It suffices
to assume that for almost all ergodic components of the time-stationary claim
arrival process {(05,Xn)}, the net profit condition (12.1.38) (or its slightly
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weaker version mentioned in the remark above) is fulfilled and that {(0,, X»)}
is independently marked. In particular, Theorem 12.1.9 and Corollary 12.1.4
remain valid if {(o5, X n)} is an independently marked mixed Poisson process
for which P{A < BpU ) = 1, and where A is the mixing random variable
considered in Definition 8.5.1.

We conclude this section with a remarkable relationship between the ruin
function ¥(u) for the time-stationary model and the ruin function

0 0
P'(u)=P (S;I;E{Z U; - 5t} > u) (12.1.43)
for the corresponding Palm-stationary model. Assume that there is only one
type of claim (the V, are therefore omitted) and that the claim arrival process
{(on,Un)} is independently marked. Put Fy for the claim size distribution and
p= A" ury.

Theorem 12.1.10 For each u > 0,

Y(u) = -3(/:0 Fy(v)dv + /Ou ¥ (u - v)Fy(v) dv) . (12.1.44)

The proof of Theorem 12.1.10 can be found, for example, in Section 9.4 of
Konig and Schmidt (1992) where the relationship (12.1.44) is considered in the
context of queueing theory and derived from a general intensity conservation
principle. However, if we additionally assume that

Eo(sup{z Ui - Bt}) <o, (12.1.45)

t>0

then (12.1.44) can be obtained by an application of the inversion formula
(12.1.35) to the claim arrival process {{0n,Un)}. As in the proof of
Theorem 12.1.9, we rescale the time axis by the factor 3, which is then taken
equal to 1. Now use (12.1.35) with C = Ry and A = {w : sup,5o{ S0’ U; —
t} > u}, to get

ww = E([
N(t)

= ,\EO(/O_J_ I(sup{z U; —t} +Up—u> :c) dz)

t>0

N(t)

I(sup{Uo -z + Z U; - t} > u) d.z:)

t>0

-1

N(t)

- e re-),

t>0
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N(t)

(sup{z U; - t} +Up+o0y — u)+)

>0
N{)

(EO(sup{ZU, —t} +Uo -u)

t>0

i

N(¢)

_E°(sup{z U=t} + U+ -u) )

>0
N{t)

A(E (igg{z U: - t} +Us — u)+
—Eo(sup{g U, - t} - u)+) .

£20

Notice that we used (12.1.45) in the last but one equality. The last equality
results from the fact that the Palm distribution IP? is S-invariant. Thus, using
the notation M = sup,>0{z N 7, — t}, we have

P(u) = AE°((M +Us —u)s — (M —u)y)
= A(E°Up — E® min{Us, (v — M)+})

A( /0 " Fu(v)dv - /0 ” P )P (4 - M)y > v) dv)
,\(/om Fu(v)dv — /oufu(v)a — 90— v)dv),

1

where in the third equality we used that {(o,,Un)} is independently marked
and consequently the random variables Up and suptZD{Zfi(f) Ui - t} are

independent under P°. a

A special case of interest is the ruin function in the Sparre Andersen model.
Note, however, that the ruin function ¥(u) from Section 6.5 is now denoted by
%(w). If the underlying claim arrival process is a stationary renewal process,
then we call the model a stationary Sparre Andersen model. We leave it to
the reader to show that, for the latter, a Lundberg inequality and a Cramér—
Lundberg approximation can be derived for the ruin function (). They are
in agreement with the results obtained in Section 6.5.

Bibliographical Notes. The introduction to point processes given in
Sections 12.1.1 to 12.1.4 and in particular their representation on a canonical
probability space is in the spirit of K6énig and Schmidt (1992). Other books
dealing with the general theory of point processes on the real line are, for
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example, Baccelli and Brémaud (1994), Daley and Vere-Jones (1988), Franken,
Konig, Arndt and Schmidt (1982), Last and Brandt (1995) and Sigman (1995).
Theorem 12.1.9 and Corollary 12.1.4 have been obtained in Asmussen and
Schmidt (1995). For further related results of this type, see also Asmussen
and Schmidt (1993) and Miyazawa and Schmidt (1993, 1997). From the
mathematical point of view, the ruin function ¥(u) in the time-stationary
model is equivalent to the tail function of the stationary virtual waiting time
in a G/GI/1 queue, whereas the ruin function ¥°(u) defined in (12.1.43) is
equivalent to the tail function of the stationary actual waiting time in such a
queue. In queueing theory relationships of the form (12.1.44) are called Takdcs’
formulae; see, for example, Section 3.4.3 in Baccelli and Brémaud (1994),
Section 4.5 in Franken, Konig, Arndt and Schmidt (1982), and Section 9.4
in Ké6nig and Schmidt (1992). For the stationary Sparre Andersen model, see
also Grandell (1991b), Thorin (1975) and Wikstad (1983). Mixing conditions
on the point process {o,}, such that (12.1.45) is fulfilled, can be found in
Daley and Rolski (1992); see also Daley, Foley and Rolski (1994).

12.2 MIXTURES AND COMPOUNDS OF POINT
PROCESSES

In this section we show how the classes of mixed Poisson processes, compound
Poisson processes, and renewal processes can be extended to more general
point processes with a similar structure. We first introduce the notion
of a nonhomogeneous Poisson process. Then we consider a general class
of mixtures of nonhomogeneous Poisson processes, called Cox processes.
Particular emphasis is put on two important special cases: Markov modulated
Poisson processes and Bjérk—Grandell processes. Besides mixtures of point
processes, we also discuss other methods to construct new point processes.
They consist of several kinds of compounding, in particular superposition
and clustering of point processes. Since in the definition of mixtures and
compounds of point processes several (independent) stochastic processes
occur, it is not always convenient to use the canonical point-process space
as an underlying probability space.

12.2.1 Nonhomogeneous Poisson Processes

We first extend the concept of a homogeneous Poisson process to allow
time-dependent arrival rates. For example, there are situations where claim
occurrence epochs are likely to depend on the time of the year.

Let A(t) be a nonnegative, measurable and locally integrable (deterministic)
function. While there are several equivalent definitions of a nonhomogeneous
Poisson process, our approach via the counting measure {N(B)} has the
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advantage that it can be used to introduce nonhomogeneous Poisson processes
also on more general state spaces than IR. Recalling the counting measure
{N(B)}, the increment N((a,b]) where a < b is the number of points in (a, b].
We will say that a counting measure {N(B)} or the corresponding point
process {on} is a nonhomogeneous Poisson process with intensity function
A(t) if {N(B)} has independent increments on disjoint intervals and for all
a < b the random variable N({a,b]) is Poisson distributed with parameter

f: A(z)dz. Then,
b
E N((a, b)) = / Ae)dv, (12.2.1)

which means that A(t) plays the role of an arrival rate function. In the same
vain, n{t) = fot A(v) dv is called the cumulative intensity function (t > 0) while
the measure 1 with 5(B) = [ A(v) dv is called the intensity measure of {0y}
By P, we denote the distribution of a nonhomogeneous Poisson process with
intensity measure 7.

The conditional uniformity property of homogenecus Poisson processes
considered in Theorem 5.2.1 can be generalized in the following way.

Theorem 12.2.1 A counting measure {N(B)} is a nonhomogeneous Poisson
process with intensity function A(t) if and only if for all a < b, n =
1,2,... the random variable N((a,b]) has distribution Poi(f : A(v)dv) and,
given {N((a,b]) = n}, the random vector (a(1y.....0(n)) of the n (ordered)
locations of these points has the same distribution as the order statistics of
n independent [a, b]-valued random variables, each with the common density

function f(v) = A(v)/ [ A(w) dw.

Proof The sufficiency part is omitted since we only have to show that {N(B)}
has independent increments. But this is fully analogous to step (b) = (c) in
the proof of Theorem 5.2.1. Assume now that {/N(B)} is Poisson with intensity
function A(#). Then, the increment N((¢',¢]) has distribution Poi( ftl, Alv) dv)
forallt' <t. Thus,fora=18 <t] <t <th<ta<...<t <tp=b,

Py ([ ow € (ot} | N((a,8) =n)

k=1
Py (M1 (N (8 te]) = 1} N {N((te—1, ;) = 0})
P(N((a,b]) =n)

- n!f[( Ith/\(v)dv//bz\(v)dv). .
k=1 Vi a

We still give another important property of nonhomogeneous Poisson
processes.
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Theorem 12.2.2 Suppose that {N;(B)} and {N2(B)} are two independent
nonhomogeneous Poisson processes with intensity functions A1{t) and As(2),
respectively. The superposition {N(B)}, where N(B) = N1(B) + N2(B) is a
nonhomogeneous Poisson process with intensity function A(t) = A (t) + ().

The proof of Theorem 12.2.2 is left to the reader.

12.2.2 Cox Processes

If one investigates real data on the number of claims in a certain time interval,
it turns out that the Poisson assumption is not always realistic. It is then often
possible to fit a negative binomial distribution to the data. We have already
noticed that a negative binomial distribution can be obtained by mixing the
Poisson distribution with a gamma distribution, i.e. by letting the Poisson
parameter be gamma distributed. As a more general variant, we can take the
parameter A of the homogeneous Poisson process to be stochastic. Such an
extension has already been considered in Section 8.5, where it was called a
mixed Poisson process. What is really needed, however, is more variability
in the claim arrival process. In a mixed Poisson process, this variability will
diminish as time progresses. In order not to lose this variability, a basic idea is
to let the “expected” number of claims A((e,b]) in the time interval (a,b] be
generated by a random measure {A(B), B € B(R)}. Here A(B) = [ A(v) dv
for some nonnegative stochastic process {A(t),t € R}, whose sample paths
are measurable and locally integrable. We call {\(t)} an intensity process,
and {A(B)} a cumulative intensity measure. Given {A(B)}, the number of
claims N((a,b]) in the interval (a,b] is assumed to be Poisson distributed
with parameter A({a,b]}. We turn to a formal description.

A counting measure {N(B)} or the corresponding point process {0,} is
called a Coz process or a doubly stochastic Poisson process if there exists an
intensity process {A(¢)} such that foralln =1,2,..., for k;,..., ks € IN, and
g <h <ag<bh<...<a, <by

P(() {N((a,.,bi1)=k,»})=E(II Ue: A:’fd”) / Az)dv))
i=1

= (12‘2.2)
The two-stage stochastic mechanism can be seen as follows. Consider the
canonical representation (Q,F,P) of a point process as introduced in
Section 12.1.2, where Q is the set of all locally finite, integer-valued measures
on B(R). Furthermore, let {¥ be the set of all (not necessarily integer-valued)
measures 77 : B(R) — Ry U {oo} such that n(B) < oo for all bounded
B € B(R). As in Section 12.1.2, let F denote the smallest o-algebra of subsets
of T containing all events of the form {n : a < n(B) < b}, where B € B(R)
and 0 <a<b.
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Consider the random intensity measure {A(B), B € B(R)} given by A(B) =
Jg Mv)dv. As in the case of point processes, it is convenient to work on a
canonical space. The canonical representation of the random measure {A(B)}
is then given by the triple (2, 7, Q), where Q is a probability measure on F.
We can therefore identify a random measure with its distribution Q (on the
canonical probability space). Using the canonical representations (2, F,P)
and (2, F,Q), it is possible to give a definition of a Cox process as a mixture
of nonhomogeneous Poisson processes. Namely, (2, F,P) is said to be a Coz
process if there is a random intensity measure with distribution @ such that

P(4) = /ﬁ_ P,(A)Qdn), AeF. (12.2.3)

However, a formal introduction of Cox processes along these lines, requires
some discussion on measurability, like for example whether the mapping
n — P, is measurable. In this connection, it can be useful to consider the
product probability space (@ x O, F ® F,P) with

P(AxA) = /_ P,(A)Qn), AeF,AcF. (12.2.4)
A
Using (12.2.2), we get an alternative two-stage stochastic mechanism for Cox

processes which is similar to that given in (12.2.3) and (12.2.4).

Theorem 12.2.3 Let {N'(t),t > 0} be a homogeneous Poisson process on
R with intensity 1 and let {A(t),t > 0} be an intensity process. If {N'(t)}
and {A(t)} are independent, then the counting measure {N(B), B € B(Ry)}
given by N((0,t]) = N'( fot A(v)dv) is a Cox process with intensity process
{A@®)}-

Proof We show that (12.2.2) holds. Indeed,

n

PN (@) = k)
E (P(ﬁ{N’(/obi Av) dv) - N'(/Oai Mw)dv) =k} | A)}))

E (fIP(N' ( /o " ) dv) - N'( /0 YD dv) = k;
hid bs

E(gP(N (/ Mw)dv) = ks

which is equal to the right-hand side of (12.2.2). m]

!

Poy))

p@y)),
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The notion of stationarity for general (locally finite) random measures
can be introduced as in the case of a time-stationary point process given
in (12.1.3). We say that the random measure {A(B)} and equivalently its
canonical representation (,F,Q) is stationary if Q(A) = Q(T.A) for all
A € F, z € R, where the shift operator T : @ — Q is defined by (T'.n)(B) =
(B + z). We leave it to the reader to show that a Cox process is time-
stationary, i.e. the corresponding counting process has stationary increments
if and only if its random intensity measure is statlonary Furthermore, the
random intensity measure {A(B)} given by A(B) = [ A(v)dv is stationary
if and only if the intensity process {A(t)} is stationary.

Let {A(B)} be stationary with distribution @ such that A =
J n((0,1})Q(dn) is positive and finite. Then, for each B € B(R) such that
0 < |B] < oo we define the mapping Q° : F = [0,1] by

1 _
W= 55 /h_ /B L(T,n€ Andz)Qdn), AeF.  (12.25)

In the same way as was done in Section 12.1.2 for stationary point processes,
it can be shown that Q° is a probability measure independent of the choice of
B. The probability measure @ is called the Palm distribution corresponding
to the stationary distribution @. It can be used to describe the reduced Palm
distribution P' of a time-stationary Cox process. In particular, the following
result shows that P' again is the distribution of a Cox process.

Theorem 12.2.4 Let P be given by (12.2.3) for some stationary distribution
Q such that X = [n{(0,1))Q(dn) is positive and finite. Then,

Pi(4) = /5 P,(A)Q%dn), AcF. (12.2.6)

The proof is omitted. It can be found, for example, in Section 5.3 of Konig
and Schmidt (1992).

For point processes on IR, time stationarity and Palm distributions remain
meaningful by appropriate restriction to R.. of corresponding objects on the
whole real line, as shown in some of the examples below.

Examples 1. A special case of a Cox process is a mixed Poisson process
where A(s) = A for some nonnegative random variable A. From the definition
(12.2.2) and (8.5.1), we immediately get that a mixed Poisson process is a
time-stationary point process. Theorem 12.2.4 implies that the reduced Palm
distribution of a mixed Poisson process is given by

P'(4) = EIK /0 T oP,(A)dFa(z), AEF, (12.2.7)

where P, denotes the distribution of a homogeneous Poisson process with
intensity z, and F} is the distribution of A. In particular, (12.2.7) shows that
P' is again the distribution of a mixed Poisson process.
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2. Let Ao : Ry — R, be a periodic (and deterministic) function with
period equal to 1, say. Let {N’(t),¢ > 0} be a homogeneous Poisson process
with intensity 1. The counting process {N(t),t > 0} given by N(t) =
N'( fot Ao(v) dv) is sometimes called a periodic Poisson process; see also
Section 12.4. This process does not have stationary increments. However it is
possible to define a corresponding counting process with stationary increments
in the class of Cox processes. Let X be uniformly distributed on [0, 1] and
independent of {N’(t)}. Furthermore, let A(t) = Ao(t + X) and A(t) =
f; A(8) ds. Then, the Cox process {N*(t),t > 0} with N*(t) = N’(A(t)) has
stationary increments. We leave it to the reader to prove this as an exercise.
3. Let {J(t)} be a Markov process with state space E = {1,...,£} and
intensity matrix Q@ = (gij)ijeg. The process {J(¢)} models the random
environment of an insurance business. If at time ¢ the environment is J(t) = ¢,
then claims are supposed to arrive according to a homogeneous Poisson
process with intensity A; > 0. By a Markov-modulated Poisson process we
mean a Cox process whose intensity process {A(t)} is given by A(t) = Ayq.
We leave it to the reader to show that a Markov-modulated Poisson process
has stationary increments if the environment process {J(t)} has a stationary
initial distribution. Furthermore, it follows from (12.2.5) and (12.2.6) that the
reduced Palm distribution of a time-stationary Markov-modulated Poisson
process is again the distribution of a Markov-modulated Poisson process.
Indeed, if {J(t)} has stationary initial distribution @ = {m,...,n,}, then
(12.2.5) and (12.2.6) imply that

£ [
P! = ,\_I ZW{/\,‘P;’ s A= Z 7"1‘)‘1' s (1228)
i=1

i=1

where P; denotes the distribution of a Markov-modulated Poisson process
governed by the same intensities Ay, ..., A; but by the Markov process {J;(t)}
with intensity matrix Q and initial state J;(0) = i. Ruin probabilities in risk
models where the claim arrival process is a Markov-modulated Poisson process
will be studied in Sections 12.2.4, 12.3 and 12.6.4.

4. We now consider the Markov-modulated process as in Example 3 above
with marks added. To define the process we have to specify the number of
states £, the intensity matrix @, the intensities A;, ..., A¢ and the distributions
Fi,..., Fy. For our purpose, the F; are distributions on R... If J(t) =1, then
claims are arriving according to a Poisson process with intensity A; and the
claim sizes are distributed according to F;, independent of everything else. In
this way we define a marked point process {(0n, X»)} called a marked Markov-
modulated Poisson process, with X, = (U,, V;,), where U, is the claim related
to the nth arrival ¢, and V,, = J(o,). We leave it to the reader to show that
Po(Us € B) = 34, A" I\mFy(B).
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5. Let {(A,1;),i > 1} be a sequence of independent random vectors with
PA; > 0,; > 0} = 1 for all ¢ > 1. Assume that the random vectors
(A2, I3), (A3, I3),. .. are identically distributed. A Bjérk—Grandell process is
a Cox process on IR, whose intensity process {A(t),t > 0} is given by
A(t) = A; whenever 3325 Ix < t < Y4, Jx. Thus, I; is the duration of the
intensity level A;. In the special case where (A1, I;) and (A2, I3) are identically
distributed we speak of an ordinary {nondelayed) Bjérk—-Grandell process. We
leave it to the reader to show that a Bjork—Grandell process has stationary
increments if EI; < oo and, for all B, B' € B(R..),
P(Are€B,LeB)=—— [ P(AseB,L>v)dv. (12.2.9)
EIz B
In view of (12.2.9) the stationary Bjérk-Grandell process is completely
specified by the distribution of (A2, I2). The special case where I; = 1 for
n =2,3,...is called an Ammeter process.

12.2.3 Compounds of Point Processes

Consider the point processes {01,n},...,{0¢,n} and the corresponding count-
ing measures {N;(B)}....,{N¢(B)}. By a superposition of these point
processes we mean a point process with counting measure {N(B)} defined
by N(B) = Yt_, Ni(B), B € B(R); see also Theorem 12.2.2. We now
state a representation formula for the Palm distribution of the superposition
of ¢ independent stationary point processes {o1,n},...,{0¢,n} with positive
and finite intensities Xj,...As, respectively, where £ € IN is fixed. By
{N?(B)} we denote a Palm version of {Ny(B)}, i.e. the counting measure
corresponding to the Palm distribution of {¢; ,}. Assume that the sequence
{N$(B)},...,{N§(B)} consists of independent counting measures and is
independent of {N1(B)},. .., {N¢(B)}. Consider a (product) probability space
on which all these 2¢ point processes are defined, and denote the basic
(product) probability measure by P. It is then clear that the superposition
N = Y! | N; is stationary and that its intensity is A = YA In
the next theorem we state a representation formula for the distribution of
the Palm distribution P° of N. In this connection we use the notation
NO =Ny +.. . +Nig + N+ Npa+...+ Nefori=1,... L

Theorem 12.2.5 For each A€ F,

£
P4)=%" %p(m‘) €A). (12.2.10)

i=1

Proof By the independence assumptions, (12.2.10) easily follows from ( 12.1.7).
We leave it to the reader to provide the details. ]
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In Section 12.2.4 we show how Theorem 12.2.5 can be used to derive lower
and upper bounds for the time-stationary ruin function ¥(u). For another
application of Theorem 12.2.5, see also Section 12.6.3.

The following type of compounding leads to the notion of cluster processes.
Let {0} be a stationary point process with a positive and finite intensity
A’. Let {N,,n € Z} be a sequence of independent and identically distributed
counting measures which is independent of {¢/,}. Assume 0 < EN,(R) < ooc.
The point process with counting measure {N(B),B € B(R)} defined by
N(B) = 3., .cz Nn(B — 0,) is called a cluster process, where {o7,} is called
the point process of cluster centres. The counting measures {Np,n € Z}
describe the individual clusters. It is clear that {N(B)} is stationary and that
its intensity is A = A'E Ny,(R). If the point process {o},} of cluster centers
(or parent points) is a homogeneous Poisson process, then {N(B)} is called
Poisson cluster process. In order to study the Palm distribution of this class
of compound point processes it is convenient to introduce the notion of the
generating functional of a point process.

Let I be the set of all Borel-measurable functions f : R — R such that
0< f(z) <lforallz € Rand f(z) =1for all z € R\ B, where B € B(R) is
some bounded set (dependent on f). Then, for any fixed point process {o,},
the mapping G : I = R defined by

G =EJ]fen), felI, (12.2.11)

is called the generating functional of {o,}. The following properties of the
generating functional are known.

Theorem 12.2.6 (a) The distribution of a point process is uniquely
determined by its generating functional.

(b) The generating functional of the superposition {(Ni + N.)(B)} of two
independent counting measures {N,(B)}, {N2(B)} is given by the product of
the generating functionals of {Ny(B)} and {N,(B)}.

The proof of Theorem 12.2.6 goes beyond the scope of this book. We therefore
omit it and refer to Daley and Vere-Jones (1988), for example.

We are now in the position to state a useful representation formula for
the generating functional of the Palm version of a Poisson cluster process. It
is a generalization of Slivnyak’s theorem for Poisson processes. Let G be the
generating functional of a Poisson cluster process and let G° be the generating
functional of its Palm distribution. Furthermore, let G denote the generating
functional of the point process whose distribution P is given by

P(4) = (E N, (R))E ( / WT.No € AN, ),  A€F. (12212)
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Theorem 12.2.7 For each fe I,
G°(f) = G(F)G(S) - (12.2.13)

The proof is omitted. It can be found in Section 5.5 of Konig and
Schmidt (1992), for example.

Theorems 12.2.6 and 12.2.7 can be used to derive a lower bound for the
time-stationary ruin function 4(u) if the claim arrival process is governed
by an independently marked Poisson cluster process; see Section 12.2.4
below. Another application of Theorem 12.2.7 is given in Section 12.6.2,
where asymptotic properties of ruin functions are studied in the case of a
subexponential claim size distribution.

12.2.4 Comparison of Ruin Probabilities

The aim of this section is to develop techniques allowing comparison of the
ruin function () in the time-stationary risk model to the ruin function ¥* (u)
in a correspondingly averaged compound Poisson model. We begin with the
stationary Markov-modulated model. So, consider the claim surplus process in
the time-stationary risk model introduced in Section 12.1.5, where the claim
arrival process {(on,X,)} is a marked Markov-modulated Poisson process
as defined in Example 3 of Section 12.2.2 and specified by ¢, @, A1,..., A,
Fy,..., F;. Moreover we assume that Q is irreducible and that my,...,m, is
the stationary initial distribution.

Recall that for each i € E the (conditional) claim arrival intensity is A; and
the (conditional) claim size distribution is F;. We assume that, given {J(t)},
the sequences {05} and {X,} are independent and that {0.} is a Markov-
modulated Poisson process governed by {J(¢)} and Ay,..., As. Furthermore,
we assume that, given {J(t)} and {o.}, the claim sizes Uy,U,... are
independent, where U, has distribution F; if (V,, =) J(on) = i. As usual
N(t) is the number of claims arriving in (0, t].

Here we study v{u) = P{r(u) < 00) = Ef=1 w0 (u), where

N(t)
wi(w) = P(r(u) < 00 | J(0) =) = P(i‘;g{zt Un — ,Bt} >u | J(0) = i) .
= n=1

We show that under some conditions this ruin function ¢(u), given by
(12.1.39), is “more dangerous” than the ruin function in the following
(averaged) compound Poisson model. Let 4*(u) be the ruin function in the
compound Poisson model with characteristics (A, F) given by

L /4
A=Y"mA,  F=X"'Y mAR. (12.2.14)
=1

i=]
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Since we want to apply the results of Section 12.1.5, the net profit condition
(12.1.38) will be taken for granted; see also Section 12.3.2. We observe that
the relative safety loading is the same for the Markov-modulated model and
for the compound Poisson model.

Theorem 12.2.8 Let Q be stochastically monotone and let
A <. < Ay, Fi <g ... <st Fi. (12.2.15)
Then p(u) > v*(u) for all u > 0.

The proof of Theorem 12.2.8 is subdivided into several steps. We also need
some extra notation. Let {J;(t)} denote a homogeneous Markov process with
intensity matrix Q and initial state J;(0) = {. Furthermore, for ¢ = 1,. L’,
let {N;(t)} be a Cox process with intensity process {A;, (,)} and let Ul, U2,
be a sequence of claim sizes where the distribution of U} is Fj if J;(o}) = j.
For the (conditional) ruin functions y¥;(u) = P(sup»O{ZN‘(t) Ui - Bt} > u),
it € E, the following comparison holds.

Lemma 12.2.1 Under the assumptions of Theorem 12.2.8, the ineguality
Yi(u) < ¢i{u) holds for all u > 0 whenever i < j.

Proof We use a coupling argument. Let ¢ < j. Then by Theorem 8.1.8 there
exists a probability space (Q;;, Fi;, IPi;) on which J;(t) < J;(t) for all t > 0. By
the first part of condition (12.2.15), there exists a probability space (', F', P)
on which {o:} C {¢l}. We leave it to the reader to provide the details.
The second part of condition (12.2.15) and a multidimensional analogue to
Theorem 3.2.1 imply the existence of a probability space such that Ui < UJ
for all n = 1,2,.... Thus, taking the product space as the basic probability
space we get that. on this space ZN‘(L) Ul 2’;?) Ui forall t > 0. a
The following standard inequality of Chebyshev type will be useful.

Lemma1222IfO<a1< <a5,0<b1_. ;bganda;ZOforall
i€E, Z,_l a; =1, then E‘_l a,a,b > Z, L Gy )y by

Proof Let X be an E-valued random variable with probability function

a = {a,...,a¢}. If we define k by k = min{i > 1: b, —- Ebx > 0}, then we
have

¢ ¢ ¢ ¢
Z o;a:b; — z o;a; Za;bi = Za,’a,»(bi - Ebx)
i=1 i=1 i=1 i=1

k—1 14
> iai(b — Ebx) + Y asai(b; — Eby)

i=1 i=k
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k~1 [4

k-1 (Z a,'(b.- - be) + Zai(b,- — be))
i=1 i=k
14

Qg1 Zﬂti(bi -Ebx)=0

v

=1 -
Proof of Theorem 12.2.8. By (5.3.9) we have
u
¥ (u) = pFo(u) + A8~} / ¥*(u—v)F(v)dv. (12.2.16)
0

For the Markov-modulated model we have PO(UO > v,V =14) = mAAT F(v)
which can be concluded from (12.2.8). Theorem 12.1.9 then implies that

Y(u) = pFs(u) + 7 / Z'R‘u\ F;(v)¥{u — v)dv.

Since by the assumption (12.2.15) and by Lemma 12.2.1, the sequences {a;},
{bi} with a; = \;Fi(v), b; = ¢;(u — v) are increasing, Lemma 12.2.2 gives

Z mMFr(v)ws(u — v) > Z miAFi(v) Z mithi(u ~ v) = AF(v)d(u — v} .
i=1 i=1 i=1

Thus,
w(u) > pFo(u) + A~ / W(u - v)F(v) dv. (12.2.17)
0
Comparing (12.2.16) and (12.2.17), Lemma 6.1.2 immediately implies that
¥{u) > ¢*(u) for all u > 0. a

The same argument as in the proof of Theorem 12.2.8 almost immediately
applies when analysing the following model. Consider the ruin function in
the stationary risk model where the claim arrival process is governed by a
time-stationary mixed Poisson process such that, given A = z, the sequences
{on} and {U,} are independent and the claim sizes are independent random
variables with distribution F.

Theorem 12.2.9 Assume that F, <q Fp forz <z’ and P(App, < 8) =1.
Then ¥(u) > ¥*(u) for all u > 0, where ¥*(u) is the ruin function in the
compound Poisson model with arrival intensity E A and claim size distribution
function F(t) = [;° F,(t)dFy(z).

Proof We use a general version of the Chebyshev-type inequality given in
Lemma 12.2.2 stating that for each real-valued random variable X and for
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each pair of increasing functions e(z) and b(x),
Ea(X)b(X) > Ea(X)Eb(X). (12.2.18)

Let %,(u) be the ruin function in the compound Poisson model with
characteristics (z, F,). One needs to show first that ¥, {u} < ¥, (u) forz < y,
and this is analogous to Lemma 12.2.1. Then, using (12.2.18), the same
argument as in the proof of Theorem 12.2.8 applies. The details are left to
the reader. O

The ruin function ¥(u) of the time-stationary Sparre Andersen model can
similarly be compared with that of an appropriately chosen compound Poisson
model.

Theorem 12.2.10 Consider the time-stationary Sparre Andersen model with
distribution Fr of inter-arrival times and distribution Fyr of claim sizes, where
0 < ur,uu < oo. If Fr is NBUE, then v(u) < ¥*(u) for all u > 0, where
¥*(u) is the ruin function in the corresponding compound Poisson model
with arrival intensity ur' and claim size distribution Fy;. Moreover, if Fr
is NWUE then o(u) > ¢*{(u) for all u > 0.

Proof Let Fr be NBUE. Then F§ <, Fr. Therefore by Theorem 3.2.1
we can find a probability space (§}, F,P) and independent random variables
1,1, Ts,..., Uy, Us,... such that Ty < Ty, where T} has distribution Ff,
T{,T2,T3,... have distribution Fr and Uy, Us,... have distribution Fy;. The
risk reserve process in the time-stationary model is therefore always smaller
than in the Palm model and hence ¥(u) > ¥°(u), where ¥%(u) is the ruin
function in the (Palm-stationary) Sparre Andersen model. Analogously to
(12.2.17), we get from (12.1.44) that forallu > 0

Y(u) < (prB)  puF (u) + (urf) " /0 ‘ Y(u—v)Fy(v)dv.  (12.2.19)

As in the proof of Theorem 12.2.8, also %(u) < ¢*(u) for all u > 0, where ¥*(u)
is the ruin function in the compound Poisson model with arrival intensity u;l
and claim size distribution Fyy. For Fr being NWUE, the proof is similar. O

Using the representation formula (12.2.10) for the Palm distribution, The-
orem 12.2.10 can be generalized from a single renewal point process to a
superposition of several renewal processes. Assume that the time-stationary
claim arrival process {(on,U,)} is independently marked with claim size
distribution Fyy and that {o,} is the superposition of £ independent stationary
renewal point processes with interpoint-distance distributions Fy,..., Fy and
expectations puy,...,ue, respectively. ¥ Fi,...,Fy are NBUE, then we get
from (12.1.44) and (12.2.10) that ¥(u) < ¢*(u) for all u > 0, where ¥ (u)
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is the ruin function in the compound Poisson model with arrival intensity
Zf,_l p;! and claim size distribution Fyy. Moreover, if Fi,..., F; are NWUE
then ¥(u) > ¥*(u) for all »x > 0.

Another natural generalization leads from a renewal point process to the
class of semi-Markov point processes where the inter-point distances are no
longer independent nor identically distributed but connected via a Markov
chain with finite state space. A classical example is the so-called alternating
renewal point process. For this class of point processes, similar conditions
can be found for deriving an upper “Poisson” bound for the time-stationary
ruin function ¢(u). It suffices to assume that all (conditional) distributions
of distances between consecutive points are NBUE. A corresponding lower
bound for ¥(u) is obtained if all these distributions are NWUE.

Finally, we mention that a lower bound analogous to that in Theorem 12.2.8
can be derived for the time-stationary ruin function ¥ (u) if the claim arrival
process is governed by an independently marked Poisson cluster process.
From (12.1.44) and the representation formula (12.2.13) for the generating
functional of the Palm distribution of this class of stationary point processes,
we get that this lower bound holds without any additional conditions.

Bibliographical Notes. Properties of Cox processes and cluster processes
can be found in many books dealing with point processes on the real line;
see, for example, Brémaud (1981), Daley and Vere-Jones {1988), Karr (1991),
Konig and Schmidt (1992) and Last and Brandt (1995). The Markov-
modulated risk model was first introduced by Janssen (1980) and also
treated in Janssen and Reinhard (1983) and Reinhard (1984). The definition
of this model using an environmental Markov chain {J(t)} goes back to
Asmussen (1989). Theorem 12.2.8 has been derived in Asmussen, Frey, Rolski
and Schmidt (1995). A weak form of comparison between the ruin function
in the time-stationary Markov-modulated model and the ruin function in
the correspondingly averaged compound Poisson model was originally given
in Rolski (1981). A survey of methods for statistical estimation of the
parameters of Markov-modulated Poisson processes is given in Rydén (1994).
For the queueing-theoretic analogue to the time-stationary Sparre Andersen
model, the inequalities y(u) > (<)¢*(u) for all v > 0 if Fr is NBUE
(NWUE) have been proved, for example, in Franken, Koénig, Arndt and
Schmidt (1982), p. 137. The Bjork-Grandell process was introduced in
Bjork and Grandell (1988) as a generalization to the model considered by
Ammeter (1948). Another application of nonhomogeneous Poisson and Cox
processes in risk theory can be found, for example, in Arjas (1989) and in
Norberg (1993), where the prediction of outstanding liabilities is investigated.
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12.3 THE MARKOV-MODULATED RISK MODEL VIA
PDMP

We now turn to the continuous-time risk process {R(t)}. We use techniques
for PDMP developed in Chapter 11, where the claim arrival process is given
by a Markov-modulated Poisson process. Moreover, as in Section 12.2.4, we
allow that claim size distributions are modulated by the Markov environment
process {J(t)}. The stochastic process {(J(t),R(t))} is called a Markov-
modulated risk model. Our aim is to obtain bounds and approximations to
the infinite-horizon and finite-horizon ruin functions of this model.

12.3.1 A System of Integro-Differential Equations

The risk reserve process {R(#)} can be represented in the following way. Let
&1,&2,... with £, = inf{t > &, : J(t) # J(t — 0)} be the times where the
state of the environment changes, where § = 0. Consider the independent
compound Poisson risk processes {R;(t)},...,{R¢(t)} with characteristics
(A1, F1), ..., (Ae, Fy), respectively. Let p; = [° vdFi(v) denote the expected
claim size in state i and 7h;(s) = f0°° e®* dF;(v) its moment generating
function. Furthermore, the claim counting process in the i-th model is denoted
by {Ni(t)}. The claim counting process {N(¢)} in the Markov-modulated risk
model is then given by

[4
Ny =% / L) = i) dNi(w), (12.3.1)
i=170

and the corresponding risk process {R(t)} by

¢
R(t) =u+ Z /t I(J(v) =i)dR;(v). (12.3.2)
i=170

This means N(0 — 0) =0, R(0 — 0) = u while for £, <t < £ppr
N(t) = N(&a = 0) + Ny (t) — Ny (&n - 0),

R(t) = R(&n — 0) + Ryy(t) — Ryy(én — 0).

In particular (12.3.1) implies that, given the environment, the conditional
expected number of claims in the interval (0, ¢] is equal to E (N(¢) | J(v),0 <
v<t)= fot Aj(v) dv. Hence, EN(t) < max;<¢ Ait < oo.

The ruin function ¥(u) = P(inf;>o R(t) < 0) and the conditional ruin
functions ¢;(u) = P(inf,>¢ R(t) < 0| J(0) = i) are expressed in terms of the
risk reserve process { R(t)} rather than using the claim surplus process {S(t)}
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as was done in Section 12.2.4. Further, the conditional survival functions are
denoted by 9;(u) = 1 — ¢4 (u).
As in Section 5.3.1, we can derive a system of integro-differential equations.

Theorem 12.3.1 The survivel functions ¢;(u) are absolutely continuous and

fulfil

u 4
8L ) + 0 ([ - 0)dR0) - Tiw) + 0Ty =0 (1233)

Jj=1

and

u—0 {4
FO (u) + M ( /0 ¥i(u - v)dFi(v) - Ei(u)) +3 " 6i,(u) =0 (12.3.4)

=1

fori=1,...,¢L where ?p_, +(u) and E;,_(U) are the right and left derivatives
of ¥;(u), respectively.

The proof of Theorem 12.3.1 is similar to the proof of Theorem 5.3.1 and is
left to the reader.

12.3.2 Law of Large Numbers

Let Q be irreducible and write m = (mq,...,7¢) for the stationary initial
distribution of {J(t)}. Recall that by Theorem 8.1.4 we have ™ = 7w exp(tQ)
for all £ > 0. In Section 8.1.2 we showed that this is equivalent to #Q = 0. The
following law of large numbers for the Markov-modulated risk model extends
its counterpart for the compound Poisson model as it was mentioned in the
introduction to Section 5.3; see also Theorem 10.3.4. Recall that similar results
for renewal processes were derived in Theorem 6.1.12.

Theorem 12.3.2 Assume that Q is irreducible. Then

L
1
tl—lglo —t-R(t) = ﬂ - Z 7ri/\ill'i . (1235)

i=1

Proof Without loss of generality we can assume that u = 0. Let Vi(t) =
fot 1(J(v) = i)dv denote the amount of time in (0,¢] that {J()} spends in
state i. First observe that (12.3.2) can be rewritten in the form

1, Vi) 1 .
RO =Y e /0 K(J(v) = i) dRi(v) .
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It is left to the reader to show that lim,_, t~1V;(t) = m;. It therefore suffices
to show that (Vi(¢))~? fot 1(J(v) = i) dR;(v) tends to 8 — A;p; as ¢t — co. But
fot I(J(v) = i) dR;(v) has the same distribution as R;(V;(t)) because {Ri(t)}
has independent and stationary increments. Since Q is irreducible, V;(t) tends
to infinity as ¢ — oo. The assertion now follows by the same arguments as
that used in the proof of Theorem 6.3.1. 0o

Theorem 12.3.2 implies that ¢(u) = 1if 3 < Zle miAipi. Indeed assume
J(0) =1i. Let Iy = 0 and let I,y = inf{t > I, : J(t) = ¢, J(t — 0) # i} be
the epochs, where {J(t)} returns to state i. It is easy to see that {R(I.)}
is a random walk. Since n"'R(I,) = (Ip/n)(R(I,)/I,) and I, — oo, it
follows from Theorem 12.3.2 that {R(I,)} does not have a positive drift if
8 < Zle wid\ipti. Thus, by Theorem 6.3.1, ruin occurs almost surely. We
therefore take the net profit condition

¢
B> ZWM:‘IH (12.3.6)
i=1
for granted in what follows.

12.3.3 The Generator and Exponential Martingales

Thanks to the following result, the techniques for PDMP developed in
Chapter 11 become available.

Theorem 12.3.3 The process {(J(t), R(t),t)} is a PDMP. Iis generator A
has the property that g € D(A) and (g, Ag) € A for each function g fulfilling
the conditions of Theorem 11.2.2, where

(A9)(i,2,8) = Beglis2,8) + gli, 1)

o ]
+Ai (/0 9(i, z — v, t) dF;(v) — g(i, z,t)) + Zqijg(j’ 2,t). (123.7)

=1

Proof We leave it to the reader to show that {(J(t),R(¢))}} is a PDMP.
The vector field X of this PDMP is given by (X g)(z) = A(dg/dz)(2). If the
environment process {J(t)} is in state i, then jumps caused by claims occur
with rate A;, while jumps caused by a change of the environment to j # ¢ have
rate q;;. The statement then follows from Corollary 11.2.1, where in (12.3.7)
we used that — 3., i;9(i, 2, 1) = ¢iig(i, 2, 1). o

Before we construct an exponential martingale, needed in the study of ruin
probabilities in the Markov-modulated risk model, we cover some auxiliary
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results from matrix algebra. Let {B(t), ¢t > 0} be a family of £ x £ matrices
that satisfies the condition

B(O)=1, B(t+t)=B(t)B(t) (12.3.8)

for all ¢,¢' > 0, and
lim —B(h) -1 =C
hl0 h

for some matrix C. By similar considerations as in Section 8.1.2, we can then
show that

B(t) = exp(tC) . (12.3.9)
We prove a lemma that is useful in its own right and that will be applied later
on. Recall that for an £ x £ matrix B = (b;;) with positive entries, the trace
trB = Z§=1 b;; equals the sum of the eigenvalues 8, ,...,8; of B, i.e.

¢
trB=> 0. (12.3.10)
i=1
Indeed, in the characteristic polynomial w(z) = det{(B — zI), the coefficient
of ¢~ 1 is (1)1 }:521 bjj.

Lemma 12.3.1 Let {B'(s)} be a family of £ x £ matrices defined for all s from
a certain (possibly unbounded) interval (s, 82) such that all entries bj;(s) are
positive. Let b;;(s) be logconvez in (s1,s2) for all 4,j = 1,...,£ and let 6'(s)
be the Perron—Frobenius eigenvalue of B'(s). Then 8'(s) is logconvez.

Proof Let s; < 8 < sz and let {(s),...,0,(s) be the eigenvalues of B'(s).
The reader should verify that the class of logconvex functions is closed
under addition, multiplications and raising to any positive power; moreover
the limit of logconvex functions is logconvex or zero. Hence, the assertion
follows from (12.3.10) because limp—o0 (C (02(8))")1/ " equals the Perron—
Frobenius eigenvalue of B’(s). 0

Now let K (s) be the diagonal matrix with entries x;;(s) = Ai(hi(s) — 1),
where we put k;;(s) = oo if 11;{8) = oo. Furthermore let

C(8)=Q+K(s)—BsI. (12.3.11)
Differentiation of C(s) tells us that C¥)(0) is a diagonal matrix with entries
A — 3. Hence we get

¢
7CD(0)e =Y mdpi - B. (12.3.12)

i=1
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Furthermore, for each t > 0, let B(t) be the £ x ¢ matrix with entries
bij(t) = bij(t; 8) = E (e *RO-9E(J(2) = j) | J(0) = i) (12.3.13)
for i,5 = 1,...,£. Note that B(0) = I.

Lemma 12.3.2 Let 39 > 0 be fized such that m;(sg) < 0o for alli=1,...,L.
Then,
B(t) = exp(tC(s)) (12.3.14)

for all 8 < sp and t > 0, where C(s) is defined in (12.3.11). In particular,
P(J(t) = j | J(0) = &) = (exp(tQ))s; -
Proof 1t is easily seen that the matrices B(t) given in (12.3.13) satisfy (12.3.8).
Furthermore, for a small time interval (0, k] we have
P(NR)=0|J({@)=1) = 1-Xh+o(h),
P(Nh)y=1|J@#) =1 = Mh+olh),

and P(J(h) = j | J(t) = 1) = 6i(j) + qijh + o(h). Thus,

bij(h) = &:()(1 +gjih + o(R))((1 — Ajh + a(h))e™P*h
+ (Ajh + o(h))e PR (s)) + 8;(5)(gizh + o(h))e™ 7% + o(h)
8:(3)e™ " + 6:(j) ki (s)h + hasj + o(R) .

1l

Rearrange the terms to obtain

=8 )= L 5 ey (0) + g o)

= (C(8))y +0o(1).
Letting h — 0, the proof is completed in view of (12.3.9). a

Let sg > 0 fulfil the conditions of Lemma 12.3.2 and let 3 < 35. By
Lemma 12.3.2, the matrix exp(C'(s)) has strictly positive entries. Let 6(s)
be the logarithm of the largest absolute value of the eigenvalues of the matrix
exp(C(s)). By the Perron-Frobenius theorem (see Theorem 7.2.2), e#(*) is an
eigenvalue of exp(C(s)). It is the unique eigenvalue with absolute value ef(*)
and the corresponding right eigenvector ¢(s) = (¢1(3), ..., ¢¢(3s)) has strictly
positive entries. In particular ¢(0) = e, the vector with all entries equal to 1.
Indeed, recall that Qe = 0 and consequently (exp Q)e” = e'. We normalize
o(s) in such a way that w(¢(s))” =1.

Let 0 < s < 8. By Lemma 7.1.3, C(s) can be written in the form
C(s) = DTD™}, where T = (t;;) is an upper triangular matrix and D
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is nonsingular. Hence the eigenvalues of C(s) are 6;(s) = t;; (i = 1,...,€)

because .

det(DTD™" - 6I) = det(T — 01) = [J(t:: — 6) .

i=1
Then exp(C(s)) = Dexp(T)D ™" and exp(T) is upper triangular too. Note
that its diagonal entries exp(t;;) with ¢ = 1, ..., ¢ are strictly positive. We can

therefore conclude that 8;(s) is an eigenvalue of C(s) if and only if exp(6;(s))
is an eigenvalue of exp(C(s)), i =1,...,4.

In Section 12.3.4, the following martingale will be used when changing the
probability measure.

Theorem 12.3.4 Assume that there exists an sgp > 0 such that 1;(sg) < 0o
foralli=1,... L. Then, the following statements are true.
(a) For each s < 3¢, the process {M(t),t > 0} with

M(t) = ¢y (s)e™*RO-6()", (12.3.15)
®

s a martingale with respect to the history of {(J(t), R(t))}-
(b) The function 8(s) is convez on (—o0, s¢) and

I 4
000) = ~(5-Y m,-m) <0. (12.3.16)
i=1

Proof Theorem 11.1.3 tells us that (a) will follow if we find a martingale
solution of the form {g(J(t), R(t),t),t > 0} to the equation Ag = 0. We try a
function g of the form g(i, z,t) = h; exp(—sz — ¥t) for some hy,...,he, ¥ € R.
Using (12.3.7) this yields

£
—/37"1.5 —Yh; + /\,-(rhi(s) - l)hi + Zqijhj =0

j=1

for each i € {1,...,£}, i.e. C(s)h” = 9h', where h = (hy,...,hs). Thus, 9
must be an eigenvalue of C(s) and h the corresponding eigenvector. But we
already know that 8(s) is an eigenvalue of C(s) with right eigenvector ¢(s). It
remains to verify that g(i, z,t) = ¢;(8) exp(—sz—8(s)t) satisfies the conditions
of Theorem 11.2.2. Condition (a) of Theorem 11.2.2 is obviously fulfilled since
g is absolutely continuous. Condition (11.2.5) is trivial because the active
boundary T is empty and the validity of (11.2.6) can be shown in the same
way as in Section 11.3.1. This proves statement (a). To show (b), we apply
Lemma 12.3.1 with b}, (s) = b;;(1;3) = E (e7*RU-W1(J(1) = j) | J(0) = i).
Note that b;(s) = [ e™*® F{;(dz), where Fj;(z) = P(R(1) —u < z,J(1) =
j|J) = zs By Holder’s inequality each b};(s) is logconvex. We still have
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to show (12.3.16). Recall that 6(s) is an eigenvalue of C(s), i.e. ¥ = 6(s)
is a solution to the equation det(C(s) — 9I) = 0. By the implicit function
theorem, see Theorems 17.1.1 and 17.4.1 in Hille (1966), 8(s) is differentiable
on (=00, 8p). Furthermore, ¢(s) is the solution to (C(s) —8(s)I)(¢(s))™ =0,
i.e. a rational function of differentiable functions. Thus ¢(s} is differentiable.
Besides this, we have wC(s)(¢(s))T = 8(s)m(¢(s))T = 6(s) since we
normalized ¢(s) in such a way that w(¢(s))’ = 1. Hence

80)(s) = #CM(3)(¢())T +7wC(s)(6V(s) T .

Letting s — 0, {12.3.16) follows from (12.3.6) and {12.3.12) because #C(0) =
wQ =0 and ¢(0) =e. o

12.3.4 Lundberg Bounds

We now use the martingale {M(¢)} given in (12.3.15), when changing the
probability measure, as was done in Section 11.3.2. Let s € R be such that
mi(s) < oo for all ¢ = 1,...,¢ and let ¢(s) = (¢i(s))i=1,..,¢ be the right
eigenvector corresponding to the eigenvalue e?(*) of exp(C(s)) introduced in
Section 12.3.3. Using the martingale {M{®)(t),¢ > 0} with

M) = ($0)(8) 7 Pugsy (s)e ™ RE - =000 (12.3.17)

we define the probability measures {P{"”,¢ > 0} by P{*(B) = E[M{®)(t); B
for B € F;, where the process {(J(t), R(t )} is assumed to be given on its
canonical probability space and {F;} denotes the history of {(J(t), R(t))}.
We leave it to the reader to show that the measures Pg’) can be extended
to a “global” measure P{®) on F = 0(Ug>o Ft). see also Section 11.3.2. It

turns out that this new measure P*! again describes a Markov-modulated
risk model.

Lemma 12.3.3 Under the measure P®), the process {(J(@), R N} s a
Markov-modulated risk model with intensity matriz Q¥ = (q )), where

qf;) (¢:(s)) "' 9;(3)gs; for i # j. The claim arrival intensities are /\(’)
Aithi(8) and the claim size distributions are F,-(’) (y) = fo e’* dF;(z)/ri(s).

In particular, P(‘)(Mt—-roo t7IR(t) = -6W(s)) = 1.

The proof of Lemma 12.3.3 is similar to that of Theorem 11.3.1 and consists
of very long calculations. We only sketch a number of the most important
constituent steps.

Step 1 Under P, {J(@®)} is a Markov process with intensity matrix QY.
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Step 2 Given J(0), J(£),... and &,&3, . . ., the stochastic processes {R(&, +
1) — R(&,) : 0 < t < £n41 — &n} are (conditionally) independent and the
dependence on F¢, occurs via J(&,) only.

Step 3 Given J{0) = i and & > v, N(v) has the conditional distribution
Poi(A?).

Step 4 Given J{(0) =i, & > v and N(v) = n, the claim sizes Uy,..., U, are
independent and identically distributed with distribution Fi("), independent
of the claims arrival epochs.

Step 5 Given J(0) =i, & > v and N(v) = n, the first n claim arrival epochs
have the same conditional distribution as under the original measure P.
Step 8 Knowing that {(J(¢), R(t))} is a Markov-modulated risk model under
P(?), Theorems 12.3.2 and 12.3.4 give that

P (Jlim ¢~ R(t) = -6{Y(0)) = 1,

where 8;(h) corresponds to the function 8(h), but now under the measure
P®). Thus, it remains to show that 8" (0) = #1)(s). This is an immediate
consequence of the fact that 8;(h) = 0(s + h) — 6(s). An easy way to prove
the latter relationship is to show that the stochastic process {M(")(t), t > 0}
with
(g = 220 ) R —toern-otene (12.3.18)
bty(8)

is a P)-martingale provided (s + h) exists. Indeed, in the proof of
Theorem 12.3.4 we have seen that for a martingale of the form (12.3.18) it is
necessary that ¢;(h) = ®a(0)(8 + h)/du(s)(s) is an eigenvector and 8,(h) is an
eigenvalue. Since @i(h) > 0, 8,(h) must be the Perron-Frobenius eigenvalue.
Let ¢ > v. Then, using (10.2.26) we have

E@MM(@) | F)
E O (M® (£)(E © (¢ 1(0)(3))) " duy) (s)e*(RD-1 =0kt | F,)
(E @ (¢ 10)(8))) "1 b vy (8)e s RV)—u) -0le)v
E O(($5)(5) ™ ey (s + h)e bRIO—EMG ) (5)e=2R-00)E | F,)
(Ba(v)(8)) Te—sR)-Bla)
(6300) () E@ (60 (5 + )™ (EHMRO—(+1IE | . oaR(3)+0(s)w
(650 (8)) " ey (8 + h)e™ BROI=OCR=0()w — pg(B)(y).

This verifies that 8,(h) = 8(s + h) — 0(s). O

In Theorem 12.3.4 it has been shown that the function 6(s) is convex while
its derivative at O is negative. Thus, besides s = 0, there might be a second
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solution 8 = 7 > 0 to the equation #(s) = 0. If v exists, we again call ¥ the
adjustment coefficient. The following theorem derives Lundberg bounds for
1(u) for this case. Let z; = sup{y : Fi(y) < 1}.

Theorem 12.3.5 Let {(J(t), R(t))} be a Markov-modulated risk model and
assume that the adjustment coefficient vy exists. Then, for allu >0

a_e " < YPlu) <age™, (12.3.19)
where
inf VF;(y)E @ ¢;0,(7)
1<z<lO<y<m- ¢>‘('})f ez dF(z) ’

e"F; (y)E(°)¢J(0)(’Y)
1<;<t0<,,£m, ¢,('y)f ev: dF;(z)
Proof Let 7(u) be the time of ruin to the initial risk reserve u. By
Theorem 12.3.4, 8(s) is a convex function. This yields that 8()(y) > 0
and therefore P(™M(r(u) < o0) = 1 because P'V(R() - -o0) = 1 by
Lemma 12.3.3. For the ruin probability ¥(u) we get an expression under the
measure PO

P(u) = E@D g0 (v) E O ((@g¢r(uy (7)) e R )g=ru (12.3.20)
Condition on J(7(u)) and R{r(u) — 0) to find
E D (b up (M) R | J(r(w)) = i, R(r(u) - 0) = y) (12.3.21)
e Fi(y)
5n) [ e dFi(2)

where U* denotes the size of the claim causing ruin. The assertion readily
follows, o

)
{
Il

ay =

= (G:()TEME Y [ J(ru)) =i, Ut > y) =

Note that min{¢;(y) : 1 < i < £} > 0 and therefore the upper bound in
(12.3.19) is finite.

12.3.5 Cramér-Lundberg Approximation

We now study the question whether ¥(u)e”™ converges to a limit as v — oo,
i.e. whether a Cramér-Lundberg approximation holds.

Theorem 12.3.6 Let {(J(t),R(t))} be a Markov-modulated risk model.

Assume that the adjustment coefficient v exists and that (1)(7) < oo for
t=1,...,¢. Then there exists a constant ¢ > O such that

: Th o (0)
Jm ¢(u)e™ =cE¢;q)(y).
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Proof In view of (12.3.20) we have to show that the function
9(w) = B (($(r () (7)) "1 BTy (12.3.22)

converges to a constant ¢ as u — oo. Assume first that the initial state of
{J(t)} is fixed, say J(0) = 1. Without loss of generality we can assume that
A1 > 0. Let

v~ =inf{t >0: J(t) =1 and R(t) = O%ItlsztR(v)}
be the first descending ladder epoch occurring in state 1. Note that P(")(u" <
00) = 1 because P (lim;_,00 R(t) = —00) = 1. Write G~ (y) = PM(u —

R(v™) <y) = PY(S(v™) < ) for the (modified) ladder height distribution.
The function g(u) fulfils the following renewal equation; see also Section 11.3.3,

g(u) = /Ou 9(u = 1) dG™(y) + ED[( 7 u)y (1) "R R(17) < 0],

because E (¢ (7w (7)) 1€ | Ry ) =u—y) = glu—y) fory < u.
Define
zi(w) = EN[(¢ 1w (1) B Rv) < 0] J(0) = 4]

Note that z;(u) is bounded and z1(y) = (¢1(v)) e if y < 0. For h > 0
small

a@) = 1=M"h+qPh)z(u+ Bh)

fo%) £
+23{h /0 a(u -y dFO (@) + Y a0 he;w) + O(h).

=2

Letting & — 0 shows that 2y (u) is right-continuous. From
afu—6h) = (1=A"h+¢Ph)z(w)

oo £
+ A0 / (- y) dF @) + 3 ¢Phzi(u) + O(h)
(1] j=2

it follows that z; () is left-continuous as well. Let @min(y) = min; ¢;(7y). Then
Smin(M21(u) <PO(RET) < 0) = PO (S(7) > ).

Since the latter function is monotone, it will be directly Riemann integrable
if it is integrable. But this is the case because

/oo PONS™) > u)du=EM(S(r)) < co.
0
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The expectation on the right is finite since under the measure PO the
(conditional) expectations of the claim sizes are finite. Indeed, the latter
property is implied by our assumption that mgl)('y) <ooforalli=1,...,L
The details are left to the reader. Note that, at an ordinary ladder epoch
occurring in state j, there is a strictly positive probability that the next
ordinary ladder epoch will occur in state 1. Thus, the function 2z (u) is
continuous and has a directly Riemann integrable upper bound. But this then
ensures that z;(u) is directly Riemann integrable, as can be easily proved
by the reader. Hence, it follows from Theorem 6.1.11 that the limit of g(u)
exists as v — oo. Turning to the general case, let J(0) have an arbitrary
distribution. Then, ¢'(u) = E‘“f)((du(,(,,))('y))"e"R(T(“)) | J(O) = 1) is
the function considered before. Let 7' = inf{t > 0 : J(t) = 1} and let
B'(y) = POY(S (t') < y) be the distribution function of the claim surplus
when {J(t)} reaches state 1 for the first time. Then

g(u) = / ) g'(u-y)dB'(y) + ED (@ (1) TR 2 (0) < 7],

—00
where g(u) is defined in (12.3.22). Note that the second summand on the
right-hand side of this expression is bounded by (dmin (7)) P (r(u) < 7).

We leave it to the reader to show that P (r(u) < 7') tends to 0 as u — oo.
Since g'(u) is bounded, it follows by the dominated convergence theorem that

. - . ? —
Jim g(u) = lim g'(u) =¢,

which proves the theorem. ]

12.3.6 Finite-Horizon Ruin Probabilities

To close Section 12.3, we extend the results of Section 10.3.2 on Lundberg
bounds for finite-horizon ruin probabilities. For simplicity, we assume that
6(s) exists for all s considered below; a sufficient condition is, for example,
that s} = sup{s : 1i2;(s) < 00} and s, = min s7. Assume lim,+,_, 1hi(s) = 00
for all ¢ such that s, = s;. In this case so > 0 because 1;(0) = 1. Moreover,
we put 6(s) = oo if #(s) does not exist. Recall that 8(s) > 0 for s < 0. The
following inequalities hold.

Theorem 12.3.7 Let v(y) = sup{s — 6(s)y : s € R} and let s(y) be the
argument at which the supremum is attained. Moreover, let

€, = Max su eV Fi(y)
S 1$i$l0<y£x.‘ #i(s) f:’ ez dF;(z)
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The following statements are valid:
(a) If 0 (y) < 1, then v(y) > 7y and

$(u; yu) < o) E Vg0 (v(y)) e W, (12.3.23)
(b) If 8 (y) > 1, then v(y) > v and
P(u) — P(u;yu) < ey )E Vo) (v(y)) e 7@, (12.3.24)

Proof (a) It suffices to consider s > 0 for which 6(s) exists. As usual 7(u)
denotes the ruin time, starting with initial risk reserve u. Then, as in (12.3.20),
we have
v(u;yu) = E@¢;0)(8) E (¢ 1(r(u)(8) "Le*RIDNHOT), 1(y) < yyleov
< E(o)qu(O) (8)es E@[?7(W); r(y) < yule*"
< E Oy 0)(s) ¢, e mintaevilel}e
where the first inequality follows as in (12.3.21). The derivative of s — y6(s)
at s = v is 1 — 9 (y) > 0. Thus 4(y) > 5. Further s — yf(s) is
concave and hence the argument s(y) at which the maximum is attained,
is larger than ~. In particular 8(s(y)) > 0. Thus s(y) > s(y) ~ y8(s(y)) and

min{s(y), s(y) — y8(s(y))} = v(y) proving the first part of the assertion.
(b) Note that for 0 < s < v we have as before that

¥(u) — ¥y yu)

= ED¢;0)(9) E@[(§r(uy)(8) 1R, gy < 7(u) < o0]e
E (0)¢J(0) (8) ¢, E D[P yy < 1(u) < oole™*
E©¢;(0)(s) ¢ e7(0738Dx

IA A

where in the last inequality we used that 6(s) < 0. Further, the derivative of
the concave function s — yf(s) at 8 = v is 1 — y8V(y) < 0. Part (b) follows
since s{y) < v, and this immediately implies that y(y) > +. a

Corollary 12.3.1 Assume there erxists s > v such that m;(s) < oo for
1 < i< € Then limy o u'7(1) = (6)(4))~1 in probability on the set
{r(u) < 00}

The proof of Corollary 12.3.1 is omitted since it is analogous to the proof of
Corollary 10.3.1. a

Bibliographical Notes. Lemma 12.3.1 is due to Kingman (1961); see also
Miller (1961). Lemma 12.3.2 and Theorem 12.3.6 were first proved by Asmus-
sen (1989). In the same paper an upper bound for the ruin probability P(u)
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was derived which is larger than that given in Theorem 12.3.5. For two-sided
Lundberg bounds in a Markovian environment, see also Grigelionis (1993).
Matrix-algorithmic methods for the numerical computation of the ruin
probability ¢(u) are studied in Asmussen and Rolski (1991). A method for
statistical estimation of the adjustment coefficient is given in Schmidli (1997b).
In Bauerle (1997), the expected ruin time E 7(u) is investigated in the case of a
negative safety loading. An optimal stopping problem for a Markov-modulated
risk reserve process is studied in Jensen (1997). For the case that interest and
cost rates are also included in the model, see Schétt] (1998). A model where
the premium rate depends both on the current surplus and on the state of the
Markov environment is considered in Asmussen and Kella (1996).

12.4 PERIODIC RISK MODEL

In practical situations, the claim arrival rate may vary with the time of the
year or the claim size distribution may be depend on the seasons. Let A(¢) be
the intensity function of a nonhomogeneous Poisson process {N(t), ¢ > 0}.
In this section we assume that A(t) is periodic with period 1, say, so that
[t] = t — |¢] is the time of season. We say that {N ()} is a periodic Poisson
process. Let {F(x), t > 0} be a family of distribution functions such that the
mapping ¢t — f0°° g(z) dFi(z) is measurable and periodic with period 1 for all
integrable functions g.

Assume now that claims arrive according to the periodic Poisson process
{N(t)} with intensity function A(t) and that - if a claim arrives at time ¢
— then the claim size distribution is F;, independent of everythmg else. We
denote the moment generating function of F; by m,(s) = fo e** Fy(dz). We
also assume that the premium rate is constant and equal to 3. From the
construction of the risk reserve process it is apparent that {R(t) — u, ¢t > 0}
has independent increments. We now compute the Laplace-Stieltjes transform
[( ) Ee_a(R(t) “)

Lemma 12.4.1 For s,t > 0,

lit;s) = exp(-,ast + /0 t M) (1 (s) — 1) dv) . (12.4.1)

Proof Using Theorem 12.2.1 we find

Ee*(RO-v) = i E (7@ U | N(t) = n)P(N(t) = n)
n=0
8 N t n t
_,gg 2 (fo fo yF dy)A(") d'l}) (fo ’\(:") d'l)) e— fo A(v) dv

= fo A(v) dv !
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= exp(—ﬁst + /: Aw)(hy{s) — 1) dv) . g

Let us denote the average arrival rate by A = fo A(v)dv while F§(z) =
At fo /\(v)F (z) dv is the distribution function of a typical claim size. Its
mean is pf; = fo x F{}(dz) and the moment generating function is 77 S (s) =

lf A(v)riy(s) dv. Let sp = sup{s > 0: sup,g( 1) e(8) < 00}. Similarly
as in (11.3.2) we define 6 (s) = (mFo (s}-1) —é

Let v > 0 be the solution to fo (v)(r.(7) — 1) dv = Bv. Then v > 0 fulfils
@*(v) = 0. In the sequel, we assume that such a 7 exists. Since #*(0) = 0 and
the derivative of 6*(s) at zero is Aul; —~ B < 0, the convexity of 8*(s) ensures
that

M) = A [ ” ze"* FO(dz) — 8> 0. (12.4.2)
0

By {F:} we denote the smallest (uncompleted) right-continuous filtration such
that {R(t)} is adapted. Then, a law of large numbers and an ezponential
martingale can be derived for the periodic Poisson risk model.

Theorem 12.4.1 The risk reserve process {R(t)} fulfils
.1 _ 0
Qim —R(t) =8~y -

Moreover for all s < g, the process {M(t)} given by M(t) = e~*(R®)—v) /(4. 5)
is a {F,}-martingale.

Proof The random variables Yj = R(1) — u,Y> = R(2) — R(1),... are
independent and identically distributed. From the derivative of their Laplace—

Stieltjes transform at s = 0 we obtain EY = E(R(1) — u) = 8 — Aud,. We
also have

B +1 1 WX s +1-9) R(t) -
t Ltj+1i§Y‘_ t t

18] 1 & ﬂ(t—LtJ)
S t[tjzy

The strong law of large numbers yields the first part of the theorem. Similarly
as in Example 3 of Section 10.1.3 we can prove that e~(R(t)—v) /[ e—2(R{t)~u)
is an {F;}-martingale. By Lemma 12.4.1, the proof is then complete. g

For all ¢ > 0, we define P{”(4) = E[M(t); A], where 4 € F;. Since
{M(t)} is a positive martingale and M(0) = 1, it is easily seen that P(’)
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is a probability measure and
P(4) =E[M(t): 4], Ae€F,

whenever t < t'. We leave it to the reader to show that the measures
{Pg‘), t > 0} can be extended to a “global” probability measure P on
Foo = 0(U;>0 Ft)- In the remaining part of this section we only consider P

and as usual P® = P.

Lemma 12.4.2 The risk reserve process {R(t), t > 0} on~(9,.7-'°o,P(7)) is
again that of a periodic Poisson model specified by (8, A(t), Fi(z)), where

- ) . e dF(x)
(t) = A@)in(v) t(z) o)
Proof Fort <t and 0 < s < sp we have
Egl‘i)e—a(R(t)—u)

= EetRO-v (1) = B (RO-0=-1RO-w+8st= [[A0)(ho(1)-1) do

t
exp( [ (@) (a(s + ) = () = Be) )

t

exp( [ (w)th, ()~ 1) - Bo)dv)

In a similar way we can prove that for ¢; < ¢, < ... < t, < ¢ and
Ossh'“’sﬂsso

n

Eg:r)e—-(al (Rit1)—u)+...t8n (R(tn)—u)) — II Eg;‘l)e—s;'(R(t,')—-u) .
i=1

Thus, using Lemma 12.4.1, the assertion follows. ]

Next we compute the trend of the {R(t)} under P, Using (12.4.2) and
Theorem 12.4.1, we obtain

EMR(1) -u=-6M(y) <0.

Hence by Theorem 6.3.1c we have lim inf;_, ., R(¢) = —0o and so ruin occurs
with P(_probability 1. Let 7(u) be the time of ruin starting with initial risk
reserve 4. As in (10.2.31), we can show that

P(u) = P(r(u) < 00) = e” " E M (i(r(u), y)eRr()) (12.4.3)

This relation brings us in a position to derive Lundberg bounds for the ruin
function ¥(u). Put z, =sup{y: F,(y) < 1}.
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Theorem 12.4.2 For the ruin function ¥(u) in the periodic Poisson model

a_e " < YP(u) < ape” M, w>0, (12.4.4)
where
_ . . . Fu(‘”)
- = B B et Fray)
« F,(z)
ar = sup l(v;y) su d :
* ogvgl w:7) OSzgzv [ -2 F,(dy)

Proof Using the fact that R(r) = R(r —0) — U™, where U™ is the size of the
claim causing ruin, we have

blu) = e E (f(r(u); ,Y)e‘v(ﬂ(f—o)—U*))
= e EM(EDlr);7)e®0YD | |7, R(r - 0)))
. Feory—n)
> e "™ inf I(v;y) inf N — @y) _ a_e ¥
0<v<1 0<z<zy 1 - F,(z)
The upper bound in (12.4.4) can be derived in the same way. 0

We remark that — under some additional conditions — it is also possible to
prove a Cramér-Lundberg type approximation of the form:

Jlim e™y(u) = e(i(0;7) 7" (12.4.5)

Bibliographical Notes. The material of this section is from Asmussen
and Rolski (1994). Periodic risk models were also considered by Asmussen
and Rolski (1991), Beard, Pentikainen and Pesonen (1984) and Dassios and
Embrechts {1989).

12.5 THE BJORK-GRANDELL MODEL VIA PDMP

The Bjérk-Grandell model has been introduced in Example 3 of
Section 12.2.2. Recall that {(A;, I;), ¢ > 1} are independent random vectors
with P(A; > 0,1; > 0) = 1 and {(A;, i), ¢ > 2} are identically distributed.
Let &, = X i, Ii be the time where the intensity level changes for the n-th
time. For convenience we put £, = 0. Then A(t) = Ay, if §n—y <t < &, and the
cumulative intensity function n(t) is given by 7(t) = fot A(v) dv. Conditioned
on {(A;,I;), i > 1}, the expected number of claims in (0,¢] will be ().
Let {N'(t)} be a homogeneous Poisson process with intensity 1. The claim



530 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE

counting process {N(t)} in the Bjérk-Grandell model can then be defined as
N(t) = N'(n(t)); see Theorem 12.2.3. As before the risk process {R(t)} is

given by
N(t)

Rit)=u+8t-) Ui,
i=1

where {U;} is a family of independent and identically distributed random
variables, independent of {(A;, I;)}. By (A, I) we denote a generic vector with
the same distribution as (A, I2). In order to exclude trivialities, we assume
that EA > 0 and EI < oo. Furthermore, to ensure that E N(t) < oo for all
t > 0, we assume E A < co. If we want to formulate a net profit condition, we
also have to assume that E (AI) < co. If the support of A only consists of a
finite number of points and I conditioned on A is exponentially distributed,
then we have a Markov-modulated risk model. Note, however, that there exist
Markov-modulated risk models that are not Bjérk—Grandell models.

12.5.1 Law of Large Numbers

We begin with the investigation of the asymptotic behaviour of {R(t)} as
t — oo.

Theorem 12.5.1 Let i = uy denote the expected claim size. Then,

Jim t™'R(t) =8 - pE(AD/EI.

Proof We have to show that limy_ t™ % U; = uE (AI)/EI. First note
that
N’ (n(e))

192, ) 1
?2; 0] 2 U

i=1

Because 1(t) — oo, it follows from the law of large numbers for the sum of
independent random variables and from Theorem 6.1.1a that

N'(n(t)}

t——xoo 'q(t Z Ui =

It remains to show that lim, o t 7 9(t) = E(AI)/E]. Define the counting
process Ng(t) = sup{n > 0 : &, < t} to be the number of changes of the
intensity level in the time interval (0, ¢]. Then

Ne(t) 1 /€~em n(t)  Ne(®)+1 1 S AORY
—= <2< .
t N, S WdvsTe s Ne(®) + 1 /0 Alv) dv
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Since {N¢(t)} is a renewal process we have lim,_, ! Ng(t) = (EI)~! by
Theorem 6.1.1. Finally

Ne(t)
1 /€~em 1 ¢
—_— Alv)dv = —— AL
Rl 00 wg M
tends to E (AT) by the usual law of large numbers. |

The expected income in (§;,£&;) is SEI and the expected aggregate
claim amount during that period is pJE (AJ). Considering the random walk
{R(&n), n > 1} it follows from Theorem 6.3.1 that ruin occurs almost surely
if BE I < pE (AI). We therefore assume the net profit condition

BEI > uE(Al), (12.5.1)

which ensures that R(t) — oo as t = oc.

12.5.2 The Generator and Exponential Martingales

The stochastic process {(R(t),t), t > 0} is not a Markov process in general.
In order to use the results derived in Chapter 11 for PDMP, we have to add
further supplementary variables. In particular, if the conditional distribution
of I given A is not exponential, then, as in the case of the Sparre Andersen
model considered in Section 11.5, the time since the last or the time till
the next change of the intensity level has to be included into the model. In
Section 11.5 we showed that it is more convenient to use the time till the next
change of the intensity level. Let A(t) = é,—tfor §,—1 <1t < &,. Then it is not
difficult to see that the process {{R(t), A(t), A(t),t)} is a PDMP. The active
boundary is T’ = {(y,2,0,¢t) : (¥,2,t) € R x Ry x Ry }. For each function g
fulfilling the conditions of Theorem 11.2.2 the generator A is given by
A w,t} = 9 t 9 t o t
9y, z, w, ) = 'ézg(:'h z,w,t) + 5559(.% z,w,t) — %g(ya z,w,t)

+ Z(/Ooo gy — v, z,w,t)dFy(v) — g(y, 2, w, t)) (12.5.2)

and the boundary condition (11.2.5) is

o p0OO )
9(y,2,0,t) = / / gy, v,w,t) Fa r(dv,dw). (12.5.3)
o Jo

To get an idea on how to find an exponential martingale we solve the
equation Ag(y,z,w,t) = 0. We try a function of the form g¢(y,2,w,t) =
a(z, w)e*¥e~?t. Hence we have to solve the differential equation

—8a(z, w) — Bsa(z,w) — a® (z,w) + za(z,w)(thy(s) - 1) =0,
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where a(®1 (2, w) denotes the partial derivative with respect to w. The general
solution to the above equation is

a(zy 'llJ) = a,'(z) e(z(mu(‘)—l)'ﬂt—ﬂ)w

for some function a’. Since the boundary condition (12.5.3) has to be fulfilled
as well, it follows that

{» <y Je o]
/ / al(v)e(V(ﬁlU(-’)—l)_Bs'_g)w FA ,(dv, dW)
0 Jo

E (d'( A)e(l\(ﬁw(s)—ll—ﬁs—a)l ).

a'(z)

As the right-hand side of this equation is independent of z, a'(z) is constant.
Without loss of generality we can assume that a’(z) = 1. It thus follows that
8 = 8(s), where 6(s) is a solution to the equation

E exp((A(hy(s) — 1) — Bs —6(s)}I) = 1. (12.5.4)

We leave it to the reader to show that, once it exists, this solution is unique.
Without using the results of Section 11.2.3 explicitly, we get the following
theorem.

Theorem 12.5.2 Let sy > 0 such that thy(sp) < 0o and assume that for each
8 < 8o the solution 6(s) to (12.5.4) exists. Then, the following statements are
true:

(a) For each s < g, the process {M(t)} with

M(t) = exp((A(t)(shy (s) — 1) — Bs — 6(s))A(t) — sR(t) — 6(s)t) (12.5.5)

ts a martingale with respect to the history {F;} of {(R(t), \(t), A(t))}.
(b) The function 0(s) is strictly conver on (—00,s0] and 6)(0) = —8 +
vE(A/EI

Proof (a) We prove the martingale property directly. There is no loss of
generality to assume u = 0. First, consider the process {M(t)} at the epochs
§» only. Note that A(§s) = Ant1 and A(€,) = In4y is independent of Fe, _,,
€n and R(:). Then by the definition of 6(s)

E(M() | Feo_y) E (e *BE)-00Xa 7. )

e(’\n (ThU(Q)—l)_ﬁs)In e_’R(gﬁ—l)—o(a)(Eﬂ—l+In) ,

where the last equality follows from (5.2.7). This means E(M(&,) | F¢._,) =
M(£n—;), which implies

E(M(fn) | Feu) = M(&), k<n. (12.5.6)
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Now let 0 < v < t. Analogously as above it follows that E(M(v + A(v)) |
Fu) = M), E(M(¢) | Fenew) = M (€N, (r)) and that for t < v + A(v), we
have E(M(t) | F») = M(v). We can therefore assume that t > v + A(v),
i.e. v+ A(v) < €n,(:)- The next step is to show that

E (M(&nee) | Forawy)

E(e-OR(ine(z))—o(s)ENE(z) va+.4(u))

= M(v+ A(v)). (12.5.7)
If s < 0, then the integrand in the second expression is bounded by e ##
because in this case #(s) > 0. If s > 0 then the integrand is bounded by
exp(s 2?;1“) Ui), where N'(t) = N(§n,:))- To see this, it suffices to notice
that s > 0 implies 83+ 6(s) > 0, which follows from the definition of 8(s). We
want to show that the latter bound is integrable. From (5.2.7) we know that

N'(t) Ne(t)

E exp(s Z Ui) =E exp( Z AL Ry (s) — 1))
i=1

=

Ne(t)
< ePHONE exp(( Y (A (s) — 1) - Bs - 6(s))E;)

i=1

From Fatou's lemma and the definition of 8(s) it then follows that

Ne(tian
E lim exp( Y (A(hu(s) = 1) - B2~ 8(s)L:)
= Ne(t)an
< lminfEexp( Y (ACho(s) - 1) - Bs —8(s)1i) = 1.

=1

Thus (12.5.7) follows from (12.5.6) by the dominated convergence theorem.
That the process in (12.5.5) is a martingale follows from the fact that, for
t>v+ A(v),

E(M(2) | F) = BB (M) | Feu o) | F)
= EEMEnw) | Foraw) | Fo) = EMv+A@) | F) = M@).

(b) For simplicity, we consider the nondelayed case only. So, we take (A, I1) 4
(Ai, I;) for i > 2. Recall from (5.2.7) that

E (eAthu(8)-1)-Bs—0()] | A ) = E (e"*(BU)-w—0(6M | A [y,

Thus 8(s) fulfils the equation
E (e~ *(BD-w-0(s)1y — 1 (12.5.8)
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By the implicit function theorem — see Hille (1966) — 8(s) is differentiable and
—E ((R(I) — u + 8M(s)[)e*(RD-w-0()} = o,

from which it follows that #(s) is infinitely often differentiable. Letting 8 = 0
yields 01 (0) = —E (R(I) — u)}/E I = —8+uE AI/EI. The second derivative
of (12.5.8) is

E (((R(I) — u + 8N (s)I)? — 6@ (s)I)e 2 RID-w=8)]) — ¢

from which 8(3)(s) > 0 readily follows. O

12.5.3 Lundberg Bounds

We turn to the ruin function ¢(u) = P(min{t : R(t) < 0} < oo). Note that
the underlying Bjork—Grandell claim arrival process needs neither to be time-
stationary nor Palm-stationary. Nevertheless, we need the net profit condition
(12.5.1).

As before, choose s € R so that 8(s) is well-defined. Let a(z,w) =
elz(mus)-1)-Bs—8)w  Congider the likelihood ratio process {L,(t), t > 0} -
a nonnegative martingale with mean 1, where

Ly() = (Ea(Ay, )~ e e rhu (6)-1)=8s-0() A®) g~ (R(t)—u)g=Bla)t

and define the new measures P{*)(B) = EQ[L,(t); B] for B € F,. We again
use the smallest right-continuous filtration {F;} such that {(R(t), A(2), A(t)}}
is adapted. Then the measure Pg’) can be extended to a “global” measure P'®
on F; see Remark 2 in Section 10.2.6. As one can expect, under P, the
process {(R(t),Mt), A(t))} is again defined by a Bjérk—Grandell model. But
we have to slightly adapt the notation. In the new model, the process {A(2)}

will no longer be the intensity process. We therefore denote the intensity
process by {M\#)(2)}, where A@ () = A(t).

Lemma 12.5.1 Under the measure P*) the process {(R(t) Aft), A(t))} is
defined by a Bjork-Grandell model with intensity process {A*)(t)} given by

A& (E) = my(s)A(t) and with claim size distribution function F(s) ¥) =
fS e**dFy(v) /1y (s). The distribution of (A,I) is given by

(s) (dz dw) = el(z(mu(8)=1)=Bs—6(s))w Fy ;(dz dw)
and

F?, (dz,dw) = (Ba(Ly, [)) e o=D=0s=bw |} (dz, dw).

In particular, P(’)(Iimt_,oe t7IR(t) = -0 (s)) = 1.
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The proof is omitted since it is similar to the proof of Lemma 12.3.3.

In Theorem 12.5.2 we have seen that 8(s) is a strictly convex function, even
with a negative derivative at 0 under the net profit condition (12.5.1). There
might be a second solution s = v > 0 to 8(s) = 0 besides the trivial solution
s = 0. Such a solution v > 0 is called the adjustment coefficient. Assume
now that v exists. The ruin probability ¢¥(u) can be determined using the
measure P Indeed, since 8 (y) > 0, we have P (7(u) < 00) = 1. Thus,
proceeding in the same way as in Section 11.3.1, we have

Y(u) = E(O)a(Al, L)E M (e(ﬁv—)\(r(u))(rhu('r)-1))A(r(u))evﬂ(f(u)))e-—vu.
(12.5.9)
In order to use this formula we have to determine the distribution of
(A(7(u)), A(7(u))). Rather than solving this hard problem, we obtain an upper
bound for the ruin probability %(u) but only under an additional assumption.
Let z¢ = sup{y : F(y) < 1}.

Theorem 12.5.3 Let {(R(t), A(t), A(t))} be defined by a Bjork-Grandell
model such that the adjustment coefficient v exists. The following statements
are true:

(a) Assume there erists @ constant ¢ > 1 such that

inf E©@(A0rvM-1=BNE-0) | A = I >y) > 7!, (12.5.10)

2€B
¥20

where B C {z : z(thy(y) — 1) < By} is a set such that PO\ € B) =
PO (A(my(y) — 1) < 8v). This is particularly the case when there exists o
constant ¢’ < oo such that

supEO (T —ylA=2zI>y)<
z€B
y20

and ¢ = 37", Then

$(u) < BO max{lca(Ar, )} sup e L)
(1]

————t—g ¥, 12.5.11
<y<zo f:oe""dFu(v) ( )

(b) Assume mg)('y) < 0. Then

~ (©) o fing —7CW)
v(u) =2 E%a(A, D) mm{;xg) f:o v dG()’
1

—vu
E(o)[e-"rR(I:) l R(Il) < 0] } € f (12512)

where G(y) = PO(R(&) - R(&) 2 —)-
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Proof (a) Assume first that a constant ¢’ with the desired properties exists.
Then by Jensen's inequality

E O (eAthrvM-D=ANU-0) | A = 2,1 > )

> E@@EU-¥|A=g]T>y)
S o BB (UI-yA=z,I>y) 5 o=Br' _ o1

Thus there exists a constant ¢ > 1 such that (12.5.10) is fulfilled. Conditioning
on (A{,I;) we now assume that A; and I are deterministic. Later on we
remove this additional assumption by integrating the obtained expression.
Furthermore, conditioning on {A(7(u)), A(7(u)), R(r(u) — 0)} and using
(12.5.9), we find

P(u) < a(Ag, L)E M (P Ar)mu(m-1)A(r ()

YT
X sup e"Ful(y)

—-vu,
O<y<zo f;o et dFu(’U)

see also (12.3.21). Taking the expectation () we split the area. of integration
into the three subsets {7(u) < I}, {7(uv) > L1, A(7(w))("y(v)—1) > By} and
{r(u) > I, AM(T(u))(y(y) — 1) < B7}. First we consider the set {r(u} < L1 }.
Then

E ) (eBr=2r)imu(M-DAT() | r(y) < 1)

< max{l,e(ﬁ'r-Ax(ﬁw('v)—l))h} = max{1, (a(A;, 1))~}
On the set {r(u) > I, A(t{v)) (i (y) — 1) > By} we have
E () (eBr= 2t M=INATOWD) | 7(u) > B, Mr(w)(hy (1) =1) 2 fy) < 1.

The most delicate case stems from the integration on the set {r(u) > &,
A(r(u)) (e (7) — 1) < Bv}. We first claim that

EM(eBr—Alw-NI-0) (A =z T>y)<e

for any z € B. It follows from (10.2.25) that

E (M (elB7=Almu(m-1)){I-2) |[A=z,1>y)
elz(me(v)-1)-8)y
E O (eAmuM-D-8NI | A =z,1 > y)
1
E O (eAmuN-D-8NU-0) | A =z,] > y) se.
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Define the random variable 7, as the last epoch before ruin time 7(u) where
the intensity level changes. Then

E(‘v)(e(Bv—«\(T(u))(fnu('v)—l))A(r(u)) | T(w) > Iy, A(r(w)) (g () = 1) < Bv)
= EM (e(ﬁ'r—k(f‘)(ﬁlu(’Y)—l))(A(n)—(r(u)—r.)) I
() > I, \(r) (thu (v) — 1) < By) .

Conditioning on 7(u), 7. and A(7,) is like conditioning on 7{u), 7., A(7.) and
A(1.) > 7(u) — 7. On the set {A(.) € B} we find

EM™ (e(ﬂw—«\(r-)(ﬁw(7)—1))(A(Tv)—(r(u)—r-)) | 7(u), Ty, A(12)) < e
Thus
E ) (e8> -MrD0mm-1AC) | 1) > b, Mr(w))(rhu (1) — 1) < 87) <.
Summarizing the above results we find that
E M(elfr— M) thu(n-D)A(T()) < max{c, (a(A1, I;)) '},

where we used the fact that ¢ > 1. Thus

—yu

eVl U(y)
< max{1,ca(A;, I —_———
w(U) - { (s 1)}05;1320 v e dFU(‘v)

If (A, I;) is not deterministic one has to take the expectation.

(b) Define ' = inf{&, : R(£,) < 0} the first epoch where the intensity level
changes and the risk reserve process is negative. Let ¥'(u) = PO (' < o0).
It is clear that ¥(u) > ¥’ (u). Since PO (' < 00) = 1 and since (A7), A(7'))
is independent of {R(t) : 0 < ¢ < 7'} and has the same distribution as (A, T)
we obtain

Y'(u) = E(O)G(AhII)E('r)(e(ﬁ'v—A(r‘)(ﬁw(w)—l))A(r’))E('r)(e"rR(T’))e—vu
E©g(A,, [)E M (e R())e=u

where we used Lemma 12.5.1. Let 7! be the last epoch where the intensity
level changes before 7. We have to distinguish between the two cases: 7, = 0
and 7! # 0. Note that by (10.2.25)

E(T)(e"YR(T,) l T,: = O) = E(T)(e’rﬁ(h) l R(Il) < 0)
E @ [evRth)e—v(RU)~v): B(]}) < (] 1
E O[e—7(R(I-v); R(I;) < 0] T EO(e-vRI) | R(I;}) < 0)°

Conditioning on R{7) = y yields

E (R | 7] £0,R()) = y)
= EW (e @+ RE)-’ED | R(&) — R(§) < —).
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To simplify the notation let X = R(&2) — R(&). Then by (10.2.25)
E(O)[e'Y(”"'X)e""X;X < -y
EO[eX; X < —y]
eVPO(X < —y)
EO[ X, X < —y]’

EME@+X) | X < —y) =

which proves the assertion by taking the infimum over y > 0. m]

Example Consider the Ammeter risk model where £, = n. Then 8(s) is
defined by E (eA(™u(8)-1)~-8s-8(s)) = 1 i.e. §(s) = log E exp(A(riy(s) — 1)) —
Bs. The net profit condition (12.5.1) takes the form 8 > yE A. The Lundberg
bounds derived in Theorem 12.5.3 simplify to

7 Y-
Y(u) < E(max{l,e“(mv(v)—l)—ﬁ'v}) sup e"Fy(y)

e " (12.5.13
0B Fevar, ) )

and
in e“’—@(y) —u
‘l[)(u) 0<y<xo m‘é—(v—)e Y ) (12.514)
where
N(1)
G(y) = PO (Z U< 8 +y) ZFa“(ﬂ + )E(A ") (12.5.15)
=1 n=0

In particular, if A has the gamma distribution I'(a,b) then the net profit
condition is b3 > au and

0(s) = a(logb — log(b — (rw (s) — 1))) — Bs

provided that my(s) — 1 < b. In this case, the distribution function G{y)
defined in (12.5.15) is given by

L(n+a)
b+ 1)"’\“‘z n!l(a)

oC
Gly) =Y F"(B+v)
n=0
which is a shifted compound negative binomial distribution.

12.5.4 Cramér-Lundberg Approximation

We turn to the question about under what conditions a Cramér-Lundberg
approximation to ¥(u) would be valid. From (12.5.9) we find

Y(u)e™ = E@a(Ay, ;) E O (127 (u)imu(m)-1) Alr(u)) g7 R(r(w)y
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The existence of a Cramér-Lundberg approximation is therefore equivalent to
the existence of the limit

lim I (") (e{7= M7 () (o (1) -1 ACr(u)gvR(r(w))

Uu—00
We leave it to the reader to verify that this limit does not depend on the

distribution of (Ay,I;). It is, however, not trivial to prove that the limit
actually exists.

Theorem 12.5.4 Assume that the adjustment coefficient v > 0 exists, that
ﬁzg)('y) < oc and that there ezists a constant ¢ > 1 such that

inf E (O (eWMHBuM-D=BMU-¥) | A =2 [>y) >,
5

where B C {z : z(my(y) — 1) < By} is o set such that PO(A € B) =
POAy(y) - 1) < B7). Then there exists o constant ¢, not depending on
the initial state, such that

Jim y(u)e™ =E Oa(A), I . (12.5.16)

The proof of Theorem 12.5.4 is omitted. It can be found in Schmidli (1997a).

12.5.5 Finite-Horizon Ruin Probabilities

Ultimately, we turn to finite-horizon ruin probabilities. We need to be
guaranteed that subsequent quantities are well-defined. Assume therefore that
for every s € R considered the solution 8(s) to (12.5.4) exists. We also assume
that the adjustment coefficient v > 0 exists. Furthermore, in order to get
upper bounds, the technical assumption of Theorem 12.5.3a must be fulfilled
for all s considered. As we showed in the proof of Theorem 12.5.3, this is most
easily achieved by assuming that there exists ¢’ < oo such that

supE@Q(I-y|A=2,I>y)<c <00,
2EB
v20

where B is a set such that P{¥(A € B) = 1. To simplify the notation let
#(s) = oo if 9(s) is not defined.

Theorem 12.5.5 Let v(y) = sup{s — y0(s) : s € R} and denote by s(y) the
argument where the supremum is aitained. Moreover, let

VFy(y)
—E®© 1,675 a(Ay, I v
¢s = E© max{ a(Ay, 1)} oSup [ e dFy()
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The following statements are true:
(a) Ify8V(7) < 1, then y(y) > 7 and

(s yu) < eyqyye T, (12.5.17)
(b) If y8™M)(y) > 1, then v(y) > v end
Pu) — Pu;yu) < coyye” Vv, (12.5.18)

The proof of Theorem 12.5.5 is left to the reader since it is similar to the proof
of Theorem 12.3.7.

Corollary 12.5.1 Assume that there exists s > v such that m(s) < co. Then
limy o0 w17 (1) = (61 (7))~ in probability on the set {T(u) < co}.

The proof of Corollary 12.5.1 is analogous to the proof of Corollary 10.3.1.

Bibliographical Notes. The risk model studied in this section was intro-
duced in Bjérk and Grandell (1988) as a generalization of the model considered
by Ammeter (1948); see also Grandell (1995). The approach to this model via
PDMP is similar to that used in Dassios (1987) for the Sparre Andersen
model; see also Dassios and Embrechts (1989) and Embrechts, Grandell and
Schmidli (1993). An upper bound for ¥(u) which is larger than that given
in (12.5.11) was obtained in Bjérk and Grandell (1988). Theorem 12.5.2,
Theorem 12.5.5 and Corollary 12.5.1 were derived in Embrechts, Grandell
and Schmidl (1993).

12.6 SUBEXPONENTIAL CLAIM SIZES

In the previous sections of this chapter we found the asymptotic behaviour
of the ruin functions ¥(u) and ¥°(u) given in (12.1.39) and (12.1.43),
respectively, when the initial risk reserve u tends to infinity. However,
our results were limited to the case of exponentially bounded claim size
distributions. In the present section we assume that some of the claim size
distributions are subexponential, i.e. heavy-tailed. The main idea of the
approach considered below is to compare the asymptotic behaviour of ¥{(u)
and ¥°(u) in models with a general (not necessarily renewal) claim arrival
process, with that in the Sparre Andersen model, and to use Theorem 6.5.11.
We first state two general theorems, one for a Palm-stationary ergodic input
with independent claim sizes, the other for processes with a regenerative
structure. Thereafter, we will apply the general results to several classes of
claim arrival processes.
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12.6.1 General Results

Consider the marked point process {(c,.,Un)}, where o, is the arrival epoch
and U, is the size of the n-th claim. We first assume that the point process
{0.} is Palm-stationary and ergodic and that {U,} consists of independent
and identically distributed random variables which are independent of {o,}.
We also assume that the net profit condition (12.1.38) is fulfilled in that
A7 = E%0py1 — 0n). For each € > 0 let Z, = sup,5,{n(A~! —¢) — a,}.
Note that by Theorem 12.1.3 and Lemma 12.1.2 we have

lim n"lo, = A7t (12.6.1)

n—so
Hence Z, < oo follows. The condition formulated in the next theorem means
that, for each € > 0, the tail of the distribution of the supremum Z. should be
lighter than that of the (integrated tail) distribution F§; of claim sizes. In other
words, the sequence {o,} of claim arrival epochs should not be too bursty.
Examples where this condition is fulfilled are Poisson cluster processes and
superpositions of renewal processes. They will be discussed in Sections 12.6.2
and 12.6.3, respectively.

Theorem 12.6.1 Assume that F§, € S and that im0 Fz, (u)/Fg(u) = 0
for all € > 0. Then, for the ruin function ¢¥°(u) given in (12.1.43),

. ¥°(u) A
lim ) = .
u—l{lgc fu Fy (‘U) dv 8- AEU

(12.6.2)

Proof By rescaling, we can assume without loss of generality that 3 = 1. Let
€,¢' > 0. Using (12.6.1) it is not difficult to see that there exists ¢ > 0 such
that

Po(ﬂ{an <n(A7! +e) +c}) >1-¢'.

n21
Hence n
>(1-¢')P(su Ur—21=g)} >u+c).
) 2 (1-¢) Zg{g( )} >u+e)
Thus, (2.5.7) and Theorem 6.5.11 imply
pe B@) o dw)

u—00 f:o FU.('U) dv  u—=o f:j_cﬁ;(v) dv

P(sup,>i { T rei Uk — A1 —€)} >u+¢)

Juye Folv)dv

> (1-¢')liminf
U0

1
A l4e—-p’

(1-¢)
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where u = EU. Since £,¢' > 0 are arbitrary it follows that

.. ¥(u) 1
lim inf — > .
iy f:° Fy(v)dv = At —p

Let now 0 <e < A™! — g and M, = sup,> {3 k-, (U — 27! +¢€)}. Then

. Y(u)
lim