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Preface 

This book is designed for a beginning or an intermediate graduate course in 
stochastic modelling. It is intended for a serious student in probability theory, 
statistics, actuarial sciences or financial mathematics. The overall objective is 
to make the basic concepts of stochastic modelling and insurance accessible to 
students and research workers in a comprehensive manner. Renewal theory, 
random walks, discrete and continuowtime Markov processes, martingde 
theory and point processes are among the major subjects treated. The 
selection of the topics has been largely made on the basis of their relevance 
within an actuarial or financial context. In this sense, the book is rather 
special. On the other hand, one could have written a similar textbook but 
with queueing theory or stochastic networks as the scrutinizing subject. 

A few words are in order about the selection of topics. Space limitations have 
forced us to make a choice from stochastic processes, actuarial mathematics 
and the mathematics of finance. Also, each one of the authors, coming from 
four European countries, had a list of favourite topics when the writing project 
began. 

One advantage of using insurance questions as guidelines in the selection 
of the topics is that the treated subjects gain in coherence. .4nother facet 
is that any important actuarial problem is highlighted from a variety of 
different stochastic angles. A possible disadvantage might be that important 
subjects are not duly treated. We consider the topics that are covered as 
the basic intersection of stochastic modelling, insurance mathematics and 
financial mathematics. As a result, we only give a few elements of branching 
processes or of jumpdiffusion processes. In the same fashion, we do not 
cover credibility theory, IBNR claims (IBSR = incurred but not reported) 
or topics from advanced finance. On the other hand, we do treat some 
uncommon subjects like subexponentiality. phase-type distributions, piecewise 
deterministic niIarkov processes, stationary and marked point processes, etc. 
We very much hope that what has been covered will be sufficiently stimulating 
to encourage the reader to continue their efforts. 

Some special features of this book are the following: 
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1. The first chapter gives the reader a bird’s-eye view of the main themes 
treated in the book. We have made an attempt to introduce the principal 
concepts from insurance and finance in an intuitive fashion, avoiding rigour. 
This chapter should however convince the reader about the need for the 
mathematidy sound treatment in the rest of the book. 

2. The book is not covering the statistical aspects of stochastic models 
in insurance and finance. However, to emphasize the relevance of the 
stochastic models, a fair number of practical illustrations with real life 
data have been included. 

3. In a similar fashion, some numerical and algorithmic procedures have 
been included since they make up a vital portion of current day practical 
approaches in insurance. 

4. An attempt has been made to make the book self-contained. Only well- 
known results from analysis, probability and measure theory have been 
mentioned without proofs. A couple of times we allude to results that are 
onIy treated in a subsequent chapter. This happens most often when the 
proof of a result depends on more sophisticated materid treated in the 
later part of the book. 

5.  Notes and comments at the end of each section include references to 
additional reading material. An extensive list of references is included. 
This bibliographic4 material should serve two purposes: helping the 
probabilistically trained reader to find their way in the actuarial and 
financial literature, while at the same time informing the practitioner on 
the sources from which to find the mathematical treatment of one or the 
other useful methodology. 

Thanks to the unusual and unifying approach, many of the topics are put in 
a novel framework. While we do not claim originality, a sizable set of results 
and proofs appear here for the first time. 

The numbering of chapters, sections, subsections, definitions, formulae, 
lemma’s, and theorems is traditional. Chapters are subdivided into sections, 
while sections are further subdivided into subsections. References of the form 
2.j.k refer to chapter i, section j ,  serial number k of subsections, definitions, 
lemma’s, and theorems. If we refer to a formula, we write (2 . j .k) .  References to 
the literature are of the form: name(s) of the author(s) plus year; for example 
Smith (1723) or Kovalyov and Smith (1794). 

We emphasize that the book has been conceived as a course text. In an 
attempt to keep the size of the book at a reasonable level, we decided not 
to include sections with exercises. In many places, the reader is, however, 
asked to provide additional arguments and parts of proofs. This, of course, is 
not sufficient. A subject like stochastic modelling not only requires routine- 
like skills; it also demands training and sharpening of accurate probabilistic 
intuition which can only be achieved by tackling nontrivial exercises. We are 
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convinced that the best way to help students and teachers is by supplementing 
this textbook with a forthcoming Teacher’s hlanud. 

This book would never have been finished without the help of many people. 
Individually, we take pleasure in thanking our home institutions for their 
indulgence and logistic support, needed during the many working sessions 
of the quartet. Each one of us extends his thanks to his students and 
colleagues who patiently read first, second or n-th drafts of the manuscript 
and who helped us whenever there were problems with the styling. Jointly, 
our appreciation goes to a large number of colleagues in academia and in 
insurance companies who helped us during the selection process of what and 
what not to include. 

In particular we are grateful to Sabine Schlegel for her invaluable help 
during the whole process of the preparation of the book. Apart from reading 
the manuscript and helping to eliminate a number of errors, she provided the 
computer illustrations included in the text. Also, our contacts with J. Wdey 
& Sons through Helen Ramsey and Sharon Clutton have always been pleasant 
and constructive. 

Further support and help is greatly acknowledged. TR thanks the 
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List of Principal Notation 
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transposition of matrix A 
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CHAPTER 1 

Concepts from Insurance and 
Finance 

1.1 INTRODUCTION 

Let us start out with a concrete example. Consider all policies covering fire of 
apartments in a suburb of a major city that are underwritten with a specific 
insurance company. The insured goods have a comparable value and the 
chances of fire are probably not very different from one building to another. 
Such a set of policies makes up a homogeneous portfolio. 

Most client-related insurance businesses use such portfolios as basic building 
blocks. Properly compiled they make up branches within the insurance 
firm, like fire, automobile, theft, property, life, health, pension, etc. The 
branch fire contains many portfolios dealing with different types of risk. 
Detached houses, terraced houses, apartments, apartment buildings, shops, 
supermarkets, business premises and industrial sites constitute an incomplete 
but already varied set of insurance risks for which different premiums have to 
be designed. Indeed, for each of the mentioned portfolios, the probabilities of 
a fire might depend on the portfolio. Moreover, the resulting claim sizes may 
very well be incomparable. 

In the chapters dealing with insurance aspects, we will restrict our attention 
to one specific portfolio. Such a portfolio is characterized by a number of 
ingredients of both a deterministic and a stochastic nature. 

Among the first we mention the starting position and a tame period. Usually, 
data referring to an insurance portfolio refer to a time span of one year in 
accordance with the bookkeeping of the company. Far more important is the 
initid m e m e  or initial capital. One interpretation of the latter is the amount 
of capital set aside to cover costs occurring during the initial period of the 
portfolio when the company has not yet received the yearly premiums. In the 
sequel the initial reserve will be denoted by u. 

Among the elements that usually have a stochastic nature are the following: 

The epochs of the claims; denote them by (21, m, . . .. In some cases we 
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consider an additional claim arrival epoch at t h e  zero denoted by a0 = 0. 
Apaxt from the fact that the epochs form a nondecreasing sequence we do 
not in general w u m e  anything specific about their interdependence. The 
random variables defined by T, = on - ~ ~ - 1 ,  n 2 1, are called the inter- 
occurrence times in between successive claims. 

0 The number of claims up to time t is denoted by N ( t )  where N ( t )  = 
sup{n : on 5 t } .  The intrinsic relation between the sequence of claim 
arrivals {~o?u~,uz,. . .} and the counting process {N(t), t 2 0 )  is given 

0 The claim occurring at time a,, has size U,. The sequence {U,, n = 1,2,. . .} 
of consecutive claim sizes is often assumed to consist of independent aud 
identically distributed random variables. However, other possibilities will 
show up in the text as well. 

0 The aggregate claim amount up to time t is given by X ( t )  = xz(;) U, while 
X ( t )  = 0 if N ( t )  = 0. By its very definition, the aggregate claim amount is 
in general a random sum of random variables. 

0 The premium income. In the coursc of time 0 to t we assume that a total 
of II(t)  has been received through premiums. 

0 The risk yesewe at time t is then R(t)  = u + n(t) - X ( t ) .  

The above setup allows flexibility in that an individual claim may mean a 
claim from an individual customer (e.g. third-liability insurance) or a claim 
caused by a single event (e.g. windstorm insurance). 

In the following sections we will give more details on the concepts introduced 
above and on actuarial quantities linked to them. We also show by practical 
illustrations how the stochastic character of these elements can be formalized. 
This approach will then automatically serve as an invitation for a thorough 
probabilistic treatment by concrete stochastic processes later on in the book. 

by { N ( t )  = n} = {nn 5 t < ~n+l}. 

1.2 THE CLAIM NUMBER PROCESS 

Let us start out by considering in more detail the claim number process 
{ N ( t ) , t  2 0}, built on the claim epochs. We will always assume that the 
claim number process is a counting process. This means that we require the 
process { N ( t ) ,  t 2 0) to satisfy the following three conditions. For all t :  h 2 0 

N ( 0 )  = 0,  
"t)  E Ipc', 
M(t) 5 N ( t  + h),  

N ( t  + h) - N ( t )  models the number of claims occurring in the time interval 
(t,  t+h]. We note that realizations of a counting process (also called the sample 
paths or trajectories) are monotonically nondecreasing and right-continuous 
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functions. Usually one assumes that the jumps are of size one so that multiple 
claim arrivals are excluded. But there are cases where this assumption is not 
valid. For example there is a vast proportion of road accidents where more 
than one person is injured. It is then useful to associate a murk to each jump 
epoch. The resulting generalization naturally leads to the notion of a marked 
counting process treated in Chapter 12. 

Let us write (pk(t ) ,  Ic = 0,1,. . .) with 

/ k  k+l \ 

for the probability function of the counting variable N ( t ) .  In some cases, time 
t does not play a significant role; if so, the t-dependence will be dropped from 
the notation. This happens, for example, when the insurer is interested in the 
number of claims received in successive one-year periods. 

A general computational expression for the probabilities p k ( t )  is impossible 
because we have not specified the interdependence between the epochs of the 
claims. We indicate some possible choices. 

1.2.1 Renewal Processes 

Depending on the type of portfolio, the insurer can make a variety of different 
assumptions on the sequence of inter-occurrence times {T,,n 2 1). In some 
particular cases it might be useful to assume that this sequence is generated 
by a renewal process {on,n 5 1) of claim arrival epochs, i.e. the random 
variables Tn are nonnegative, independent and have the same distribution as 
a generic random variable T .  The distribution function of the inter-occurrence 
time is then denoted by &(x) = P(T 5 5). 

Because this model appears as a natural candidate for the underlying 
stochastic mechanism in a wealth of processes, we will spend substantial space 
on a thorough discussion of renewal processes in Chapter 6. One might think 
that a renewal process is a rather simple type of process. However, the reader 
may be surprised to see some of the highly nontrivial results that form the 
backbone of all applications of renewal theory. In Chapter 6 we will deal 
in more detail with the Spume Andersen model, in which the claim number 
process is a (general) renewal process. 

Mathematically the simplest renewal process is the Poisson process intro- 
duced in Section 5.2 where the generic random variable T is exponentially 
distributed. Poisson processes have particular properties that distinguish them 
from other renewal processes. The main reson for this extra structure is 
provided by the lack of memory property of the exponential distribution. 
The latter distribution plays a similar crucial role in actuarial applications of 
stochastic processes as the normal distribution does in statistics. In particular, 
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for the Poisson process we have 

and E N ( t )  = At, VarN( t )  = A t  for all t 2 0, where A-' = ET is 
the mean inter-occurrence time. As a side result, the index of dispersion 
I(t) = VarIV(t)/EN(t) is constant and equal to 1. 

It should be mentioned that time is not to be considered as real time, 
but as operataond tame. Indeed, some seasonal effects might affect the claim 
reporting process and the portfolio does not have the same size over time. It 
is therefore advantageous to measure time via the expected mean number of 
claims. In Sections 1.2.2 and 1.2.3 we consider some possible deviations from 
the constant expected number of claims per unit of operational time. 

1.2.2 Mixed Poisson Processes 

As early as 1948 actuaries noticed that the variability in a portfolio, expressed 
for example by I(t), was often greater than 1, the value corresponding to the 
Poisson case. One reason is this. The risk is exposed to some environment, for 
example weather conditions in motor insurance. This environment is different 
each year and influences the number of claims from the portfolio. If one could 
know the environment completely, one would also know the mean number of 
claims A to be expected in a particular year. Because one hardly has any 
information on how the environment influences the mean number of claims, 
one can estimate the distribution FA of A and model the environment via l?~. 
This observation naturally leads to the following representation for the claim 
number distribution: 

where Fn(A) = P(h 5 A) is the distribution function of the mizing random 
variable A. 

Counting processes of this type are called mbed Poisson processes. They 
have appeared in this general form in the actuarial literature since 1959; 
see Thyrion (1959). A sound definition can be given using the theory of 
continuous-time Markov processes, the subject of Section 8.5. This treatment 
is inspired by Lundberg (196J). Alternatively, mixed Poisson processes can 
be introduced via the general theory of doubly stochastic Poisson processes 
studied in Section 12.2. 

The special m e  where F.I is a gamma distribution has already been 
introduced by Ammeter (1948) and is known as the Pdlya process or the 
Pascal process. Other choices are, however! possible. For example, the case 
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where FA is an inverse normal distribution has great use in insurance but also 
in geophysical modelling. 

It is easy to prove that for the mixed Poisson model, I(t) = l+t(Var A/EA), 
which equals 1 if and only if A is degenerate, the classical case of a 
homogeneous Poisson process. The above explanation means that it is not 
surprising that the mixed Poisson process has always been very popular among 
insurance modellers. 

1.2.3 Some Other Models 
Of course, neither of the above models exhausts the possibilities for the claim 
counting process. Let us just mention a few alternatives that wil l  be discussed 
in more detail in the forthcoming chapters. 

0 Recursavely defined claim number distributions. Panjer (1980) used a 
recursion relation for the probability function { p h ( t ) ,  k = 0 ,1 , .  . .} of the 
number of claims N ( t )  to derive a recursive relation for the distribution of 
the aggregate claim amount. In the actuarial literature we find an increasing 
number of pa.pers dealing with variations on the following recursion formula 

k = 2,3, .  .. , (1.2.2) 

where the quantities a and B may depend on the time variable t. The above 
class has been introduced by Sundt and Jewel1 (1981) in an attempt to 
gather a variety of classical claim number distributions under the same 
umbrella. Later on Willmot (1988) reconsidered equation (1.2.2) and added 
a number of overlooked solutions. We will deal with (1.2.2) in Section 4.3. 
Most often, time dependence in (1.2.2) is suppressed. Also, some authors 
include the value k = 1 in (1.2.2), hence lowering the number of free 
parameters in the model. Special cases of the above model are (shifted) 
versions of the Poisson, binomial, negative binomial (or Pascal) and 
logarithmic distribution. On the other hand, the recursion relation (1.2.2) 
can readily be generalized, and we find a variety of such extensions in the 
actuarial literature. 

0 Processes with stationary o r  independent increments. Another line of 
thinking is based on the following observations. The distribution of the 
increment N ( t +  h) - N ( t )  of the counting process { N ( t ) }  may be the same 
for all t 2 0. This means that, as a function of time, the counting process has 
stationary increments. This model is studied in Chapter 12, where { N ( t ) }  is 
said to be the counting process corresponding to a stationary point process. 
For example, the number of industrial fires in a small region might easily 
satisfy this type of stationarity condition, while the number of car accidents 
on a road, experiencing different t-ypes of weather conditions, may fail. 
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The counting process { N ( t ) }  may also satisfy the independent increments 
condition. This means that increments over disjoint time intervals are 
independent random variables. For example: car portfolios usually satisfy 
this condition. However, the number of severe accidents on oil platforms 
probably does not, since imposing stricter safety regulations will change 
the distribution of the number of similar accidents in later periods. 
Compound Poisson processes. In general it is a complicated matter to 
derive a closed expression for p k ( t ) .  However, in some cases it may 
be mathematically much more convenient to work with the probability 
generating function given by g N ( t ) ( ~ )  = EsN([). This is the case if claims 
are arriving with stationary and independent increments. It follows from 
arguments covered in Section 5.2.2 that in this case we have the relation 

Y (1.2.3) - e-xt(l-9,(s)) 
g N ( t ) ( S )  - 

where gv(s) is itself the probability generating function of a discrete random 
variable V, concentrated on the strictly positive integers. As such the 
counting process { N ( t ) }  could also be called a discrete compound Poisson 
process. The probabilities p k ( t )  are then given in the form 

where { p g k ,  k = 1,2,. . .} is the j-fold convolution of the probability 
function {pv,n,  k = 1,2, .  . .} with probability generating function j ~ * ( s )  = 
Esv. Needless to say, the explicit emhation of the above probabilities is 
mostly impossible because of the complicated nature of the convolutions. 
However, approximations and bounds are available. Some of them are 
discussed in Chapter 4. If the probability generating function &(s) is 
known, a numerical method which is based on the inverse fast Fourier 
transform can be used to compute thepk(t). This is discussed in Section 4.7. 
Kupper (1963) gives a nice application of discrete compound Poisson 
processes to claim counts. Assume that the number of accidents that have 
happened in a factory up to time t is denoted by N'(t). Assume that { N ' ( t ) }  
follows a Poisson process with parameter X as defined before. In the n-th 
accident the number of casualties is equal to K,. The sequence {Vn: n 2 1) 
is assumed to be a sequence of independent and identically distributed 
discrete random variables with probability generating function gv(s) = 
C,"=, p\r,ksk. Note that the inclusion of p v , ~  would hardly make sense. If 
the sequence {\h, n. 2 1) is independent of the process { N ' ( t ) ,  t 2 0 } ,  then 
the probability generaking function of N ( t )  = Ezr) Vi, the total number 
of claims up to time t: is of the form (1.2.3). .4 proper choice of gv(8) gives 
a variety of possible processes. Il'ote in particular that this claim number 
process allows multiple jumps. 
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The compound Poisson process will constantly appear as a backbone model 
for the claims arrival process. We will recognize it in its own right in 
Chapters 4 and 5. Later on it will reappear as a special type of continuous- 
time Markov processes in Section 8.3.1, as a piecewise deterministic Markov 
process in Section 11.3 and a.gain as a particular point process in Chapter 12. 
Claim number distribertaons related to Markov chains. Another model for 
the claim number process which generalizes the classical Poisson process 
can be provided by a (nonhomogeneous) pure birth process as treated in 
Section 8.5.4. Here the probabilities p k  ( t )  satisfy the Kolmogorov differtntial 
equations, well known fkom the theory of continuous-time Markov processes. 
Explicitly, 

(1.2.4) 

for some nonnegative functions q/;( t ) ,  where we take p - l ( t )  = q-l(t) = 0. 
A further example of a claim number process related to a continuous- 
time Markov process is the Markov-modulated Poisson process studied in 
Chapter 12 in the general framework of marked point processes. Here, 
instead of considering a single mixing random variable as in (1.2.1): we 
truly investigate more general claim number processes where, for example, 
the claim arrival rate can fluctuate in time according to the realizations of 
a Markov chain. 

1.3 THE CLAIM SIZE PROCESS 

In most chapters of this book, we will assume that the sequence U I ,  U z , .  . . 
of successive claim sizes consists of independent and identically distributed 
random variables generated by the distribution FU of a generic random 
variable U .  The n-th moment of the claim size distribution will be denoted 
by p g )  = E (Urn) = 1; 2" dFu(2). For n = 1 we simply write pLr = pv . For 
the variance of the claim sizes we write Var U = &) - ( 1 4 ~ ) ~ .  

(1) 

1.3.1 Dangerous Risks 
A nonnegative random variable or its distribution is frequently called a risk. 
In principle any distribution, concentrated on the nonnegative halfline, can 
be used as a claim size distribution. However, we will often make a mental 
distinction between "well-behaved" distributions and dangerous distributions 
with a heavy tail. Concepts like well-behaved or heavy-tailed distributions 
belong to the common vocabulary of actuaries. We will make a serious attempt 
to formalize them in a mathematically sound definition. 

Roughly speaking, the class of well-behaved distributions consists of those 
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distributions F with an exponentially bounded tail, i.e. 1 - F ( z )  5 ce-=’ for 
some positive a and c and all z 2 0. The condition means that large claims are 
not impossible, but the probability of their occurrence decreases exponentially 
fast to zero as the threshold z becomes larger and larger. As we will see 
in later chapters, this condition enhances the exponential-type behaviour of 
most important actuarial diagnostics like aggregate claim amount and ruin 
probabilities. 

In Chapter 2 we will give a somewhat streamlined approach to heavy- 
tailed distributions. For such distributions there is no proper exponential 
bound and huge claims are getting more likely. A natural nonparametric 
class of heavy-tailed claim size distributions is the class S of subexponential 
distributions introduced and studied in Section 2.5. The class S has some 
extremely neat probabilistic properties that will be highlighted whenever 
possible. For example, the aggregate claim amount is mainly determined 
by the largest claim in the portfolio. From the practical point of view, 
however, the class S is too wide since it cannot be characterized by parameters 
having a useful interpretation. For this reason practitioners usually fall back 
on “weakly parametrized” subexponential distributions. For example, the 
Zognormal distribution belongs to S and is extremely popular in modelling 
motor insurance claim data. However, for the case of fire or catastrophic event 
insurance, the Pareto distribution F with 1 - F ( z )  = ( c / ~ ) ~ ,  for z 2 c, seems 
to be saciently flexible to cope with most practical examples. It is fortunate 
that, over the past few decades, the asymptotical and statistical properties 
of subexponential distributions have received considerable attention. In this 
textbook we will, however, mainly deal with asymptotic properties and only 
touch upon some of the resulting statistical issues. 

1.3.2 The Aggregate Claim Amount 

The aggregate claim amount at time t given by X ( t )  = 
distribution function 

has the 

Sometimes the reference to X ( t )  is omitted and then we write F ( z )  for 
F x ( ~ ) ( z ) .  The derivation of an explicit formula for Fxct)(z) is almost always 
impossible. In any case: more specific knowledge on the interdependencies 
between and within the two processes { N ( t ) }  and {Un} is needed. 

It is most often assumed that the processes { N ( t ) }  and {Un} are stochas- 
tically independent, and we usually will follow this practice. However, it is 
easy to imagine situations where the processes { N ( t ) }  and {Un} will not be 
independent. Suppose that we are considering a portfolio of road accidents. 
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In winter time there might be a large number of claims due to poor road 
conditions. However, most of these claims will be small since the weather 
conditions prevent high speeds. A similar kind of thinking applies to the 
summer period where the number of accidents will usually be rather small 
but some of them will result in severely large claims due to reckless driving 
at high speeds. 

As another example, take the portfolio of accidents on oil platforms of a 
certain type. As soon as a severe accident happens on one of these platforms, 
improved safety measures will try to prevent similar accidents in the future. 
This action hopefully results in a subsequent. drop in the number of accidents. 

In Chapter 4 we will cover a variety of different approaches to determine 
the aggregate claim amount X ( t ) .  They all have in common that they are 
geared to investigate the behaviour of Fxct)(z) for a fixed t ,  which henceforth 
will be mostly omitted. 

As already stated, the most studied case, however, is that where the 
two processes { N ( t ) }  and {Un} are independent. Even then, calculation of 
Fxct)(z) remains a formidable undertaking. By an application of the law of 
total probability it is easy to see that we have the following fundamental 
relation 

(1.3.1) 
k=O 

where F;;" refers to the k-th convolution of FU with itself, i.e. F$(z) = 
P(U1 + t r 2  + ... + Uk 5 z), the distribution function of the s u m  on k 
independent random variables with the same distribution as U .  One of the 
unfortunate aspects in the applications of formula (1.3.1) is that k-fold 
convolutions are seldom calculable in closed form. One often needs to rely 
on approximations, expansions and/or numerical algorithms. In Section 4.4 
we deal with recursive and numerical algorithms, while in Section 4.6 we look 
for approximations by easier compounds. 

An alternative way of writing the above formula is given in terms of the 
Laplace-Stdeltjes trarGsform ixx(t) (s) = E e-8"(t). Namely, 

(1.3.2) 

where B N ( ~ )  (s) is the probability generating function of the number of claims 
N ( t )  up to time t and fc.(s) is the Laplace-Stieltjes transform of U .  But then 
inversion techniques as in Section 4.7 or even more specifically as in Section 5.5 
may be useful. 

If the number of claims is very large, then one can forecast that a central 
limit effect will be dominant. A large-scale approzitnation like 
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where @(x) denotes the standard normal distribution function, might be 
possible. In more concrete sitxations one can even replace E X ( t )  and Var X ( t )  
by subsequent. approximations. For example, if {N(t)} is a renewal counting 
process, these approximations follow from the basic renewal theorems, as will 
be shown in Section 6.2.3. 

On the other hand, the above large-scale approximation has often 
been shown to be rather unreliable. Practitioners have tried to remedy 
this shortcoming by using refined versions of the central limit theorem. 
For example: Edgeworth expansions and Gmm-Charher series resulted in 
significant but still not always satisfying improvements. Other approaches 
like the nonnal-power upprozimutions or approximations using gamma- 
distributions have been tried out. 

The main reason why results inspired by the central limit theorem often give 
poor results is that the number of those claims that de facto determine the 
entire portfolio is actually (and fortunately) very small. This is particularly 
true in the case of large claims. The outcome is that a genuine centralization of 
the claims is totally absent and any central limit approximation is meaningless. 

1.3.3 Comparison of Risks 

We have already alluded to the difference between light-tailed and heavy- 
tailed claim size distributions and we have tried to fit this intuitive idea into a 
mathematically sound definition. On the more methological level, one might 
like to compare risks and even order them according to some ranking criterion. 
A first and general attempt to ordering of risk9 is made in Section 3.2. On 
further locations, we investigate how this ordering translates into a subsequent 
ordering of compounds in Section 4.2.4 and of ruin functions in Section 5.4.5. 

Running along sample paths, we can even compare full processes and decide 
which one is most apt to incorporate essential features of a risk situation. In 
Section 7.4.2 we compare discretetime Markov chains, while Section 8.1.4 
treats a similar comparison in the continuous-time setup. Another illustration 
of a comparison of entire processes is given in Section 12.2.4, where Markov 
modulat,ed Poisson processes, Poisson cluster processes, mixed Poisson 
processes and merging renewal processes are put in proper perspective to 
homogeneous Poisson processes with the same arrival intensity. 

1.4 SOLVABILITY OF THE PORTFOLIO 

1.4.1 Premiums 

We have used the abbreviation n(t) to denote the totality of premiums 
collected from the policy-holders within the portfolio up to time t .  Usually 
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premiums are individually collected once a year, but the insurer can safely 
assume that premium income is evenly spread over the year. 

The determination of a functional expression for n(t) is one of the few 
things where the insurer can intervene in the overall process. The function n(t) 
should be determined in such a way that the solvability of the portfolio can be 
guaranteed. This requires n(t) to increase fast enough to cope with incoming 
claims. On the other hand, a very high value of n(t) may be rather undesirable 
since then rival insurance companies might attract clients by offering lower 
premiums while covering the same risk. 

The whole area of determining the specific shape of the function II(t) is 
called premium calculation and constitutes an essential part of the actuarial 
know-how. For an exhaustive treatment, see Goovaerts: De Vylder and 
Haezendonck (1984). In Chapter 3 we cover a few and isolated premium 
principples underlying the general thinking behind premium calculations. Fkom 
these general principles a wide set of possible candidates emerges. Note that 
most often these premiums are nonrandom even if their calculation involves 
information on the stochastic elements within the portfolio. 

The most popular form of the premium function n(t) is 

(1.41) 

where E-N(t) is the expected number of claims up to time t ,  while EU is 
the mean claim size. The constant q is the safety loading which has to take 
care, not only of the administrative costs from ha,ndling the portfolio, but also 
of the necessary gain that the company wants to make ultimately. Moreover, 
it is clear that. q will be portfolio-dependent, as, for example, the higher the 
risk, t.he higher q has to be. Kote that in the case of a Poisson process ( M ( t ) }  
the premium function n(t) given in (1.4.1) is of the form II(t) = $t for some 
constant B > 0. 

The premium principle of the form (1.4.1) with q independent of the 
portfolio is called the expected value principle. Of c.ourse, the expected value 
principle does not keep track of the variability in the portfolio and so 
alternative principles include, for example, the variances of N ( t )  and U. A 
few other possibilities are also covered in Chapter 3. 

Another aspect of premium calculation is that not all individual policies 
in a portfolio must be charged with the same premium. For example: the by 
now classical bonw-maks premium calculation principle is widely spread in 
car insurance. Depending on the past history of a policy-holder, the insurer 
ranks the client in a certain state and charges an amount typical for that 
state. In the course of time the customer will move from one state to another, 
depending on his claim record. If we denote by X, the state of a client at the 
beginning of year 'n, then the process {S,,a 2 0) describes a jump process 
adequately modelled by a discrete-time Murkow chain. No course on stochastic 
processes can be considered complete if it would lack a serious treatment 
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of this important building block of stochastic modelling. We will deal with 
discrete-time Markov chains in general in Chapter 7 and witth bonus-malus in 
Section 7.1.4 in particular. In Chapter 8 we will then continue this discussion 
by changing from discrete time to continuous time. 

1.4.2 The Risk Reserve 

Recall from the introduction that the risk reserve at time t is given by 
R(t)  = u + II(t) - X(t), where u is the initial reserve. The quantity R(t)  
is, of course, random. The ultimate hope would be to get some information 
on the distribution of R(t)  or, if this is impossible, on the first few moments 
of R(t) .  As has already been pointed out, the distribution of X ( t )  is very 
complicated. If we superimpose a possibly random character of the premium 
income, then the overall situation will become even worse. 

There is one particular situation, however, where we can give a full 
treatment of the stochastic nature of the risk reserve. Assume that time is 
measured in integers. We then add all premiums collected in period Y& in one 
single number II, = ll(n) - ll(n - l), which can even be assumed to be 
random. Similarly we add all claims arriving in period p.c and call this amount 
Xn, where X, = X(n) - X(n - 1). The risk reserve after period R is then 
equal to 

n 
R, = ~ ( n )  = u + n(n) - ~ ( n )  = u - C(X~ - II~) . 

The resulting stochastic process {Sn,n 2 0) of partial sums Sn = C:!, Y ,  
is called the (discrete-time) claim surplus process. In particular, {Sn} is a 
random walk if we assume that the sequence {k”,,n 2 1) with Yn = X, - IIn 
consists of independent and identically distributed random variables. 

The definition of a random walk is very similar to that of a renewal process, 
the only difference being that now the generic random variable is no longer 
concentrated on the nonnegative halfline. The theory of random walks makes 
up a substantial chapter in a traditional course on stochastic modelling. We 
will cover the most important aspects of random walk theory in Chapter 6. 

i=l 

If premiums are nonrandom we can write 

P(R( t )  2 5) = P(X(t) 5 u + n(t) - 5) = F q t ) ( u  + n(t) - 5) 
which shows how important it, is to have workable expressions for the 
distribution of the aggregate claim amount. 

1.4.3 Economic Environment 

A number of problems in insurance and finance contain an economic element 
like interest, discounting or indexing. As such, a variety of subjects will be 
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treated within an economic environment. 
Consider data from car insurance. When calculating the premium, the 

insurer needs certain characteristics of the claim sizes, such as their mean 
value and variance. Just using the common estimators for mean and variance 
would lead to problems. Over the years, cars have become more expensive. 
Therefore, the claim dat.a from some years ago cannot be compared directly 
with claim data of today and so need to be adjusted. 

Suppose that we consider a time horizon of n years. Then, for each 
i = 1, .  . . , n, an index ii for year i is defined which is related to the costs 
of that year, including, for instance, prices of new cars and repair costs. This 
index is then used to measure all claims in units of year 0. Denote by Xi the 
aggregate claim amount of year i. Then adequate estimators for mean and 
variance of the aggregate claim amount, measured in units of year 0 are given 
bv 

1 "  a = - c X J I i ,  a2 = - n - 1  
i d  i=l 

The corresponding estimates for year n + 1 are then 

where in+l is an estimate of the index for year n + 1. 
The indices 1, are often expressed via the interest rates ri = 1*/14-1 - 1. 

This is particularly advantageous in life iwzlmnce. For example, in the case of 
a single premium payment, suppose that the dependant of the policy-holder 
will get a predefined lump sum x in the case of the death of the policy-holder 
within n years. The insurance company will invest the premium. Thus the 
d u e  V of the payment will be different depending on the year of death. Let 
pi denote the probability that the policy-holder dies in year i after the issue 
of the policy. Then, for a given sequence rl, .  . . rn-l of interest rates, the 
expected value EL' of the contract is 

E V  = p l x  +pzz(l+ rl) + . . . +p,z(l + rl) .. . (1 + r,,-1). 

The problem with the above expression is that, at policy issue, the interest 
rates ri are not known in advance. Therefore insurance companies use a 
technical interest rate r instead of the true interest rates ri. This leads to 
a technical balue V' with expectation 

EV' = p 1 z  +&z(l + P )  + .. . +pnx(l +r),-'. 

We will use this kind of economic setting in Section 7.3, where we 
deal with blarkov chains with rewards. In Section 11.4 we deal with risk 
processes in an economic environment within the framework of piecewise 
deterministic Markov processes. Questions of insurance and finance connected 
with stochastic interest and discounting are discussed in Chapter 13. 
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1.5 REINSURANCE 

Reinsurance is a prime activity of almost all insurers. We first explain why 
reinsurance may be necessary. Then we give a number of specific forms of 
reinsurance and point out, how each one of them provides further support for 
the topics that will be treated in later chapters. 

1.5.1 Need for Reinsurance 

As phrased by Borch (1960), a company makes arrangements for reinsurance 
when it seeks to reduce the probability of suffering losses which may jeopardize 
the position of the company. Among the reasons to ponder reinsurance the 
insurer can think about the following. 

The appearance of excessively large claim; here we think about claims 
resulting from severe accidents as with nuclear power stations or cases 
of serious medical maltreatment. In other instances an insurer might be 
confronted with large claims coming from a policy involving very valuable 
items such as air carriers, oil tankers, dams and large building complexes. 
An unusually large number of claim or clustering of claims, whether large 
or not. Extensive forest fires may temporarily lead to a very large number 
of more or less large claims. Hurricanes, earthquakes and floods citn cause 
similar explosions of the number of claims. 
Unexpected changes in premium collection as in the case of a sudden 
inflation or unforeseen increase in handling costs. Under these circumstances 
the company actually does not quite receive the premium income it had 
expected at the beginning of the book year. 
There are legal restrictions forcing the company to have reserves to cover a 
certain part of future claims. For a smaller company these restrictions would 
cause a noncompetitive premium. Taking reinsurance is a comfortable way 
of solving that problem. 
If a company can take reinsurance, it can also offer more services to its 
clients. Reinsurance can therefore be considered to increase the capacity of 
the company. 

There exists a variety of reinsurance forms. What they all have in common 
is the desire to diminish the impact of the large claims. In what follows 
we provide the mathematical formulation of most. of the currently employed 
reinsurance treaties. 

1.5.2 Types of Reinsurance 

Recall that we use {Ul ,  172,. . . , U N ( ~ ) )  as the sequence of successive claims up 
to time t when the underlying claim number process is { N ( t ) , t  2 0). Further 
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the aggregate claim amount over that period is X ( t )  = Cz:’ U,. 
On the basis of the past history of the portfolio or stimulated by one or more 

arguments under Section 1.5.1, the insurer will redesign the portfolio in such 
a way that he himself keeps a certain amount of the aggregate claim amount 
X ( t )  while he looks for reinsurance for the remaining part. The amount that 
he keeps is called the deductible and will be denoted by h ( X ( t ) )  or h(C’i), 
depending on whether the reinsurance form acts on the whole portfolio or 
on single claims. The remaining part, i.e. X ( t )  - h ( X ( t ) )  or Ui - h(Ui) is 
the reinsured part. Acting like that, the insurer himself is taking an insurance 
with a reinsurance company and hence himself becomes a client. The first line 
insurer is still drafting the premiums to be asked from his own customers. Part 
of that premium now has to be transferred to the second lane insurer, who has 
agreed to cover the risk at a negotiated premium. The second line insurer can 
then again redivide the risk and go to a third line company, hence building 
up a reinsumnce chain, where at each step dedudibles and corresponding 
premiums have to be negotiated and transmitted down the chain to the first 
underwriter. 

Here are the most commonly used types of reinsurance. The first form 
of reinsurance is proportional or quota-share reinsurance where a certain 
proportion, say a. of the total portfolio is reinsured. This means that h(s) 
takes the special form h(z) = ox. But then 

1=1 

where 0 < a < 1 is the proportionalaty factor. 
This form of reinsurance is very popular in almost all insurance branches, 

presumably because of its conceptual and administrative simplicity. Moreover 
this kind of reinsurance is often used at the start of smaller companies 
to broaden their chances in underwriting policies. In general the first line 
insurance cedes to the reinsurer a similarly determined proportion of the 
premiums. 

h o m  the distribut.ionaJ point of view the basic properties of h ( S ( t ) )  can 
be derived from the analogous properties for the case a = 1. Indeed, by its 
definition 

P ( h ( X ( t ) )  5 2) = P(X(t) 5 zla) = F x ( t ) ( t / a ) .  

This formula shows again how important it is to get reliable and accurate 
formulae for the distribution of the aggregate claim amount. 

Another important form of reinsurance is acess-loss, which is determined 
by a positive number b: called the retention level. The reinsured amount is 
then equal to ~ ~ ( ~ ’ ( U ~  - b)+,  where z+ = max{x, 0). This reinsurance form 
covers the overshoot over the retention level 6 for all individual claims whether 
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or not they are considered to be large. It is clear that excess-loss reinsurance 
limits the liability of the first line insurer. It appears as if the underwriter of 
the policy decides that he himself will cover all claims below the retention 6.  

Among the insurance branches where this type of reinsurance is used we 
mention in particular general liability, and to a lesser extent motor-liability 
and windstorm reinsurance. Excess-loss reinsurance is particularly interesting 
if a relatively small number of risks is insured, and the individual claim size 
distributions are heavy-tailed. Because of its very form, all claims have to 
be checked individually and as such this reinsurance contract leads to an 
expensive administration. 

From the distributional angle, the excess-loss amount has a distribution 
which is completely similar to that of the aggregate claim amount but with 
a claim size distribution truncated at the retention. Again the importance of 
good approximations to the distribution 

A reinsurance policy that considers each claim as an integral part of the 
entire portfolio is determined by the quantity 

(z) is apparent. 

where the retention b determines the stop-loss reinsurance. In this type of 
reinsurance, the small claims also show their influence on the total amount 
reinsured. In particular, when the number of claims is very large, the aggregate 
claim amount is highly dependent upon the small claims as well. On the 
other hand, stoploss reinsurance seems a natural adaptation of the excess- 
loss treaty, but then to the portfolio as a whole. 

Stoploss reinsurance is used in windstorm and hail reinsurance and 
occasionally in fire insurance. Due to its form, stoploss reinsurance is very 
simple to apply and does not require expensive individualized administration. 
In general one would not use stoploss reinsurance unless the number of 
policies were large. Moreover we will show in Chapter 3 that stop-loss 
reinsurance has some desirable optimality properties. 

From the distributional point of view one notices the necessity to derive 
compact expressions for the probabilities of overshooting a certain barrier. 
If one indeed considers the portfolio as a single policy, then again the 
approximations and bounds for the aggregate claim amount are of prime 
importance. 

There are still other types of reinsurance contracts. 

0 Thinking especially about coverage against large claims, it seems desirable 
to look for treaties based on the largest claims in the portfolio. If we 
denote by (U(l,, Cr(2), . . . , U ( N ( ~ ) ) )  the order statistics of the random vector 
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(Ut , U2,. , . , U N ( Q )  of claim sizes, then 

would make up a rather neat reinsurance treaty. It has been introduced by 
Thkpaut (1950) and is called mckdent du cotit rnoyen relotif (ECOMOR). 
The amount Z ( t )  covers only that part of the T largest claims that 
overshoots the random retention U(N( t ) - r ) r  where U(N(t ) -r )  = 0 if N ( t )  5 r. 
In some sense the ECOMOR treaty rephrases the excess-loss treaty but with 
a random retention at a large claim. 
Not much is known about ECOMOR treaties and as such this reinsurance 
form has been largely neglect,ed by most reinsurers. The main reason is the 
rather complicated form of Z ( t ) ,  which defies a simple treatment. 
A reinsurance form that is somewhat akin to proportional reinsurance is 
szlrplvs reinsurance. Here the reinsured moun t  is determined individually 
and proportionally by the value of the insured object. The insurer is forced 
to introduce the value of the insured object as an extra unknown and 
basically random quantity. The overall value of the insured amount is t.he 
key factor when choosing this type of reinsurance. 
Of course there are possibilities for combined reinsurance contracts. For 
example, the insurer can fbst apply an excess-loss retention on the 
individual claims; at the next step he applies an additional stoploss cover 
to the remaining excess over a certain retention. 

We will not develop any systematic study of these last three reinsurance 
treaties and restrict ourselves to the basic theory. 

1.6 RUIN PROBLEMS 

Ruin theory has always been a vital part of actuarial mathematics. At  first 
glance, some of the theoretically derived results seem to have limited scope 
in practical situations. Nevertheless, calculation of and approximation to 
ruin probabilities have been a constant source of inspiration and technique 
development in actuarial mathematics. 

in a 
certain branch of insurance, i.e. if the claim surplus exceeds the level u some 
drastic action will have to be taken for that branch. Because in some sense 
this part of the business starts with the capital u we can safely caJl u the 
initial capital. The actuary now has to make some decisions, for instance 
which premium should be charged and which type of reinsurance to take, see 
Section 1.5. Often, the premium is determined by company policies and by 

Assume an insurance company is willing to risk a certain amount 
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tar& of rivals. A possible criterion for optimizing the reinsurance treaty would 
be to mini ize  the probability that the claim surplus ever exceeds the level u. 
To be more specific, consider the risk reserve R(t)  = u+n(t) - X ( t )  and define 
the random variable T = inf{t 2 0 : R(t) < 0). The instant T gives us the man 
time of the portfolio, where we interpret ruin in a technical sense. Of course, 
we should allow the possibility that no ruin ever occurs, which means that 
T = 00. We should realize that T is dependent on all the stochastic elements 
in the risk reserve process { R ( t ) }  as well as on the deterministic value u. 
For this reason one often singles out the latter quantity in the notation for 
the ruin time by writing ~ ( u )  for T.  More specifically, the survival or noraruin 
probability in finate time will be defined and denoted by 

- 
+(u;x) = P(oj$,R(t) 2 0) = P(T(u) > Z) - -  

when we consider a finite horizon x > 0. The survaval probability over an 
infinite time horizon is defined by the quantity 

- 
+(u) = P(inf R(t )  2 0) = P(T(u)  = 00) . 

t 20 

Alternative notations that are in constant use refer to the ruin probabilities 
which axe defined by the equalities 

$(u; 2) = 1 - $(?A; x) , $(U) = 1 - i j (u ) .  

Each year the insurer of a portfolio has to negotiate a reinsurance contract. 
While an optimal strategy will depend on R(t), the insurer has to apply the 
contract at the beginning of the year. Simultaneously, the future policies 
of the reinsurance companies have to be taken into account. The resulting 
problem is hard to solve. In one approximation procedure, the premium and 
the reinsurance treaty is fixed for the whole future and then the optimal 
reinsurance is chosen; see, for instance, Dickson and Waters (1997). Then this 
new reinsurance treaty is chosen as input and the procedure is repeated. To 
get rid of the dependence on the initial capital, an alternative approach is to 
consider the adjwtment coeficient introduced in Chapter 5. The adjustment 
coefficient is some sort of measure of risk. Maximizing the adjustment 
coefficient is in some sense minimizing the risk for large initial capitals. This 
optimization procedure was, for instance, considered in Waters (1983). 

Ruin theory is often restricted to the classical compound Poisson risk model. 
The latter model will therefore appear over and over again as a prime example. 
Unfortunately, because of its intrinsic simplicity, the compound Poisson model 
does not always give a good description of reality. There are more reahtic 
but still tractable models in the literature, that hopefully will find their 
way into actuarial applications. We will review a number of these models. In 
Chapter 11 we introduce piecewise deterministic Markov processes to broaden 
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the Markovian treatment of risk analysis. Interest and discounting can then be 
easily introduced as elements of economic environments. Another prospective 
area of actuarial and financial applications can be found in the theory of point 
processes that will be treated in Chapter 12. 

As one can expect, ruin probabilities will depend heavily on the claim 
size distribution. If the latter is well-behaved the ruin probabilities will turn 
out to be typically exponentially bounded as the initial capital becomes 
large. However. when the claim size distribution has a heavy tail, then one 
single large claim may be responsible for the ultimate ruin of the portfolio. 
The reader will definitely appreciate how the class S of subexponential 
distributions provides a beautiful characterization for the heavy-tailed case 
as shown in Sections 5.4.3,6.5.5 and in even more depth in Sections 12.6 and 
13.2.4. 

Phase-type distn'butionu form another and versatile alternative class of 
distributions for which more or less explicit calculateions are possible. They 
are treated in some detail in Section 8.2 and applied to ruin calculations later 
on. 

The results for ruin probabilities on which we will focus in this book can 
be characterized by the following features. 

0 Only in the easiest cases will we succeed in getting explicit formulae for the 
ruin probabilities as in Section 5.6. 

0 As soon as we allow more complex models, one way out is to use 
approximations of Cram&-Londberg type for large initial capital as in 
Sections 5.4, 6.5 or more generdly in Chapters 11, 12 and 13. In all these 
models, a surprisingly different asymptotic behaviour of ruin probabilities 
is observed depending on whether light-tailed or heavy-tailed claim si7,e 
distributions are considered. 

0 An alternative is to employ numerical procedures as in Section 5.5. 
a A further and even more important theme of the text is the derivation of 

bounds for the ruin probabilities. A vast number of Lundberg bound-s have 
been derived in the text, ranging from the simplest in Section 5.4.1 in the 
compound Poisson model, over Section 6.5.2 in the S p m e  Andersen model, 
to the more general in Chapters 11, 12 and 13. Another type of bouud is 
obtained in Section 12.2.4, where we are dealing with the comparison of 
ruin probabilities for risk reserve processes with identical safety loadings 
but with different volatilities. 

0 Finally, simulation methods are discussed in Section 9.2.5. 

Quite a few of the above results have been derived using martingale 
technaques. Martingale theory makes up a mst portion of current day 
probabilistic modelling and cannot be left out of any serious treatment of 
risk analysis and financial mathematics. In Chapter 9 we treat the fairly 
e s y  discrete-time situation, making links to random walk theory and Iife 
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insurance. The more demanding continuous-time martingale theory is treated 
in Chapter 10. This chapter is also vitally needed in the treatment of financial 
models; it nevertheless provides some unexpected links to finite-horizon ruin 
probabilities in Section 10.3. 

1.7 RELATED FINANCIAL TOPICS 

1.7.1 Investment of Surplus 

In Section 1.4 we have already mentioned that the calculation of premiums 
constitutes an essential part of the actuarial know-how. Although these 
premiums are nonrandom for a certain time horizon, their calculation involves 
information on the stochastic elements within the portfolio and within the 
economic environment. However, even once the premiums are fixed, the future 
premium income of an insurer is not deterministic. For one reason, the number 
of customers may increase or decrease in time outside the control of the 
insurer. Since the insurer invests the surplus in financial markets, there still is 
another source of uncertainty which is caused by the random fluctuations of 
these markets. Notice that interest and inflation rates usually change in much 
smaller steps than the risk reserve of an insurance portfolio changes with 
the arriving claims. This situation is modelled in Section 13.2 by means of 
perturbed risk pmcesses, which are defined as the sum of a usual risk reserve 
process { R ( t ) }  and a stochastic perturbation process. Typica.lly, perturbed 
risk processes belong to the class of jump-diffusion processes. Their sample 
paths change discontinuously from time to time since jump epochs and jump 
sizes are random. In the intervals between the jumps they behave like the 
sample paths of a diffusion process; see Section 1.7.2. This class of stochastic 
processes is one of the main subjects of hancial mathematics. 

Over recent years, a number of textbooks have appeared that provide 
introductions to the mathematical theory of finance. We refer to the 
bibliographical notes in Chapter 13. An inclusion of all the technical material 
needed to do full justice to this contemporary subject would increase the size 
of our monograph substantially. On the other hand, we felt a need to at least 
include a streamlined introduction to the subject. We made a special attempt 
to show the clear links between the material already mentioned above and a 
subset of topics from the realm of financial stochastics. 

1.7.2 Diffusion Processes 

The description of the stochastic properties of stock prices, interest rates, 
etc. in terms of diffusion processes has been one of the great break throughs 
of stochastic thinking in a real-life context. It is by now generally accepted 
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that an appropriate formulation for the time-evolution of a diffusion process 
{X(t)} should be given in terms of a stochastic diflerential eqvation of the 
form 

dX(t) = a( t ,  X ( t ) )  dt + u(t? X(t)) dW(t) . 

Here, {W(t )}  is the usual Brownian motion, which is at the core of stochastic 
analysis. Further, a(t,z) takes care of the drift of the process, while o(t,z) 
describes the strength of the extraneous fluctuations caused by the Brownian 
motion. In Section 13.1 we give an abridged treatment of stochastic differential 
equations and we show existing links with martingales and Markov processes. 

For specific choices of a(t, r )  and o(t, r )  we arrive at a wealth of possible 
models. Here is a more concrete example. A major step forward in the use 
of stochastic calculus in finance came &om an attempt to price options on 
a security. This led to the popular Black-Scholes formula, for which the 
Nobel price 1997 was won. In fact, the use of the Black-Scholes model for 
option pricing, induced a change in the economy so that stock prices in liquid 
markets became very close to a Black-Scholes model. Up to 1972, the Black- 
Scholes model for option prices was a bad approximation to real prices. In the 
above terminology, the price process takes the form X(t) = e6tX'(t), where 6 
refers to the force of interest, while {X*(t)} satisfies the stochastic differential 
equation with the choice a(t,z) = ( p  - 6) z and o(t ,z)  = 4%. The drift is 
regulated by the difference between the expected rate of return p and the 
force of interest 6, while the fluctuations are modelled by the volatility (T. 

In Section 13.3.1 we will explain how trading stategies in a market with two 
financial goods can be developed once the option is chosen. In particular, we 
consider the case of a European call option where the option-holder has the 
right (but not the obligation) to buy an asset for a fixed price at a fixed point 
in time. 

1.7.3 Equity Linked Life Insurance 
Section 13.3.2 provides an inspiring link between the Black-Scholes model and 
stochastic modelling of life insurance. 

From the Middle Ages, states and towns in Europe have been selling 
annuities. Life insurance mathematics arose in response to the need for 
evaluation of the price of these annuities. These calculations stimulated 
developments in different fields, like demography and probability theory. In 
London, early life tables were proposed by John Graunt in 1662. However, it 
is considered that the first life table in the modern sense was constructed 
by E. Haley in 1693. He used data from Breslau in Silesia, collected by 
the pastor and scientist Casper Neumann during the period 1687-1691. For 
further historical details, the reader is referred to the survey by Hald (1987). 

The subsequent mathematical modelling of life insurance is based on 
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probability theory, since in our modern terminology lifetimes are random 
variables. A classical life table contains the expected proportions of that 
part of a population of age a that reaches a later age c. If we use To as 
the stochastic notation for the remaining lifetime of a policy-holder of age a, 
then the life tables give us the necessary means to estimate (sometimes using 
interpolations) the distribution P(To 6 y) = P(T 5 y I T > a) ,  where T is 
the typical lifetime of any member of the population. 

Under a classical life insurance contract, the insured benefit typically 
consists of one single payment - the sum insured. Other useful types of 
contracts in life insurance are life annuities, consisting of a series of payments 
which are made during the lifetime of the beneficiary. Furthermore, there are 
combinations of a life insurance contract with an annuity. The subsequent 
problem is then to follow such contracts from the instant of policy issue up 
to the death of the customer. 

Take, for instance, the case where a customer of age a underwrites a classical 
t ern  irasumnce policy where he gets the value max{X(T,), b} at time Ta of his 
death. Note that this value is similar to the value of a European call option, 
but the payoff is now paid at a random time. Here, b > 0 is a guaranteed lower 
bound and { X ( t ) }  is a stochastic price process as described in Section 1.7.2. 
With the additional notions of discounting and interest, one is now equipped to 
develop a coherent theory of equity linked life insurance contracts. A detailed 
treatment of the above life insurance situation is given in Section 13.3.2 in 
the case of a constant force of interest S 2 0. As there is no obvious reason 
why the force of interest should be kept constant: the final Sections 13.3.3 
and 13.4 cover a few possible forms of a stochastic force of interest { Q t ) }  via 
appropriate stochastic differential equations. 



CHAPTER 2 

Probability Distributions 

2.1 RANDOM VARIABLES AND THEIR 
CHARACTERISTICS 

2.1.1 Distributions of Random Variables 

Random variables are basic concepts in probability theory. They are math- 
ematical formalizations of random outcomes given by numerical values. An 
example of a random variable is the amount of a claim associated with the 
occurrence of an automobile accident. The numerical value of the claim is 
usually a function of many factors: the time of year, the type of tax? the 
weather conditions, etc. One introduces a random variable X as a function 
defined on the set R of all possible outcomes. In many cases, neither the set R 
nor the function X need to be given explicitly. What is important is to know 
the probability law governing the random variable X or, in other words, its 
distribution; this is a prescription of how to evaluate probabilities F ( B )  that 
X takes values in an appropriate subset B of the real line R. Usually these 
subsets belong to the class B(R) of Bore1 subsets, which consists of all subsets 
of R resulting from countable unions and intersections of intervals. 

For reasons of mathematical convenience, it is useful to consider a certain 
family 3 of subsets of 0, called events. Furthermore, a probability P on 3 
assigns to each event -4 from 7 its probability P(A).  The crucial assumptions 
on F and P are the closeness of 7 with respect to countable unions and 
intersections of sets from 3. In the terminology of probability theory, 3 is a 
a-algebra and the additivity property of P with respect to countable unions 
of disjoint sets from F make P a probabdlatg measure. 

More formally, a random variable is a measurable mapping X : R + R, 
i.e. the set {X E B }  %Lf {w E R : X ( w )  E B }  belongs to 3 for each 
B E B(R). The distribution F of X is the mapping F : D(R) 4 [ O , l ]  defined 
by F(B) = P(X E €3). Furthermore, F : R 4 [0,1] with F ( z )  = P(X 5 z) 
is called the distribution function of X .  We use the same symbol F because 
there is a one-to-one correspondence between distributions and distribution 
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functions. By p(z) = 1 - F ( z )  we denote the tag of F .  We say that a 
distribution F is concentrated on the Borel set B E B(R) if F ( B )  = 1. 
In actuarial applications, a nonnegative random variable is frequently called 
a risk. 

There are two important but particular types of random variables - discrete 
and continuous ones. We say that X is discrete if there exists a denumerable 
subset E = { z o , ~ , .  . .} of R such that P(X E E) = 1. In this case? we define 
the probubility function p : E + [0,1] by p ( q )  = P ( X  = zk); the pair ( E , p )  
gives a full probabilistic description of X .  The most important subclass of 
nonnegative discrete random variables is the lattice case, in which E c hN, 
i.e. zk = hk for some h > 0, where N = { O , l , .  . .}. We then simply write 
p ( ~ )  = pk and say that X is a lattice random variable. 

On the other hand, we say that X is absolutely continuous if there exists a 
measurable function f : R + lR+ such that. J f(x) dz = 1 and P ( X  E B) = 
JB f(z) dx for each B E B(R). We call f the density function of X .  

The distribution of a discrete random variable is called discrete. If X is a 
lattice random variable, then we call its distribution lattice, otherwise we say 
that it is nonlattice. Analogously, the distribution of an absolutely continuous 
random variable is called absolutely continuous. Sometimes the distribution F 
of the random variable X is neither purely discrete nor absolutely continuous, 
but a rnkzture F = OF, + (1 - 8)Fz, where Fl is a discrete distribution with 
probability function p ,  and F'. is an absolutely continuous distribution with 
density function f; 0 L 8 5 1. 

In order to emphasize that we consider the distribution, distribution 
function, probability function, density function, etc. of a given random variable 
X, we shall use the notation Fx,px, fx,. . .. The index X is omitted if it is 
clear which random variable is meant. 

For two random variables X and Y with the same distribution we write 
X = Y. Furthermore, we write (XI,. . . .Xn) = (YI, . . . , Yn) if two vectors of 
random variables (XI,. . . , Xn) and (Y1, . . . , Y,) have the same distribution, 
i.e. 

for all B I , .  . . , B, E B(R) or, equivalently, 

d d 

P(X1 E Bl,. . . ,Ju, E Bn) = P(T.i E B1,. . . , I ; ,  E Bn) 

P(X1 ~ Z I , . * . , X ~  s ~ n ) = P ( Y l  <z~,--*,Y, < ~ n )  

for all 51 ,..., I,, E R. We say that (XI,.. . ,X,) is absolutely continnow if 
there exists a nonnegative and integrable function f : R" R+ with 

such that P(X1 E Bi,. . . , X ,  E Bn) = JB1 . . .JS, f(x1,. . . ,zn) dz, . . .dzi 
for all Borel sets B1, . . . , B, E B(R). The function f is called the density 
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of (Xi,. . . , Xn). If the random ve~tors ( X I , .  . . , Xn-1) and (Xi,. . . , Xn) a~ 
absolutely continuous with densities fx, ,... $x, , -~  and fx ,,..., X, respectively 
and if fxI,...,xn-, (21 ,.. . ,2811) > 0, then 

is called the conditional dewity of Xn under the condition that XI = 
21,. . . , X,-l = zn-l. For other basic notions related to the concepts of 
independence and conditioning, see also Section 2.1.3. 
For two random variables X and Y with P(X = Y) = 1 we simply write 

X = Y. Furthermore, for a sequence of random variables X, XI, XZ, . . . with 
P(X = limn+- Xn) = 1 wc write X = limn+- Xn. 
For n 6xed and for all k = 1,2,. . . ,n and w E S Z ,  let X(k)(w) denote the k- 

th smallest value of XI (w), . . . , Xn(w). The components of the random vector 
(X(11,. . . , X(,,]) are called the order statbtia of (XI,.  . . , Xn). 

2.1.2 Basic Characteristics 

Let X be a random variable and g : R + R a measurable mapping. We can 
then consider the random variable g(X). For example, if X is an insurance 
risk, g(X) can be that part of the risk taken by the (first) insurer, while 
X - g(X) is the residual risk passed on to the reinsurer. In Chapter 3 more 
specific examples of reinsurance agreements are studied, such as 

x i f x s a  
a i f X > a  

(stoploss reinsurance or, alternatively, excess-of-loss reinsurance, with reten- 
tion level a > 0) and g(X) = aX (proportional reinsurance; 0 C u < 1). 

Define the value Eg(X) by 

Ck g(zk)p(zk) if X is discrete { Jrm g(z)f(z) dz if X is absolutely continuous 
Eg(X) = 

provided that Ck Ig(zk)lp(zk) < 00 and J-", Ig(z)lf(z) dz < 00, respectively. 
If g is nonnegative, we use the symbol Eg(X) whether finite or not. If the 
distribution of X is a mixture, then we define Eg(X) by 

It is obviously convenient to consider the expectation Eg(X) given by (2.1.1) 
in the more general framework of the Stieltjea integral 
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taken with respect to the distribution function F : R + [0,1] of .Y. 
Alternatively, we could also use the Lebesgue integnd Eg(X) = sR g(s)F(dz), 
with respect to the distribution F : B(R) + [0,1] of X. hloreo\ler, both 
expressions define the expectation for cases not of the form (2.1.1). In most of 
our applications, however, integrals will be of the form (2.1.1). For g(2) = z 
the value p = E X  is called the mean, the expectation or the first moment of 
X .  For g(z) = z", p(") = E ( X n )  is called the n-th moment. The variance of 
X is v2 = E (X - and o = 0 is the standard deviation. Sometimes the 
symbol VarX will be used instead of 02. The coeficient of variation is given 
by cvx = o/p ,  the dndex of dispersion by Ex = 02 /p ,  and the weficient of 
skewness by E (X - For two random variables X, Y we define the 
covan'anceCov(X,Y) by Cov(X,Y) = E((X-EX)(Y-EY))  provided that 
EX2,EY2 < CQ. Note that, equivalently, Cov(X ,Y)  = E X Y  - EX E Y .  If 
Cov(X,Y) > 0, then we say that X,Y are positively correlated. Similarly, 
X,Y are negativelg correlated if Cov(X,Y) < 0, while they are unwrrelated 
if Cov(X, Y )  = 0. 

A median of the random variable X is any number such that 

We call K X  = EIX - C1/21  the absolute deviation of X (from median C 1 p ) .  

the notion of the indicator function I(A) : st + R, which is given by 
Note that we can relate the expectation E with the probability P using 

1 if w E -4, 
0 otherwise. l ( A , w )  = 

Thus, if ..I E F, then I(A) is a random variable and P(A) = EI(A). 
Furthermore, we use the notation E[X;A] = E(XX(A)) for any random 
variable X and any event A E 3. 

If we want to emphasize the random variable X or its distribution F when 
using the mean, n-th moment, variance, etc. we write p x ,  p$),of,. . . or 
PF,PF ("1 , 0 k r . . . .  

2.1.3 Independence and Conditioning 

An important idea in probability theory is the concept of independence. The 
random variables XI, .  . . , X n  : st+ R are independent if 
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for all . . . , Bn E B(R) or, equivalently, 

for all XI , .. . , xn E R. An infinite sequence XI , X2,. . . is said to consist of 
independent random variables if each finite subsequence has this property. 
We say that two sequences XI, X2, . . . and YI , Y2,. . . of random variables are 
independent if 

m 71 m 

P ( ~ W  5 z i ~ n  n { K  5 y i ~ >  = P ( n { X i  5 zi>>P(n{x 5 y t ~ )  
i=l  i=l  i=l a= 1 

for all A, rn E IK and XI,. . . , $11: y1 , .. . , ym E R. For a sequence XI, X2,. . . 
of independent and identically distributed random variables, it is convenient 
to use the notion of a generic random variable X with the same distribution. 
Sometimes we say that a random wriable or a sequence of random variables is 
independent of an event A E 3, by which we mean that the random variables 
are independent of the indicator random variable 1(*4). 

Let A E T. The conditional probabidzty of an event A' given A is 

P(A' n A)/P(A) if P ( A )  > 0, 
otherwise. P(A'  I A) = 

In connection with this concept of conditional probability, an elementary 
and useful formula is given by the so-called law of total probabilitgr. Let 
A, A l l  -42,. . . E 3 be a sequence of events such that Ai n Aj = 0 for i # j and 
CFl P(Ai)  = 1. Then, 

03 

P(A)  = C P ( A  I Ad) P(Ai )  (2.1.2) 
i=l 

We will h d  use of the notion of t<he conditional expectation E ( X  I A )  of a 
random variable X given that the event A has occurred. By this we mean the 
expectation taken with respect to the conditional distribution FxlA, where 
FX 1 A ( B )  = P({X E B} n A)/P(.4) for €3 E B(R). In later chapters of the 
book we will use more general versions of the above conditional concepts. A 
typical example is the conditional expectation E ( X  1 6 )  with respect to a 
sub-cr-algebra B of 3. Under the assumption that E 1x1 < 00, the conditional 
expectation is a mapping E(X I G )  : R + R which is measurable with 
respect to the sub-g-algebra Q and for which E [E ( X  I B); A] = E [X; A] for 
all A E B. The conditional expectation is unique in the sense that if Y is 
another &measurable random variable with E [Y; A] = E [X; A] for all A E B 
then P ( Y  = E ( X  I Q ) )  = 1. 
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2.1.4 Convolution 

The convolution operation for distributions allows us to compute the distri- 
bution of the s u m  X + Y of two independent random vaxiables X and Y 
from their respective distributions F and G. The wnvoktion F * G of two 
distribution functions F, G is defined by 

00 

F * G(z) = oo F ( z  - u) dG(u) , z E R . (2.1.3) 

Note that F * G is absolutely continuous provided that at  least one of the 
distributions F, G is absolutely continuous. If both X and Y have densities 
f and 9, respectively, then the density of S + Y is given by the (density) 
convolution f * g ( z )  = JTrn f(z - u)g(u)du for 3: E R. The (discrete) 
convolution of two probability functions {pk;lc E IN} and {pi;k E IN} is 
given by 

( P * P ' ) k  = G PGJ; 9 k E 
i.3EIN:i+ j=k 

The operation of convolution can still be defined for other types of functions 
like unbounded functions; what is important is that the integration in (2.1.3) 
can be performed. The n-fold convolution of F 9  denoted by F*" is defined 
iteratively: for R. = 0, F'O(z) = &(z) with &(z) = 1 if z 2 0 and &(z) = 0 if 
z < 0 while for n 2 1, F*" = F'('+') * F = F * . . . * F (n times). The n-fold 
convolution of other functions is similarly defined and denoted. For the tail of 
F'" we write F'n(z) = 1 - F*n(z). 

2.1.5 Transforms 

Let I = {s E R : EesX < 00). Note that I is an interval which can be the 
whole real line R, a halflie or even the singleton (0). The moment genemtzng 
function & : I + R of X is defined by &(s) = Eeax . Note the difference 
between the moment generating function and the Laplace-Stteltjea tmnsfomn 
i ( s )  = Ee-sX = J-, e-'= dF(z) of X or of the distribution function F of X. 
Besides the LaplaceStieltjes transform, we sometimes consider the Laplace 
transform L(s) = $-", e-82c(z) dx of a function c : R + R+. Clearly, if the 
distribution function F is continuous with density f, then it5 LaplaceStieltjes 
transform is equal to the Laplace transform of f .  It is rather easy to prove 
that the Laplace-Stieltjes transform i (s)  of a distribution on R+ is completely 
monotone, i.e. for all integer values of n, (-l)"i(")(s) 2 0. A classical result 
from real analysis, known as Bernstein's theorem, states that, conversely, every 
completely monotone function b(s) satisfying l(0) = 1 is the Laplace-Stieltjes 
transform of a distribution on &. 

For lattice random variables on n\- with probability function { p ~ ,  k E IN} we 
additionally use the notion of the probability generating function g : [-l,l] + 

00 
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R defined by a(s)  = x r = o p k s k .  If {ak, k E IN} is an arbitrary sequence 
of real numbers, not necessarily a probability function, we also define the 
generating function j ( z )  of {C&} by b(z)  = CEO akzk provided the sum is 
convergent for z E D, where D is a subset of the complex plane C. For 
example, a probability generating function can always be considered on the 
unit sphere { z  E C : 1.1 5 1). If the generating function g(z)  is well-defined 
for all z E C with IzI 5 SO, then the supremum of all so 2 1 with this property 
is called the radius of convergence of g(z).  

Let X be an arbitrary real-valued random variable with distribution F. The 
characteristic function 9 : R + C of X is given by 

$(s) = Eeisx.  (2.1.4) 

In particular, if F is absolutely continuous with density f ,  then 

00 ou 00 

$(s) = 1, eisz f (z) dz = cos(ss)f(z) dz + i 

In this case, q3 is the Fourier transform of f .  If X : 52 + IN is a discrete 
random variable with probability function { p k } ,  then 

m 

(2.1.5) 
k=O 

If we want to emphasize the random variable X or its distribution F when 
using the moment generating function, Laplace-Stieltjes transform, Laplace 
transform, probability generating function or characteristic function, then we 
write hx,. . . ,Gay or, alternatively, &F,. . . , 9 ~ .  

Mote that the formal relationships g(ea) = 1(-s) = A(s) hold. Similarly 
$(s) = g(eis). However, it is somewhat more delicate to decide for what 
arguments s the transforms h ( s )  and i(s)  are well-defined. For example, if 
X is nonnegative, then A(s) is well-defined for all s 5 0 while i(s) is well- 
defined for all s > 0. But examples show that A(s) may be 00 for all s > 0, 
while others show that h ( s )  is finite on (-oo,a) for some Q > 0. 

There is a one-to-one correspondence between distributions of random 
variables and their characteristic functions. For the moment generating 
function, Laplace-Stieltjes transform, Laplace transform or probability gener- 
ating function additional assumptions have to be imposed. If the n-th moment 
of the random variable 1x1 is finite, then the n-th derivatives rh(n)(0),i(n)(O) 
exist provided that the functions h(s),i(s) are well-defined in a certain 
(complex) neighbourhood of s = 0. In this case, the following equation holds: 

EX" = rit(n)(o) = (-l)ni(n)(~) = (-i)Q$(n)(0). (2.1.6) 
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Ifpiz(s) and f(s) are well-defined only on (-m, 01 and [0, oo), respectively, then 
the derivatives in (2.1.6) have to be replaced by one-sided derivatives, i.e. 

E Xn = fh(,)(O-) = (-l)"a^c")(O+), (2.1.7) 

or by the corresponding derivative of the characteristic function $. If the range 
of X is a subset of IN and if E X "  < co, then 

E ( S ( X  - 1) .  . . (X - n + 1)) = jj('a)(l-). (2.1.8) 

Another important property of h ( s )  (exactly the same holds for the trans- 
forms i(s)  and +(s)) is the following. Let XI,. . . , X ,  be independent; then 

n 

(2.1.9) 

Similarly, if XI,. . . I X, are independent and take their values in IN, then 
n 

9XI+ . A X  , (s) = JJ $Xk (8) * (2.1.10) 
k=l  

More generally, for arbitrary measurable functions gl,. . . , glr : R + R we 

(2.1.1 1) 

provided that X I  >. . . , X, are independent. 
Let X, Xi, X2,. . . be real-valued random variables. We say that. { X n }  

converges weakly (or in distribution) to X if F,y, (x) + Fx(x) at all points 
of continuity of F,y. We write X ,  4 X. This definition is equivalent to the 
following one, which is called the Heily-Bruy theorem , saying that, X ,  4 X 
if and only if 

lim Eg(Xn) = Eg(X) (2.1.12) 
n+oo 

for each bounded continuous function g : R + R. A sufficient condition for 
weak convergence is that X, + X if d 

(2.1.13) 

for all inner points s of the interval where fh,y(s) exists, provided this interval 
is different from the singleton (0). The following two results are related to 
convergence in distribution and are known as Slutsky's arguments. If X, 4 X 
and ITn 4 c E R, then 

X& 4 c x  , X" + Y, 4 s + c .  (2.1.14) 
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Bibliographical Notes. Examples of textbooks with an elementary in- 
troduction to probability theory are Brbmaud (1988), Krengel (1991) 
and Ross (1997a). More advanced background material on probabilig 
and measure theory can be found, for example, in Billingsley (1995), 
Breiman (1992), Feller (1968), Ghssler and Stute (1977), Karr (1993) and 
Pitman (1993). For Bernstein's theorem on completely monotone functions, 
see, for instance, Feller (1968). Slutsky's arguments can be found, for example, 
in Serfling (1980). 

2.2 PARAMETRIZED FAMILIES OF DISTRIBUTIONS 

In this section we introduce several classes of discrete or absolutely continuous 
distributions appearing in insurance and finance. They all are characterized 
by a finite set of parameters. Many of their properties are discussed in later 
sections. See also the tables at the end of the book where formulae with 
basic charact,eristics of these distributions are listed. Some special functions 
repeatedly appear later and are stated in Section 2.2.5. 

2.2.1 Discrete Distributions 

.4mong the discrete distributions we have: 

0 Degenerate distribution 6, concentrated on a E R with p ( z )  = 1 if x = a 
and p(x) = 0 otherwise. 

0 Bernoulli distribution Ber(p) with pk = ~ ' ( ( l - p ) l - ~  for k = 0,l; 0 < p < 1: 
the distribution of a random variable assuming the values 0 and 1 only. 

0 Birbornaal distribution Bin(n,p) with Pk = (;)pk(l - p)"-' for k = 
0 , l . .  . , n; n E IN, 0 < p < 1: the distribution of the sum of n independent 
and identically Ber(p)-distributed random variables. Thus, Bin(n1, p )  * 
Bin(n2,p) = Bin(n1 + nz,p). 

0 Poisson distribution Poi(X) with p k  = e-AXk/k !  for k = 0 , l .  . . ; 0 < X < 00: 

one of the building blocks of probability theory. Historically it appeared as a 
weak limit of binomial distributions Bin(n,p) for which np + X as n + 00. 

The closure property of the class of Poisson distributions under convolution 
is important in that the s u m  of two independent Poisson-distributed random 
variables is again Poisson-distributed, that is Poi(X1) * Poi(X2) = Poi(X1 + 

0 Geometric diutribution Geo(p) with pk = (1 - p)pk  for k = 0 , l .  . . ; 0 < 
p < 1: the distribution with the discrete lack-of-memory property - that is, 
P(X 2 i +j I X 2 j )  = P(X 2 i) for aJl i , j  E IN iff X is geometrically 
distributed. 

X2). 
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0 Negataue binomial distribution or Pascal distribution N B ( a , p )  with pk = 
r(a+k) / (r (a)r(k+i ) ) ( i -~)~~ fork=0,1,  ...; a > o , o < ~ <  1.Using 

for 2 E R, k = 1: 2,. . . as a general notation, we have 

Moreover, for a = 1,2,. . ., N B ( a , p )  is the distribution of the sum 
of a independent and identically Geo(p)-distributed random variables. 
This means in particular that the subclam of negative binomial distri- 
butions { N B ( a , p ) , a  = 1,2,. . .} is closed with respect to convolution, 
i.e. NB(a1,p)  * NB(a2,p) = N B ( w  + a 2 , p )  if 01 a2 = 1,2,. . .. Moreover, 
the latter formula holds for any a1,02 > 0 and 0 < p < 1. 

0 Delaporte distribution Del(X, a s p )  with Del(A, a , p )  = Poi(X) * NB(a ,p )  for 
x > 0, a > 0, o < p <  1. 

0 Logarithmic distribution Log@) with P k  = pk/(-klog(1 - p)) for k = 
1,2 , . .  .; 0 < p < 1: limit of truncated negative binomial distributions; 
alternatively limit of the Engen distribution when 6 + 0. 

n = l , 2 ,  .... 
0 (Diwrete) uniform dbtrzbzltion UD(n) with Pk = n-' for k = 1,. . . ,n; 

0 Sachel distribution Si(6, A, a) with 

for k = 0,1,. . ., where Ke(z) denotes the Bessel function of the third kind 
(see Section 2.2.5 below); A, a > 0, 6 E IR. 

0 Engen distribution Eng(0, a)  with 

2.2.2 Absolutely Continuous Distributions 

Among the absolutely continuous distributions we have: 

0 Normal distribution N(p ,  a2)  with f(z) = (2?ru2)-1/2e-(2-")2/(2u2) for all 
2 E R; p E R,a2 > 0: another building block of probability theory. It 
appears as the limit distribution of sums of an unboundedly increasing 
number of independent random variables each of which is asymptotically 
negligible. The class of normal distributions is closed with respect to 
convolution, that is N(p1, c$) * N(p2,az) = N(p1 + p2, u: + a;). 
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0 Exponentid distribution Exp(X) with f(z) = Ae-XZ for x > 0; X > 0: basic 
distribution in the theory of Markov processes because of its continuous 
lack-of-memory property, i.e. P(X > t + s I X > s) = P(X > t) for all 
s, t 2 0 if X is exponentially distributed. 

0 Erlang distribution Erl(n, A) with f(z) = Xnz”-’e-Xz/(n-l)!; n = 1,2, .  . .: 
the distribution of the sum of n independent and identically Exp(X)- 
distributed random variables. Thus, Erl(n1 , A)*Erl(nz, A) = Erl(n1 +n2% A). 

0 x2-distribution x2(n.) with f(z) = (2n/2r(n/2))-1s(n/2)-1e-”/2 if z > 0 
and f(z) = 0 if s 5 0; n = 1,2,. . .: the distribution of the sum of n 
independent and identically distributed random variables, which are the 
squares of N(0, 1)-distributed random variables. This means that x2(n1) * 
x2(n2) = x2(nl + m). 

0 Gamma distribution r(a,X) with f(s) = A’so-le-xz/I’(u.) for x 2 0; with 
shape parameter a > 0 and scale parameter X > 0: if a = n E IN, then 
r(n, A) = Erl(n, A). If X = 1/2 and a = 4 2 ,  then T(n/2,1/2) = x2(n). 

0 Uniform distribution U(a:b) with f(s) = (b - a)-’ for a < z < b; -00 < 
a < b < o o .  

0 Beta distribution Beta(a, b, 77) with 

zo-’(q - @-1 
f(z) = B(a, b)?a+b-l 

for all 0 < z < 9, where B(a, b) denotes the beta function (see Section 2.2.5); 
a,b,q > 0; if Q = b = 1, then Beta(l,l,q) = U(0,q). 

0 Inverse Gaussaan distribution IG(p, A) with 

f(z) = ( ~ / ( 2 a s 3 ) ) l / ~ e x p  (-~(s - p>2/(2p2z)) 

for all x > 0; p E R, X > 0. 
0 Eztreme wabe distribution EV(y) with F ( z )  = exp(-(1 + ys);”’) for all 

E R where the quantity (1 + y ~ ) + ~ / ~  is defined as eVz when y = 0. The 
latter distribution is known as the Gumbel distribution. For r > 0 we obtain 
the Frkcchet distributaon ; this distribution is concentrated on the half-line 
( - l /y:  +oo). Finally, for y < 0 we obtain the &remal- Wedbull distribution, 
a distribution concentrated on the half-line (-w, -l/y). 

2.2.3 

Rote that, except the F’rBchet distribution, each of the absolutely continuous 
distributions considered above has an exponentially bounded tad) i.e. for some 
a,b > 0 we have F(z) 5 ae-bz for all z > 0. Such distributions are 
sometimes said to have a light tail. In non-life insurance one is also interested 
in distributions with heavy tails. Formally we say that F has a heavy tad if its 

Parametrized Distributions with Heavy Tail 
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moment generating function 7 j l~ (s )  fulfils &F(s )  = 00 for all s > 0. Typical 
absolutely continuous distributions with heavy tail are: 

0 Logarithmic normal (or lognormal) distribution LN(a,b) with f(x) = 
(xb&G)-'exp(-(log~-a)~/(26~)) for x > O a E R,b > 0; if X is 
N(a ,  b)-distributed, then ex is Lll'(a, b)-distributed. 

0 Weibull ddatributdon W(r,c) with f(z) = ~cx'-~exp(-cx') for x > 0 
- where the shape parameter r > 0 and the scale parameter c > 0; 
F ( r )  = exp(-cx'); if r 2 1, then W(T,C) has a light tail, otherwise W(r,c)  
is heavy- tailed. 

0 Pareto distribution Par(a,c) with f(z) = ( a / c ) ( c / ~ ) ~ + l  for 2 > c; with 
exponent or shape parameter a > 0 and scale parameter c > 0, F(z) = 
(c /xIQ.  

0 Pareto rnMures of exponentids P M E ( a )  with 
00 

(y-Q+l (a - 1)Qy-(a+') -1 - X / V  dy f(x) = La-l)/Q Y e  

for x > 0; a > 1, a class of distributions with heavy tails having an explicit 
Laplace-Stieltjes transform for a = 2,3, . . .: 

+ ( - l ) ~ a ( ~ ) Q s ~ ~ o g ( l + -  (a - 1)s 1- 
Moreover, for arbitrary a > 1, 

XQ 

s + x  

Q/(a-1) 

i(s) = 1" e-u2fa(x) d s  = a (9) 4 - dx 
and F(z) - r(a + l ) ( a  - l/a)Qx-Q as 2 + 00, where the symbol 
g1(z) - g2(4 means that liml+m gl(E)/g2(z) = 1. 

Further parameterized families of heavy-tailed distributions being popular in 
insurance mathematics are: 

Loggamma distribution LI'(a, A) with f ( ~ )  = Xa/r(a)(logx)a-'x:-X-' for 
x > 1; A, a > 0; if X is r (u ,  A)-distributed, then ex is LI'(a, A)-distributed. 

+2blogr) for 5 > 1; a, b, c > 0, chosen in such a way that F is a distribution 
on IR+. The latter requires that a(a + 1) 2 2b and ac 5 1. 

0 Benktander type I1 distribution BenII(a,b,c) with tail function F(x) = 
caz-('-*)exp(-(a/b)x*) for z > 1; a > 0,O < b < 1 and 0 < c 5 a-lea/'. 

0 Benktander type I distribution BenI(a, b, c) with F(x)  = cx-a-1e-b(10g2)2 (a 
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2.2.4 Operations on Distributions 

Starting from these basic parametrized families of distributions, one can 
generate more distributions by means of the following operations. 

Mixture Consider a sequence F!,F2,. . . of distributions on B(R) and 
a probability function { p k ,  n = 1,2,. ..}. Then, the distribution F = 
C,"=, pkFk is called a mixture of F I ,  F2,. . . with weights p l , p z , .  . . If X is 
a random variable with distribution F ,  then Fk can be interpreted as the 
conditional distribution of X ,  and p k  as the probability that the conditional 
distribution Fk is selected. We can also have an uncountable family of 
distributions Fe parametrized by 8, where 8 is chosen from a certain subset 8 
of R according to a distribution G concentmateed on 9. Formally, the mixture 
F ( z )  of the family {Fe, 8 E 8) with mizing distribution G is given by 
F ( z )  = Je Fo(2) dG(B), 3 E R. 
Tkuncation Let X be a random variable with distribution F and let 
C E B(R) be a certain subset of R. The truncated distribution Fc is the 
conditional distribution of X given that the values of X are restricted to the 
set Cc = R \ C, i.e. Fc(B)  = P ( X  E B I X 4 C), B E B(lR). For example, 
if X is discrete with probability function { p k ,  k = 0,1,2,, . .}, then the zero 
truncutaon F{o} is given by the probability function {P(X = k I X 2 l), k = 
1,2, .  . .}. In particular, if X is Geo(p)-distributed, then the i . ro  truncation is 
given by P ( X  = k I X 3 1) = (1 -p)pk-' for k = 1 , 2 , . .  .. In the present 
book we refer to this distribution as the tmncated geometric distribution; we 
use the abbreviation TG Cp) . 
Modification If the distribution F is discrete with probability function 
{ p k ,  k = 0 , l . .  . .} and 0 < 0 < 1, by the 8-modificatdon G we mean the 
distribution (1 - t9)& + OF. That is, a random variable X with the modified 
distribution G is again discrete with probability function 

1-8+f?p,  i fk=O,  
if k 2 1. P (X = k )  = { epk 

In some cases, modification is the inverse operation of zero truncation. For 
example, the pmodification of TG(p) is Geo(p). 

Shifting By shafting the argument of a distribution function F ( s )  by some 
a E R, we get the new distribution function G(x)  = F ( x  + a). This means 
that if X has distribution F ,  then X - a has distribution G. 
Scaling By scaling the argument of a distribution function F ( z )  by some 
a > 0, we get a new distribution function G(z) = F ( x / a ) .  This means that if 
X has distribution F, then aX has distribution G. 

Integrated Tail The notion of the integrated tail distribution Fs of a 
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distribution F on the nonnegative halfline is defined by 

provided 0 < p~ < 00. Sometimes P is called the stationary excess 
dwtribution or the equilibrium distribution of F.  

2.2.5 Some Special Functions 

We now collect some basic properties of a few special functions which will be 
used in later sections of this book. 

Gamma function 

Note that r ( r )  is a continuous function. Furthermore, r(1) = 1 and 
I’(1/2) = ,/F. Integration by parts shows that r(z) = (Z - l)I’(z - 1) 
and hence F(n) = (n - l)!. 
Beta function 

ta-1 
a, b > 0. 

Kote that B(a,  6 )  = r(a>I’(b)/r(a + 6 )  = B(b, a). 
Modafied Bessel function 

Bessel function of the third kind 

&(z) = f exp (-a. (g + p-’)) ye-’ dy , z > 0,8 > 0 .  (2.2.2) 

Confluent hypergeometric functions 

m a(a + 1) .  . . (a + a - 1) Zn 
M ( a ,  b; z) = c z E RI (2.2.3) b(b+ 1). .. ( 6 +  n - l)n! ’ 

n=O 

where b cannot be a negative integer; if a is a negative integer, i.e. a = -m 
for some positive m = 1,2, . . ., then M ( a ,  6; Z) is a polynomial of degree 
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na. Useful relationships are d/dxM(a, b; x) = (a /b)M(a + 1, b + 1; 2) and 
M ( a ,  b; x) = ezM(b - a, b; -x). An integral representation is 

for a, b > 0. Another confluent hypergeometric function is 

r ( 1 -  b) M(a ,  b; 2) + - r(b-1)2'-bM(1+u- b ,2-b;2) .  
r(a) U ( a ,  b; 2) = r(l + a - 6 )  

It admits the integral representation 

e - ~ t  a 1 U(a ,b ; z )  = - Jm t - (1 + t)b-a-' d t ,  ~ , b  > 0. (2.2.5) r(4 0 

We end this section by recalling a family of orthogonal polynomials. 

0 The generalized Laguerre polynomials are given by 

and for a = 0 we obtain the Laperre polynomials, that is L:(z) = Ln(z) .  
A useful identity is 

(2.2.7) 

The generalized Laguerre polynomials are related to the confluent hyper- 
geometric functions by 

d 
dx 
-LE(z) = -L;:ft(z). 

n! M(-n,a + 1,z) = L 3 x )  . 
(Q -k l)(U + 2) .  . . (Q + n) 

The generating function CF=o L;(z)z* is given by 

(2.2.8) 

Bibliographical Notes. An exhaustive survey of distributions is given 
in the following volumes of Johnson and Kotz (1972), Johnson, Kotz and 
Bdakrishnan (1994, 1995), and Johnson, Kotz and Kemp (1992, 1996). Most 
popular distributions in insurance mathematics are reviewed in books like 
Beard, Pentikiiinen and Pesonen (1984), Conti (1992), and Hogg and Klug- 
man (1984); see also Benktander (1963). Pareto mixtures of exponentials were 
introduced by Abate, Choudhury and Whitt (1994). For special functions and 
orthogonal functions we refer to Abramowitz and S t e p  (1965). 
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2.3 ASSOCIATED DISTRIBUTIONS 

In many applications of probability theory to actuarial problems, we need a 
concept that has received a lot of attention in risk theory under different 
names like associated distribution, Esscher transform, exponential tilting, 
etc. In later chapters of this book several variants of this concept will be 
used; see, for example, Sections 6.3.3, 9.2 and 10.2.6. Consider a real-valued 
(not necessarily nonnegative) random variable X with distribution F and 
moment generating function & F ( s )  = EeSX = s-”, e*=dF(s) for all s E Hi 
for which this integral is finite. Let SF = inf{s 5 0 : & F ( s )  < 00) and 
s; = sup{s 2 0 : l i z ~ ( s )  < 00) be the lower and upper abscissa of 
convergence, respectively, of the moment generating function T?ZF (3). Clearly 
SF 5 0 5 s:. Assume now that &F(s)  is finite for a value s # 0. From the 
definition of the moment generating function we see that & F ( s )  is a well- 
defined, continuous and strictly increasing function of s E (SF, s$) with value 
1 at the origin. Furthermore, 

00 

.&jlF(s) - 1 = J_,(eS* - 1) d W )  

- - -s/-o, l o e s Y d y d F ( z )  + s 1” A” es3dy dF(x) 

- - -s 
0 

F(y)esp dg + s 1” F(y)eSY dy. (2.3.1) 

This relation is useful in order to derive a necessary and sufficient condition 
that l i a ~ ( s )  < 00 for some s # 0. 

Lemma 2.3.1 Assume that h ~ ( s 0 )  < 00 for some SO > 0. Then there &ts 
b > 0 such that for all x 2 0 

1 - F ( s )  5 be-s0z, (2.3.2) 

Conversely, if (2.3.2) is fulfilled, then m ~ ( s )  < 00 for all 0 L: s < so. 
Analogowly, if & F ( S O )  < m for some SO < 0, then there exists b > 0 such 
that for all x 5 0 

F ( s )  5 beSOZ . (2.3.3) 

Conversely, if (2.3.3) i s  fulfilled, then &F(s )  < 00 for all SO < s 5 0. 

Proof Assume that condition (2.3.2) is fulfilled. Then (2.3.1) leads to 

b (1 - F(y))eevdy 5 - 
S so - s 
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for 0 < s < SO, which shows that T j b ~ ( s )  is finite at least for all 0 f s < SO. 
Conversely, if r h ~ ( s )  is finite for a positive value s = SO, then for any 3: 2 0 

0 

1 - lrn F(y)esov dg + esov(l - F(y)) dy 
7 f i F ( S O )  - 1 

m >  
$0 

1 esOz - 1 
2 -- + (1 - F(z)) 

so 30 

This means that for all 2 2 0 , l -  F(z)  is bounded by b e-'OS for some constant 
0 b. The second part of the lemma can be proved similarly. 

Theorem 2.3.1 ]fa+ = liminf,,, -2-l logF(z) > 0, then 

a+ = 3;. (2.3.4) 

Ifa- = limsup,,-, -2-l logF(s) < 0, then 

a- = sF . (2.3.5) 

Proof We show only (2.3.4). Let E > 0 be such that u+ - E > 0. Then, there 
exists zo > 0 such that --z-' logF(s) 2 u+ --E for 2 > so, which is equivalent 
to F(z) 5 for 5 > 20. Because E > 0 was arbitrary we conclude 
from Lemma 2.3.1 that f?zjl~(s) < 00 for all s < a+. Conversely, suppose that 
h ~ ( s 0 )  < o;! for some SO > a+. By Lemma 2.3.1, F(z) 5 b e - s O z  for some 
b > 0. Hence -5-l logF(t)  2 -3:-l logb+so for 2 > 0, which yields ac 1 SO. 

0 

From the above considerations we get s$ = lim inf,,, -zF1 logF(3:) and 
sF = lim  up^-,-^ 2 - I  log F ( z )  provided that the limits are nonzero. Note 
that for nonnegative random variables s; = -00, and in this case we write 

Whenever s; < s$, an infinite family of related distributions can be 

This contradicts $0 > a+. Therefore s$ = a+. 

- 

s; = SF. 

associated with F. For each t E ( S F ,  s$) 

(2.3.6) 

defines a proper distribution on IR called an associated distributaon to F. The 
distribution kt is also called an Esscher tmnsfonn of F. The whole family 
{ kt ; SF < t < s:} is called the class of distributions associated to F.  

Lemma 2.3.2 Let s; < t < s z .  Then the moment generating function of F t  

(2.3.7) 
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for s; - t < s < s$ - t .  Moreover, pt has all moments; in particular, the 
expectation pp, of the associated distribution pt is given by 

whale the variance u$~ of Ft is given by 

(2.3.8) 

(2.3.9) 

The proof is left to the reader to be shown as an exercise. Note also that the 
associated distribution 

L e m m a  2.3.3 For all sF < t < s$ and n = 1,2, .  . . the fundamental equdtty 

( f?&F( t ) )n  d F : " ( X )  = etr dF*"(z) (2.3.10) 

has the following useful property. 

holds and, consequently for all x E R, 

1 - F"'(s) = ( r f a F ( t ) ) n  e-ty dp:n(y) I" (2.3.11) 

Proof Raise equation (2.3.7) to the n-th power for any fixed n E N. But 
clearly (7iz.n ( s ) ) ~  is the moment generating function of pt" and so by unicity 
of the moment generating function the relation 

m 
(&p(t))" lm esr d c n ( x )  = ( ~ ? & F ( s  + t))" = Im esz d ( L m  ety dF*"(y)) -" 

yields the fundamental equality (2.3.10). 0 

One of the important features of (2.3.11) is that on the right-hand side one 
has a bee parameter t which is only restricted by the inequalities sF < t < s$ . 
In practical applications a judicious choice of this parameter will rewrite 
intractable formulae into simpler ones. Let us illustrate the above procedure on 
a concrete example that will prove to be useful in a forthcoming application 
of renewal theory to an actuarial problem; see Section 6.2.3. One possible 
implication of (2.3.11) is that an exponential bound on the tail of a distribution 
results in an exponential rate of convergence in the weak law of large numbers. 

Theorem 2.3.2 Assume that p~ exists and s; > 0. Then for all 0 < t < s$ 
1 - F'"(nx) = 

(e- t"6~(t))"6t , /E eVBtfiv (F;*R(nz + 6 1 . 1 6 )  - p:n(nx)) dv, (2.3.12) I" 
where 6 > 0. Moreover, for each x > p~ there exists 0 < c = c ( x )  < 1 such 
that 1 - F*"(ns) 5 cn for n = 1,2,. . .. 
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Proof Let t E (0,s;). Then, by an integration by parts we can rewrite (2,3,11) 
in the form 

1 - ~ * n ( x )  = (ri(F(t))n(e-t%(l- ~:n(z)) - t I" e-tp(l - Ptn(y)) dy) . 

Note, however, that t 1," e-tg dy = evt5 for 0 < t < 5:. Hence the first term 
on the right can be incorporated within the integration to give 

1 - F*"(x) = t ( + j 2 p ( t ) ) R  1" e-tv(l;2"n(y) - @'(z)) dy . (2.3.13) 

We now replace 3: by nx and the variable of integration y by nx + Of iv  for 
some constant 8 > 0 to get (2.3.12). Note that the quantity P:n(nz+cv& - 
p:"(nz) can be interpreted as a probability P(nz < Sn 5 nx + cvm where 
S,, is the sum of independent random variables XI, .  . . , Xn all with the same 
associated distribution &. Replacing this probability by 1 we get the upper 
bound 1 - F*n(nx) 5 (e-t"litF(t))n, where we still have the free parameter 
t E [O,s$). Keeping z > p~ fixed, we show that there has to be a positive 
value of 1 in this interval where the quantity g(t , t )  = e-%lF(t) is strictly 
less than 1. To show that, note first that g(0,z) = 1. Further 

(2.3.14) 

which equals the value p~ - I < 0 at the origin. So, &g(t,x)lt=o < 0. Since 
&g(t, x) is continuous in t, g g ( t ,  x) is negative for some positive values of t, 
and hence g(t,z) is strictly decreasing in t to the right o f t  = 0. 

Assume now additionally that F is nondegenerate. Then there exists a 
uniquely determined t E [0, s',] which is optimal in the sense that the value of 
g(t ,s)  = e-t2rizF(t) becomes minimal. Namely, (2.3.14) together with a little 
algebra shows that 

0 

which is then positive for all t E [O,s$) since the first summand on the right 
can be seen as the variance of a nondegenerate distribution. Indeed, from 
(2.3.9) the variance of pt is known and this variance is positive except for 
the case where Pt is degenerate, a possibility that we have excluded by the 
assumption that F is nondegenerate. Hence in Theorem 2.3.2 we can put 
c = info<t<s; g(t,x), where (2.3.14) implies that the value oft  which realizes 

this infimum can be uniquely determined by x = &g)( t ) /A~( t )  provided that 
this equation has a solution in (O,s:]. 

- 
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Note that besides the upper bound for 1-F'"(nx) shown in Theorem 2.3.2, 
one can derive an asymptotic expression for 1 - F*"(nz) as n + 30. We need 
the following result, which is known as a local lamit theorem. 

Lemma 2.3.4 Let XI, X 2 , .  . . be nonlottice real-valued random uariables 
which are independent and identically distributed such that EX1 = 0 and 
0 2  = E ( X I  )2 < oo. Then limn-+m ~AGP(c~==, xj E I) = 1 1 1  for m y  

finite interval I with length 111. 

The proof is omitted. It can be found, for example, in Breiman (1992) and 
Petrov (1978). 

We now prove an explicit asymptotic estimate for the tail of the associated 
distribution. 

Theorem 2.3.3 Assume that F is nonlattace. If p~ exists and 8; > 0,  then 
for  each x > p~ such that a $elution to = t o ( x )  to x = h g ' ( t ) / ? % F ( t )  exists, 

here e = 7 h F ( t 0 ) - 1 4 2 r ( + t g ) ( t o ) 7 h F ( t o )  - (7jlg)(t0))2).  

Proof We start from representation (2.3.13) to get 
00 

1 - F*"(s) = t(&F(t))" 1 e-"(@;"(y) - P;"(x)) du 
1c 

where we replace x by nx and put y = nz + w / t .  Shifting a factor from the 
right-hand side to the left we obtain the expression 

(e-t5AF(t))-n(l - F*"(nz)) = 1 e-w (pf"(nz + :) - #f"(nx)) dw . 

Note again that the quantity #;"(nz + 7) - &n(nz) can be interpreted as a 
probability P(nz < St' 5 nx + q), where St' is the s u m  of n independent 
random variables all with the same distribution as S,'". To apply Lemma 2.3.4, 
choose t = to in such a way that x = ESito) and define XI = Sit') - x. We 
then obtain 

m 

0 

00 n 

OJil(e-""tiE~(t))-"(l - F'"(nx)) = e-"(efi) P ( 1  X j  E (0, 5 ) )  dw 
j=1 

(2.3.16) 
where e2 = 27rVarX1 or, more explicitly, 
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If we are entitled to apply the bounded convergence theorem, then on the 
right-hand side of (2.3.16) we obtain 

which proves (2.3.15). The proof that the bounded convergence theorem can 
0 be applied is left to the reader as an exercise. 

Bibliographical Notes. The Esscher transforms method was developed 
to approximate the aggregate claim amount distribution (see, for example, 
Esscher (1932)), where the concept of associated distributions is attributed 
to Lundberg (1930). For a concise treatment see Jensen (1995). Recently, in 
Gerber and Shiu (1996), an extension of the method of Esscher transforms 
was studied in changing probability measures for a certain class of stochastic 
processes that model security prices. The exposition on the abscissa of 
convergence follows Section 5.5 of Widder (1971). 

2.4 DISTRIBUTIONS WITH MONOTONE HAZARD 
RATES 

Instead of considering parametrized families of distributions it is sometimes 
more appropriate to deal with classes of distributions of nonnegative ran- 
dom variables which can be described by qualitative properties of some 
characteristics. For example, hazard rates and, equivalently, mortality rates 
reflect t.he conditional probability of dying at age 2, given that age z is 
reached. Another related characteristic is the distribution of the remaining 
lifetime after age 2. We study these and other characteristics and the classes 
of distributions defmed through them. Clearly, hazard rates are important in 
life insurance mathematics. In a mathematically equivalent form this notion 
is also considered in other areas of insurance, e.g. in fire insurance, but also 
in survival analysis and reliability theory. Hazard rates of most distributions 
sampled from real data do not possess global monotonicity properties, but 
local monotonicity is often observed and has a natural explanation. On 
the other hand, many parametrii~d families of (theoretical) distributions, 
like gamma, uniform and Weibull distributions, have global monotonicity 
properties. 

2.4.1 Discrete Distributions 

We first consider the case of discrete random variables taking their values 
on a lattice, IN say. Let { p k }  be the probability function of an Xi-valued 
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random variable X. A possible interpretation of X is that it measures the 
year of death of an individual belonging to a certain population. Define 
T, = P(X 2 n) = p n + p n + l  + ... and, for all n E IN such that r, > 0, 

(2.4.1) 
7 n  

The quotient m, in (2.4.1) is called the hazard rate of { p k }  in the n-th period. 
It can be interpreted as the conditional probability that an individual, who 
survived n - 1 years, dies in the n-th year. Clearly, the graph of (m,} can 
have different shapes. For example, in life insurance one usually observes data 
giving hazard rates whose graph has the form shown in Figure 2.4.1. Usually, 
hazard rates are locally but not globally monotone. 

- 0.0001 4 I I I ‘ n  
0 20 40 60 80 

Figure 2.4.1 Hazard rates 

In fire insurance one speaks of “extinction ratesn instead of hazard rates. 
Most fires are stopped at the very beginning, i.e. at this stage the extinction 
rate is relatively large. However, if the early extinction fails, then the 
extinction rate, i.e. the chance of stopping the fire, soon decreases. Another 
interpretation of X, considered in reliability theory, is that X measures the 
lifetime of a technical system until breakdown; then one speaks of “failure 
rates” instead of hazard rates. 

Hazard rates for discrete distributions often turn out to be monotonically 
increasing or decreasing. Throughout this book we call a function g : B + R 
defined on B c R increasing if g(z) 5 g(y) for all s,y E B such that L 5 9 
and decreasing if g(z) 2 g(y) for all s,y E B such that 2 5 y. Obviously, 
in this terminology, a constant function is both increasing and decreasing. 
This is the case with the hazard rates of the geometric distribution, where 
it is easily shown that rn, = 1 - p for all n E IN. This property illustrates 
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the lack-of-memoy property, which says that a geometrically distributed X 
satisfies 

P(X 2 a + j  I x 2 j )  = P(X 2 i) (2.4.2) 
for all i , j  E IN. For theoretical purposes it is convenient to distinguish classes 
of distributions having special monotonicity properties. 

We say that the probability function { p k }  or, alternatively, the correspond- 
ing distribution is: 

0 IH% if the sequence {m,} is increasing (where IHR comes from Increasing 
Hazard Rate and “d” means discrete), 

0 DHQ if the sequence {mn} is decreasing (where DHR comes from 
Decreasing Hazard Rate). 

We leave it to the reader to show that a mixture of distributions whose 
probability functions are D H h  is again D H h .  Hence all mixtures of 
geometric distributcions are D H h .  The proof that the property I H h  is closed 
with respect to convolution needs additional concepts (see the bibliographical 
notes below). It is often rather difficult to decide straightforwardly whether 
a distribution is I H h  or D H h .  However, there are sufficient conditions 
which in many cases can be checked more easily. We say that a probability 
function {pk}  is logconvex if pE+, 5 Pk+2Pk for aU k: E N and logconcave if 

Theorem 2.4.1 (a) If { p k }  is logconcave, then at is IHG. 
(b) If {pk} is logconvez, then it is DHQ. 

Proof Let 

pi+l 2 Pk+2Pk for d l  E IN- 

(2.4.3) 

Assume that the probability function {pk} is logconcave. Then, it is w y  to 
see from the definition of concavity that the sequence {b,} is decreasing. Thus, 
because of 

the sequence { n n }  is increasing. The proof of (b) is similar. 0 

Corollary 2.4.1 Each Poisson distribution is I H h .  

Proof In view of Theorem 2.4.1 it suffices to observe that the probability 
0 function of any Poisson distribution is logconcave. 

Corollary 2.4.2 
D H b  if0 5 a < 1. For o = 1, m, = 1 - p  for all n E IN. 

The negative binomial distribution is I H G  if (Y > 1, and 



46 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

Proof The criterion given in Theorem 2.41 requires to check the monotonicity 
properties of the sequence {bn}  given in (2.4.3). For the negative binomial 
distribution we have 

which shows that {bn} is increasing for 0 < a < 1 (and also { p k }  logconvex) 
0 and decreasing for a > 1 (and also { p k }  logconcave). 

2.4.2 Absolutely Continuous Distributions 

Now we consider a nonnegative random variable X with absolutely continuous 
distribution F and density function f .  For example, X can he interpreted as a 
random lifetime sampled from very short periods. Drawing an analogy between 
the discrete and continuous case, we defme the hazard rate fvnction m ( t )  by 

m ( t )  = f(t) if ~ ( t )  < I. 
1 - F ( t )  (2.4.5) 

The formal infinitesimal interpretation 

m,(t) dt = f ( t ) d t  = P(X - t E dt I X > t )  
1 - F ( t )  

explains this terminology and shows the similarity to the definition (2.4.1) 
of {mn}. In life insurance mathematics, m(t) given in (2.4.5) is called the 
mortality mte function of F. 

We say that the distribution F is IHR if m ( t )  is increasing, and DHR if 
m(t) is decreasing. Analogous to the geometric distribution considered above, 
the only absolutely continuous distribution F which is both IHR and DHR 
is the exponential distribution. Furthermore, the exponential distribution can 
be characterized by the continuous version of the lack-of-memory property 
(2.4.2). Namely, X is exponentially distributed if and only if for all s , t  2 0 

P(X > t + 8  I x > 5 )  = P ( X  > t ) .  (2.4.6) 

In later chapters of this book we make use of the following lemma, which is 
of independent interest. It establishes a "randomized" version of the lack-of- 
memory property (2.4.6) of exponential distributions. 
Lemma 2.4.1 Let X be an exponentially distributed random variable. If W 
i s  a random variable and A E 3 an event such that X is independent of W 
and A, then for all x E R 

P(X > 2 + W I {x > D7 > 0) n A)  = ~ ( x  > 2) . (2.4.7) 
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Proof Let X be exponentially dist.ributed with parameter A. Using the law 
of total probability and the lack-of-memory property (2.4.6) of exponential 
distributions we have for all z 2 0 

P({X>Z+W,U~>O}~A) 
~ ( { x  > w > 0) n A) 

P(X > z + W (  {X> w > O } f l A )  = 

P(X > x + w)P(W E dw I A) - e-Xz e-AWP(W E dw I A) - - - 
P(X > w > 0 1‘4) P(X > W > 0 I A )  

- - e-X2 - e-A* P(X > w)P(W E dw I A) - 
P(X > w > 0 1 A) 

For z < 0, (2.4.7) is obvious. 0 

Referring to (2.4.6), the notions of IHR and DHR can be introduced in 
a slightly different way (without using the assumption that F is absolutely 
continuous). Define the residzsal hazard distributaon Ft at t by 

Ft(2) = P(X - t 5 2 I x > t )  (2.4.8) 

if F ( t )  < 1. Note that &(x) = ( F ( t  + z) - F ( t ) ) ( l  - F(t ) ) - I .  Consequently, 
for the expectation p ~ ,  of Ft we get 

p ~ :  = (1 - F(t))-’  F(z) d+ if F ( t )  < 1 .  (2.4.9) 

Since p ~ :  = E(X - t I X > t ) ,  the function p ~ ( t )  = p ~ ~ ,  t 2 0 is called 
the mean residual hazard function. It turns out that m(t) is increasing or 
decreasing if and only if the family (F t }  of residual hazard distributions is 
stochastically decreasing or increasing, respectively. Here a distribution F is 
called stochastically smaller (larger) than a distribution G if 

I”- 

- 
F ( z )  I (>)W (2.4.10) 

for all z E R. In this case, we write F Sst G and F zst G, respectively. 
Furthermore, we write X Sst Y if X,Y have distributions F,G respectively 
such that F Sst G. 

Theorem 2.4.2 The distribution F is  IHR (DHR) if and on@ if,  for all 
tl 5 t 2 ,  

Ft, >st ( I * t ) F t ,  * (2.4.11) 

Proof Note that F(z) = exp(-J:m(s)ds) and hence we get z(x) = 
exp(-&t+zm(s)d8). Thus, for each 2,  the function E(z) is decreasing in 

El t if and only if m(t) is increasing. The proof for DHR is analogous. 
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Similarly to the discrete case, a mixture of DHR distributions is again DHR. 
R'e leave it to the reader to show this as an exercise. For example, a mixture 
of exponential distributions is DHR. For IHR, see the bibliographical notes. 

Note that there is another interpretation of the distribution Ft if X is 
considered to be the accumulated loss in one year and the reinsurance treaty 
is stop loss. That is, if X exceeds a fixed level t (fist risk), the reinsurer pays 
the exceess amount X - t .  Therefore Ft is the conditional distribution of the 
compensation and p~~ is the conditional stoploss premium. We discuss these 
matters in Chapter 3. 

Next we show how to weaken the monotonicity conditions IHR and DHR or, 
equivalently, how to enlarge the corresponding classes of distributions. Such 
weaker conditions are not only useful in fitting models to real data but &o 
give rise to more theoretical results. 

In reliability theory, the following classes of distributions larger than those of 
IHR and DHR distributions are introduced. Following (2.4.10), a distribution 
F is called NBU (New Better than Used) if 

Ft I s t  F (2.4.12) 

for all t 2 0. Analogously, F is called NWU (New Worse thun Used) if 

Ft >st F (2.4.13) 

for ail t 2 0. Since FO = F, Theorem 2.4.2 yields that a distribution is NBU 
(NWU) provided that it is IHR (DHR). 

A distribution F is called NBUE (New Better than Used in Ezpectution) if 
p ~ *  I p~ for all t > 0. Analogously, one says that F is NWUE (New Worse 
than Used in Expectation) if p~~ 2 p~ for all t 2 0. 

Denoting the sets of distributions with the property IHR, NBU, ... 
by the same symbol IHR, NBU, ..., respectively, we have the inclusions 
IHR C NBU C NBUE and DHR c NWU c NWUE. 

Another important class of distributions consists of the distributions with 
heavy tails. As they are of special interest in reinsurance mathematics, we will 
consider them in Section 2.5. 

Bibliographical Notes. The notion of hazard rate is one of the measures 
of mortality used in life insurance. For a detailed account, see Benjamin and 
Pollard (1993) and also Gerber (1995). Classes of distributions with some 
monotonicity property were developed in reliability theory, and the general 
theory is summarized in Barlow and Proschan (1965,1975). In insurance 
mathematics such classes were studied in Heilmann (1988), and Heilmann 
and Schrater (1991), for example. A proof of the fact that the classes IH% 
and IHR are closed with respect to convolution can be found in Barlow and 
Proschan (1965,1975). 
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2.5 HEAVY-TAILED DISTRIBUTIONS 

2.5.1 Definition and Basic Properties 

In this section we study classes of distributions of nonnegative random 
variables such that 6 ( s )  = 00 for d l  s > 0. We call them heavy- 
taaled distributions. Prominent examples of heavy-tailed distributions are the 
lognormal, Pareto and Weibull distributions with shape parameter smaller 
than 1. For example, actuaries believe that lognormal distributions axe 
plausible models for motor insurance, while they feel that Pareto distributions 
are apt to model fire claim data. 

Let CYF = limsup,,, I?f(z)/z, where M(x) = - logF(x) is the hazard 
function of F. This terminology is motivated by the following fact. If F has a 
continuous density, then M(z)  is differentiable and dM(z)/ds = rn(z), where 
m(x) is the hazard rate function considered in Section 2.4. The proof is left 
to the reader as an exercise. In this section we consider distributions on El+ 
fulfilling F(0-)  = 0. 

Theorem 2.5.1 If a~ = 0,  then F is heavg-tailed. 

Proof Suppose that CYF = 0. Then limr-rOO M(z)/x = 0. Thus, for each E > 0 
there exists an z' > 0 such that M(x) 5 tz for all x 2 2'. Therefore for some 
c > 0 we have F(z) 2 ce-E2 for all x 2 0 and hence 

(2.5.1) 

for all s 2 E .  Since E > 0 is arbitrary, (2.5.1) holds for all s > 0, which means 
that F is heavy-tailed. 0 

Remark For a heavy-tailed distribution F we have 

lim eS"F(z) = 00 
2 3 0 0  

for all s > 0. We leave it to the reader to show this as an exercise. 

(2.5.2) 

2.5.2 Subexponential Distributions 

Note that the term "subexponentiality" is motivated by (2.5.2), which is, 
however, used to single out distributions from a smaller class of heavy-tailed 
distributions. A distribution F on R+ is said to be subexponential if 

= 2 .  1 - F'2(x) 
lim 

Z-WO l - F ( z )  
(2.5.3) 

Let S denote the class of all subexponential distributions. We show later that 
the following important (parametrized) families of distributions axe in S: the 
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lognormal distributions, Pareto distributions and Weibull distributions with 
shape parameter smaller than 1. 

A direct consequence of (2.5.3) is that F(z) > 0 for all z 2 0. However, not 
all distributions with this property are subexponential. Note, for example, 
that trivially the exponential distribution is not subexponential because in 
this case (1 - F * 2 ( ~ ) ) / ( 1  - F ( z ) )  = e-X2(1 + Xz)/e-Xz + 00 as x + oc. On 
the other hand, it is easy to see that if F is subexponential and X1,Xz are 
independent and identically distributed random variables with distribution F, 
then we have for x + 00 that 

P ( X I +  X 2  > z) - P(max(X1, X23 > z), (2.5.4) 

since P(max{X1,X2} > t) = 1 - F2(s) = (1 - F(z))(l  + F(t)) and hence 

1 - P ( x )  =lim = rim 1 - F*2(~)  1 - F*2(x) 
z-tm 2(1 - F(x)) 1=  lim 

x-boc: (I + F(z))(l - F ( z ) )  z-bm 1 - F”z) * 

The following identity is obvious: 

from which we obtain tha.t always 

(2.5.5) 

(2.5.6) 

The proof of (2.5.6) is left to the reader. Note tha.t (2.5.6) implies that the limit 
value 2 in (2.5.3) is minimal. Furthermore, (2.5.5) yields two useful properties 
of subexponential distributions. 

Lemma 2.5.1 If F E S, then for all z’ > 0, 

(2.5.7) 

2 -  
and 

*(z - ’) dF(y) = 1. (2.5.8) &.& Jd F (x) 

Proof For z’ 5 t, identity (2.5.5) yields 

- 
F ( x  - z’) 3 1 +F(z ’ )  + - ( F ( z )  -F(X’ ) ) ,  

F(x) 
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which gives 

This completes the proof of (2.5.7) because, for F E S, the right-hand side of 
the last inequality tends to 1 as x + 00. The limit in (2.5.8) is an immediate 
consequence of (2.5.5). 

Lemma 2.5.2 Let F E S and F' be a distribution with F'(0) = 0 such that 
Iimz-,m F ( z ) / F ( x )  = c for some c E [o, 00). Then 

F * F'(z) 
lim - = 1 + c .  

z - m  F(z) 

Proof We have to show that 

(2.5.9) 

(2.5.10) 

Choose E > 0. There exists zo such that F(z)  5 ( c + E ) ~ ( z )  for x 2 zg .  Then 

The latter expression tends by Lemma 2.3.1 to c + E as x + 00. Thus 

Similarly it follows that 

This prows (2.5.10) and also the lemma. 

5 c .  

2 c. 

0 

The next result shows that thc class of subexponential distributions is 
incorporated within the class of heavy-tailed distributions. 

Theorem 2.5.2 Each F E S is heavy-tailed. 
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Proof Let F E S. By Theorem 2.5.1 it suffices to demonstrate that a~ = 0. 
Taking the logarithmic version of (2.5.7) we have 

lim (logF(z - y) - logF(z)) = AiI(hf(z) - M(z - 4/)) = 0 
2-+w 

for all y 2 0. Hence, for all E > 0, there exists SO > 0 such that for all 2 2 xo 
we have M ( z )  - M ( z  - 1) < E.  By iteration we get 

M ( 2 )  5 M(z - 1) + & <_ hf(Z - 2) + 2& 5 I . .  <_ M(z - n) + n € ,  

M ( S )  5 sup M ( z ' )  + (5 - a)&, z 2 20. 

where n is such that 20 5 2 - n < zo + 1. Thus 

2 0  -l<z'<zo 

Since E is arbitrary we have limz+m M ( x ) / r  = 0. U 

Using Lemma 2.5.2 we get the following characterization of subexponential 
distributions. 

Theorem 2.5.3 Let F be a dastn'bution on Ft+. Then, F E S if and only af 
- for each n = 2,3 , .  . . 

= n  
F**(x) lim 7 

z+m F(a)  
(2.5.11) 

Proof The proof is by induction on n = 2 , 3 . .  .. Assume that F is 
subexponential. Then (2.5.11) holds for n = 2 by definition. Suppose that 
(2.5.11) holds for n - 1. Then, Lemma 2.5.2 with F' = F*(n-l) yields the 
assertion. 0 

We recommend the reader to show the following natural extension of (2.5.4) 
to an arbitrary (finite) number of random variables with subexponential 
distribution: if XI, . . . , Xn are independent. and identically distributed with 
distribution F E S, then P(Cy='=l Xi > 2) - P(mml<i<, X, > 2)  as s + m. 
Furthermore, Theorem 2.5.3 immediately yields thatf& distributions of the 
form F ( r )  = C ~ n = o p k G " k ( z ) ,  where ( p o , p l , .  . . ,pn} is a probability function 
and G a subexponential distribution, we have 

(2.5.12) 

Such compound distributions F are important in insurance mathematics and 
will be studied later, for instance in Chapter 4. For example, ruin functions of 
some risk processes can be expressed by compound distributions. To study the 
asymptotic behaviour of ruin functions in the case of subexponential claim size 
distributions (in Sections 5.4.3, 6.5.5 and 12.6) we need an extended version 
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of (2.5.12) for compound distributions of type F(z )  = C,"=, pkG"(z )  where 
{ h , p ~  ?...} is a probability function. In connection with this the following 
lemma is useful. 

L e m m a  2.5.3 If F E S, then for each e > 0 there &ts a constant c < 00 

such that for all n 2 2 

(2.5.13) 

Proof Let an = SU~,.~(F*"(Z)/F(~)). Yote that (2.5.11) implies an < 00. 

Furthermore, F*("+l)(z) = F(z) + F * F*n(z). Thus, for all a < 00, 

where Ca = l /p (a)  < co. Since F E S, for each E > 0 we can choose a such 
that a n + l  5 1 + ca + a n ( l +  E). Hence 

an 5 ( l + c , ) + ( l + ~ , + a , - 2 ( 1 + ~ ) ) ( 1 + ~ )  5 ... 
5 
5 

(1 + ca)(I + (1 + E) + . . . + (1 + E > " - ~ )  + (1 + E)"-' 

(1 + ca)e-l(l + €)n , 

which implies (2.5.13). 0 

Theorem 2.5.4 Let F ( z )  = C Z o p k G * k ( ~ ) ,  where {po,p1, ...} is u 
probability fvnction and G E S. If CF=l p,(l -i- E ) ~  < 00 for some E > 0, 
then 

(2.5.14) 

Proof The assertion immediately follows from Lemma 2.5.3 and the dominated 
convergence theorem. 0 

We close this section showing subexponentiality for an important class of 
distributions, containing Pareto distributions and other parametrized families 
of distributions like loggamma distributions. We first need a definition. We 
say that a positive function L : & + (0,m) is a slowly varying fvraction of z 
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at 00 if for all y > 0, L(zy)/L(z) + 1 as z + 00. Examples of such functions 
are 1108 X I ,  and functions converging to a positive limit as x + m. Note that 
(2.5.7) gives in particular that, if F E S, then F(1ogz) is a slowly varying 
function of z at 00. We now say that the distribution F is Pareto-type with 
exponent a > O if F(z )  h L ( Z ) ~ - ~  as z + 00 for a slowly varying function 
L(z). In the literature, Pareto-type distributions are also called distn'butioras 
with regular varying tails. 

Theorem 2.5.5 If F is  Pareto-type, then F E S .  

Proof Let X,X1 and Xz be independent and identically distributed risks 
with Pareto-type distribution F. Note that {XI + Xz > x} implies that for 

{XI > (1 - ~ ) z }  or {X, > (1 - E ) z }  or {XI > E X  and X2 > e x } ,  

Hence 

E E (0,l) 

which yields P(X1 + X2 > x) 5 2P(X > (1 - E ) Z )  + (P(X > 

Since E > 0 is arbitrary, limsupZ,,F'2(z)/P(z) 5 2. However, in view of 
(2.5.6) this gives limz--too F'2(z)/F(x) = 2 and the proof is completed. 0 

2.5.3 

In most cases it is not an easy task to prove directly that a given distribution 
is subexponential. In Theorem 2.5.5 we were able to verify subexponentiality 
for Pareto-type distributions. However, for future applications in risk theory, 
we need the integrated tail of the distribution F to be subexponential rather 
than the distribution itself. Recall that for a distribution F of a nonnegative 
random variable with finite expectation p > 0, the integrated tail didribution 
P is given by 

Criteria for Subexponentiality and the Class S* 

(2.5.15) 

It seem to be not yet known whether F E S and 0 < p < 30 imply P E S 
in general. Thus, it is useful to have conditions for a distribution with finite 
expectation to be subexponential jointly with its integrated tail distribution. 
On the other hand, there exist examples of distributions F on R+ such that 
Fg E S, but F 4 S. 

We now show that, for a certain subset S of S which is defined below, 
F E S implies Fs E S. Throughout this section we only consider distributions 
F on R+ such that F(0)  = 0: F ( x )  < 1 for all z E R+. 
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Definition 2.5.1 (a) We say that F belongs to the class S* if F has finite 
qec ta t ion  p and 

(b) We say that F belongs to C tf for all g E R 

(2.5.16) 

(2.5.17) 

Note that Lemma 2.5.1 implies S c C. Class C will serve to show that class 
S’ of distributions on R+ has some desired properties. We leave it to the 
reader to show as an exercise that all distribution functions with hazard rate 
functions tending to 0 are in L. We also have the identity 

from which we get that (2.5.16) is equivalent to 

(2.5.19) 

We now study the relationship between Sv and {F : F E S and P E S}. 
For this we need three lemmas. In the first we give an equivalence relation for 
subexponential distributions. 

Lemma 2.5.4 Let F,G be two distrihutiom on nt, and assume that there 
&ts a constant c E (0,m) such that 

- 
(2.5.20) G(x) lim 7 = c .  

z - + ~  F(s) 

Then, F E S if and only if G E S. 

Proof Suppose F E S and consider a distribution G for which (2.5.20) holds. 
Remember that from (2.5.6) we always have liminfZ,,G’2(z)/Z(s) >_ 2. 
Thus, recalling the identity 

it suffices to show that, 

(2.5.21) 
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Let a > 0 be a 6xed number. Note that for z > a, the function 11(z) = 
J,-, G(z - y)/G(s) dG(y) can be bounded by 

Thus: using Lemma 2.5.1 and (2.5.20), we have 
- 

- 1 = o .  F ( x )  G(z -a) 
lim I I ( z )  = lim - - 
2+00 z-+m F(x - a) G(z) 

Choose now E > 0 and a 2 0 such that c - E 5 G(x)/F(z) 5 c + E for all 
z 2 a. Then for the function 12(z) = J;-'G(z - g)/G(z) dG(y) we have 

- - 
c + € F(4 -m4 + J0"- G(. - Y) dF(Y) + J,"-, G(z - Y) dF(Y) - - - -  
C--6 F ( x )  

C - &  F(4 

- 
F(z )  - (C - &)F(z) + (C + E )  J:-@ F(z - y)d F ( y )  5 "{ - 

- 
1- F ( z  - a) - F ( z )  

Fb) 
+ - 

Againusing Lemma 2.5.1, this gives Iimsup,,,Iz(z) 5 (1  +~E) (c+E) / (c -  
0 

The above lemma justifies the following definition. Two distribution 
functions F and G on R+ are said to be tail-equivalent if limz+m G(z)/F(z) = 
c for some 0 < c c 00. This will be denoted by G wt F. It turns out that for 
distributions from S', condition (2.5.20) can be weakened. 

Lemma 2.5.5 Let F, G E L. Suppose there exist c- ,  c+ E ( 0 , ~ )  such that 

E), i.e. (2.5.21) follows because E > 0 is arbitrary. 

(2.5.22) 

for all x 2 0 .  Then, F E S' if and only if G E S*.  
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Proof Suppose F E s'. Then (2.5.22) implies that G has finite expectation. 
Furthermore, for fixed u > 0 and x > 2v, we have 

Recalling that G E f ,  for v 2 y 2 0, 
- - 

+ I  

as x -+ 00 and hence ~ u p ~ > ~ G ( x  - v)/G(x) < 00. Thus, by the dominated 
convergence theorem, 

- 

and so it suffices to show that 
2/2 - 

lim limsup 
v + m  2-m 

(2.5.23) 

Using (2.5.22) we have 

This gives (2.5.23) because, by (2.5.16) and the dominated convergence 
theorem, 

It can be proved that for a distribution function F with hazard rate function 
m ~ ( z ) ,  we have F E C if l im2+som~(r) = 0. A certain conversion of this 
statement is given in the following lemma. 

Lemma 2.5.6 For each F E L there exists a distribution G E f with F wt G 
such that its hazard functaon MG(x)  = - logG(2) and its hazard rate function 
r n ~ ( z >  = d&(x)/dz have the following properties: &(z) is continuous 
and almost everwhere diflerentiable wath the exception of points in IN, and 
l i i z+w mc(z) = 0. 
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Pmf We define G by the following hazard function Mc via the formula 
G(z) = e-Ma(r). Let the function MG be continuous such that Ilfc(n) = 
M F ( ~ )  for all n E N, and M c  piecewise linear in [n ,n  + 11, for all n E IN. 
Then M c  is differentiable with the exception of points from IN, where we put 
m ~ ( n )  = 0. Otherwise ~ G ( x )  = I l f F ( n  + 1) - Mp-(n) for z E ( n , n  + 1). To 
see that limz-too rnc(x) = 0 it suffices to observe that 

Remark A consequence of Lemmas 2.5.4, 2.5.5 and 2.5.6 is that to check 
subexponentiality for F E L it suffices to verify this for G, which is tail- 
equivalent to F and for which limt-.,oc m ~ ( z )  = 0. Moreover, if Ga belongs to 
S, then F9 belongs to S, too. The proof is left to the reader. 

We use the idea from the above remark in the proof of the following theorem. 

Theorem 2.5.6 If F E s', then F E S and FS E S. 

Proof We show first that F E L. For fixed w > 0 and z > 2v, we have 

because 

Hence 
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Since (2.5.16) holds, the right-hand side tends to 1 as 1: + 00. This proves that 
F E C. Therefore, in view of Lemmas 2.5.4, 2.5.5 and 2.5.6, we can assume 
without loss of generality that F has density f and hazard rate function 
m ~ ( z )  with limz-tw m ~ ( z )  = lim24m f(x)/F(z) = 0. Consequently, for some 
xo 2 0, we have m ~ ( z )  5 1 for aU 1: 2 20, that is, 

f (XI I F(4 (2.5.24) 

for s 2 20. Note that 

for fixed v > 0 and all x > 2v. Thus, by the same argument as used in the 
proof of Lemma 2.5.5, we have 

This and (2.5.24) give 

(2.5.25) 

Using (2.5.5) and integration by parts, we have 

- 
for 1: > 2v. Hence (2.5.17) and (2.5.25) give limsup2,,F*2(~)/~(z) 5 2, 
from which we conclude that F E S because the reverse inequality always 
holds. It remains to show that, P E S. Clearly, 

(Fs)*2(s) = 1, /m [ F(t - y)F(y) dy dt . 
P2 2 0 

On the other hand, by (2.5.16), for each E > 0 there exists 1:o 2 0 such that 
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Integrating these inequalities over (z, 00) and dividing by p ( x )  we find that 
2(1 - E) (F8)*2(x)/F"(x) 5 2(1 + a )  for z > xo. Thus, Fs E S since E is 
arbitrary. 0 

Corollary 2.5.1 Assume that the hazard rate function mF(x) of F ezists and 
p < 00. If limsup,,,zmF(z) < 00, then F E S and FB E S .  

Proof Clearly 
9 ) )  = 0 for all y E R. Hence F E C. Using (2.5.18), for 2 > 2v we have 

m ~ ( x )  = 0, which implies lim,,,(M~(z) - MF(X - 

I" 
We next show that - 

F ( 4 2 )  < oo lim sup - 
2+m F ( s )  

because then, by (2.5.26) and F E C, 

(2.5.26) 

(2.5.27) 

Since the reverse inequality is always satisfied, we have F E S'. This yields 
F E S and P E S by Theorem 2.5.6. To prove (2.5.27) note that by the 
assumption of the corollary, there exist c and 20 such that Z ~ F ( Z )  5 c for 
x 2 xo and hence 

limsup(h.fF(x) - hf~(2 /2) )  = l irnsupllz m(y) dy 
t-+W Z-SW 

5 climsupJ dY -=clog2<0O. 0 
r-+m zf2 Y 

In the case that lim~~p,+,.~cpn,p(~) = 00, one can use the following 
criterion for F E S". 

Theorem 2.5.7 Assume that the hazard rate function m ~ ( x )  of F exists and 
is  ultimately decreasing to 0. If 
Proof Since exp(xmp(x)) >_ 1, the integrability condition implies that p < o=. 
Suppose m ~ ( 2 )  is decreasing on [w, 00) for some v 2 0 and define 

exp(xmp(z))F(x) dz < 00 then F E s'. 

mF(vj if x E [O, w), 
mF(x) if x E [v,00). m'(x) = 
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Let T(x) = exp(-J:m'(t)dt). It is straightforward to check that c- 5 
F(z ) /F( z )  5 c+ for all x 2 0 and for some c-,c+ > 0. Furthermore, it is 
not difficult to show that a distribution function with hazard rate function 
tending to 0 belongs to f.. Consequently, Lemma 2.5.5 implies that F E S* if 
and only if F' E 9. Moreover, the function exp(zrnF(z))F(z) is integrable if 
and only if the function exp(zrn'(x))F(x) is integrable as well. Thus we can 
assume without loss of generality that ~ F ( z )  is decreasing on [O, 00). Since 

- 

for all x 2 0, it suffices to show that 
2/2 

A% 1 ~ x P ( M F ( ~ )  - M F ( ~  - Y) - MF(Y)) dy = P .  (2.5.28) 

The monotonicity of ~ F ( z )  implies that 

1 5 exP(%lrnP(s)) 5 exp(MF(x) - MF(2 - Y)) 5 edymF(z /2) )  

for 0 5 y 5 2/2. This gives 
'/2 - d F(Y) dY g"' eXP(MF(0) - MF(z - Y) - MF(Y)) dY 

I LX1' exP(Pw4s/2) - MFb)) dY 7 

where the lower bound and the upper bound tend to p as x + 00. For the 
upper bound, note that exp(ymp(x/2) - - ! f~(y))  5 exp(yrnp(y) - MF(Y)) for 
0 5 9 5 2/2, and that ?nF(x/2) + 0 as x + 00. NOW apply the dominated 

0 

Examples 1. For the Weibull distribution F = W(r, c) with 0 < r < 1, c > 0 
we have F ( x )  = exp( -a?) and m ~ ( x )  = C T X ' - ~ .  Hence l i n ~ ~ - , ~  xrnp(9 = oc 
and Corollary 2.5.1 cannot be applied. But, the function exp(zrnF(z))F(x) = 
exp(c(r - l)zp) is integrable and so F = W(T,C) E S" by Theorem 2.5.7. 
2. Consider the standard lognormal distribution F = LN(0,l). Let cP(z) be the 
standard normal distribution function with density denoted by d(z). Then, F 
has the tail and hazard rate functions 

convergence theorem to prove (2.5.28). 

hrthermore, &(x) - x(1 - cP(z)) as z + 00. This follows from the fact that 
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> l - @ ( x ) > -  (2x1;1/2 l" e--8z/2 (1 - ;) d!J 

Thus, we have eZmF(z)F(z) - z(l - @(logx)) as x + 00. For z 4 00, the 
function 

x(1- (a(l0gx)) - xq!J(log 2) 

log x 

is integrable, because +(log x) = 27r-'/22-('0g2)/2 and Jp" dx < 
00. Hence the standard lognormal distribution LN(0,l) belongs to S* and 
therefore F and Fs are subexponential. The case of a general lognormal 
distribution can be proved analogously. 

To show that the integrated tail distribution of Pareto-type distributions is 
subexponential, we need the following result, known as Kwamata's theorem. 
We state this theorem without proof, for which we refer to Feller (1971). 

Theorem 2.5.8 If Ll(x) is a slowly varying functaon and locally bounded in 
[so, 00) for some 5 0  > 0,  then for a > 1 

I" y-OL1 (g) dy = x-=+l Lz(x) , (2.5.29) 

whew L2(x) is also a slowly va9yying function of x at 00 and moreover 
limz-ta, L ~ ( x ) / L ~ ( s )  = a - 1. If Ll(y)/g is integrable, then the result also 
holds for a = 1. 

As proved in Section 2.5.2? every Pareto-type distribution F with exponent 
a: > 1 is subexponential. We now get that the corresponding integrated tail 
distribution P is also subexponential, because Theorem 2.5.8 implies that 
F (x) = x-"+'L2(s) is Pareto-type too. This yields that many distributions, 
like Pareto and loggamma distributions as well as Pareto mixtures of 
exponentials studied in the next section, have the desired property that F E S 
and Fa E S. 

* 

2.5.4 Pareto Mixtures of Exponentials 

Heavy-tailed distributions like the lognormal, Pareto or Weibull distributions 
lack tractable formulae for their Laplace-Stieltjes transforms. We now discuss 
a class of subexponential distributions Fa with tail behaviour F,(x) N KC-" 

as z + 00, mean 1 and an explicitly given Laplace-Stieltjes transform for 
a = 2,3,. . .. Such distributions can be useful for numerical experiments. 
Clearly, to have the mean equal to 1, we must assume that a: > 1. For 
each a > 1, let Fa be the mixture of the family of exponential distributions 
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( E x p ( 6 - ' ) , 6  > 0) with respect to the mixing distribution Par(a, (a - l ) /a ) .  
Explicitly, Fa has the density function 

Q-le-@-'z(y (5) e - ( a + l )  do. (2.5.30) 

The distribution with density f Q ( x )  is called a Pareto mixturn of exponentiab 
and is denoted by PME(a). Basic properties of the distribution P M E ( a )  axe 
studied in the following theorem. 

Theorem 2.5.9 Let Fa be the Pareto mixture P M E ( a ) .  Then 
(a) if a > n the n-th moment p?' of F~ is  

oc Q 

f a ( x )  = iQ-l)/Q 

(b) the Laplace-Stieltjes transform iQ(s)  of F, is 

Proof (a) By inserting (2.5.30) into (2.1.1) we have 

n! a-1  
a-n 

Analogously, we have 

where in the last equation we used the substitution 6-' = y. 
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Corollary 2.5.2 For n = 2,3,. . . 
n n (n; l)n-isn-, 

i&) = X(-l)n- i -  - 
i 

i= 1 

+(-I)% ( + ) n S n l ~ g ( l +  -). n 
(n - 1)s 

Proof By inspection we can verify that 

for all n = 2,3,. . .. firtherrnore, 

and 

We now prove that for each a > 1 the Pareto mixture Fa is subexponential. 
It turns out that Fa is Pareto-type and, consequently, we get that F, E S by 
Theorem 2.5.5. The following auxiliary result is useful. 

Lemma 2.5.7 For each a > 1, the tail function of F, has the form 

az / (a- l )  
21a-le-u dw . 

Proof By (2.5.30) we have 

where we used the substitution 'u = z0-l. 
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Theorem 2.5.10 Let a > 1. Then Fa and the integrated tail distfibution F", 
are Pareto-type distributions and, consequently, F, and Fi are subexponential. 

Proof Note that 

a z / ( o  -1) 

is a slowly varying function of 5 at 00, because it is bounded and non- 
decreasing. Hence by Lemma 2.5.7, Fa is Pareto-type and, by Theorem 2.5.5, 

0 

Remark Note that limz+m F , ( z ) / ( c ~ ~ )  = 1 where c = r(a + 1) (9)". 
Indeed, from Lemma 2.5.7 we get 

Fa is subexponential. Fs E S is obtained in the same way. 
- 

because r(a) = 

Bibliographical Notes. The class of subexponential distributions on R+ has 
been introduced by Chistyakov (1964) and independently by Chover, Ney and 
\Vainer (1973). Theorem 2.5.5 is from Feller (1971), Section VIII.8. References 
concerning the evidence of heavy-tailed distributions in practical insurance 
are, for example: Andersson (1971)) Benckert and Jung (1974), Benclcert 
and Sternberg (1958), Keller and Kliippelberg (1991), Mandelbrot (1964), 
Mikosch (1997), Resnick (1997), Shpilberg (1977). Basic properties of the 
class S are reviewed in Athreya and Ney (1972); see also Cline (1987), Cline 
and Resnick (1988) and the survey paper by Beirlant and Teugels (1992). 
Further criteria for subexponentiality can be found in Teugels (1975) and 
Pitman (1980). The properties of S* stated in Section 2.5.3 are due to 
Kluppelberg (1988). The class of Pareto mixtures of exponentials was 
introduced and studied in Abate, Choudhury and Whitt (1994). Sub- 
exponential distributions on the whole real line ha.ve been considered in 
Griibel (1984); see also Griibel (1983). 

va-l e -" dv and r(a + 1) = ar(a). 

2.6 DETECTION OF HEAVY-TAILED DISTRIBUTIONS 

2.6.1 Large Claims 

It goes without saying that the detection of dangerous claim size distributions 
is one of the main worries of the practicing actuary. Most practitioners have 
some personal concept of what they would call a large claim. However, a. 
mathematically sound formulation is not always obvious. We need to introduce 
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a bit. of notation. Denote by {&,l 5 i 5 n} the successive claims in a 
portfolio. The total claim amount is then X, = Ul + Uz + . . . + Un. Recall 
that by b'(lj,. . . , U(,) we denote the sequence of ordered claims with 

Often, a claim is called large when the total claim amount is predominantly 
determined by it. This rather vague formulation can be interpreted in a variety 
of ways. Let us give a number of possible examples. 

0 One sometimes hears that a claim within a portfolio is large if a value of 
that size is only experienced every so many years. It needs no explanation 
that this kind of description can hardly be forged into a workable definition. 

0 Another interpretation could be that the ratio of U(n) and X, is too large. 
This could be phrased as the condition that U(,,)/Xn 2, where the 
distribution of 2 has most mass near one. If there are no excessive claims 
then we expect 

0 More generally, a claim is called large if it consumes more than a fair 
portion p of the total claim amount. This means that we call Cr(m) large if 
rn 2 min { IC : ~ r ( ~ )  > pa&) . 

0 When the practitioner tries to estimate the mean and/or variance of the 
claim size distribution, he will use resampling techniques to obtain a 
reliable estimate. However it happens that the successive sample values 
are not averaging out to a limiting value. One possible and theoretically 
understandable reason is that the mean and/or the variance of the claim 
size distribution do not exist because there is too much mass in the tdl. A 
possible parametrized distribution causing this type of phenomenon is any 
Pareto-type distribution with small exponent a. 

Let us now turn to a number of definitions of large claims that are 
mathematically sound. However: due to a variety of reasons, such definitions 
are hard to verify statistically. 

The total claim amount is large because the largest claim is so. Math- 

to play an increasingly lesser role in the toted X n .  

ematically this can be interpreted as 

P(Xn > Z) -P(U(,) >z)  2 + 00.  (2.6.1) 

As has been explained in Section 2.5.2, this concept leads naturally to the 
notion of subexponentiality. The class S is known to contain a wide set of 
possible candidates. However, the statistical verification of the statement 
F = Fu E S is far from trivial. Let us try to explain why. We learned 
from Theorem 2.5.3 that F E S if and only if (2.6.1) holds for n = 2. The 
practitioner can use the sample values {Ui: 1 5 d 5 n} to check whether or 
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not the limit of the expression (1 - P2(z))  / (1 - ( F ( S ) ) ~ )  tends to the 
numerical value 1 as x + 00. So, we need to replace F by its empirical 
analogue, the empirical distribution Fn defined by 

F,,(s) = n-l max { i  : u ( ~ )  5 x} (2.6.2) 

for all x E R. So, for each x, the value nFn(x) equals the number of sample 
values on or to the left of the point t. Put in a different fashion we have 

(2.6.3) 

If we replace F by Fn in the definition of subexponentiality then we still 
need to take z very large. The only way is to replace the variable x by a large 
order statistic, like the maximum. Hence we need to verify whether or not 
(1 - F,*'(U(,,,)) / (1 - (Fn(U(,,)))2) is in any way close to 1. Without any 
further information on F, this is a hard problem for which no satisfactory 
solution exists. As a consequence, most actuaries that want to model claim 
sizes in a specific portfolio will select their favourite and duly parametrized 
member from S. 

0 In view of Theorem 2.5.1, our definition of heavy-tailed distributions can 
be coined in the requirement that CXF = 0, i.e. 

- bg(l  - F ( 2 ) )  lim sup = 0 .  
Z-boo X 

If we want to verify this hypothesis, we consider its empirical analogue. 
Assume that we take an order statistic with a large index, n - k, say, where 
n is large and k is such that k/n + 0. Then we need to verify whether or 
not 

However, this condition is statistically unverifiable because of the limes 
superior in (2.6.4). 

0 A sufficient condition for a heavy-tailed distribution can be given in terms 
of the mean residual hazard function p ~ ( 2 )  = p ~ ,  defined in (2.4.9), i.e. 

Indeed, it is not difficult to show that if p ~ ( 5 )  + 00 as x + 00, then 
(YF = 0. To verify statistically whether the distribution F is heavy-tailed 
or not we suggest looking at the empirical analogue to the mean residual 
hazard function, i.e. for a similar choice of k and n as above, 
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Use equation (2.6.3) to rewrite this in the form 

&writing the last sum we arrive at the empirical mean residual hazard 
function 

A possible interpretation of the latter quantity is the average overshoot of 
the k - 1 largest overshoots over the level U(,_k). Again it is statistically 
not obvious how to verify a condition that essentially says that the quantity 
h ( U ( n - k , )  has to go to 00. 

We deduce from the above explanations that it seems an ill-posed problem 
t.0 verify statistically whether or not a distribution is heavy-tailed. Assume, 
however, that we are willing to sacrifice the rigidity of a formal definition. 
what we want to check is whether or not a claim size distribution has to 
have a heavier tail than some standard reference distribution. In statistics 
one usually compares distributions to a normal reference. Looking at our 
definition of heavy-tailed distribution it seems far more realistic to compare a 
distribution with an exponential reference. A distribution F with a lighter tail 
than an exponential, i.e. an F that satisfies the inequality 1 - F(z) 5 ce-O" 
for all 2 2 0 and for some constants a, c > 0, will automatically have a strictly 
positive value of a ~ .  A distribution that satisfies the opposite inequality for 
all a > 0 will have OF = 0. 

We now give two methods that allow us to compare a sample with that 
from a standard distribution, in particular the exponential distribution. One 
method is the Q-Q plot or the Quantile-Quantile plot the other refers to the 
mean residual hazard. 

2.6.2 Quantile Plots 

The general philosophy of quantile plots relies on the observation that linearity 
in a graph cannot only be easily checked by eye but can be quantified by 
a correlation coefficient. To explain the essentials of the method, we start 
by considering the (standard) exponential distribution G with the tail of 
the latter given by E(z)  = exp(-z) for 2 2 0. We want to know whether 
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a sampled claim size distribution F is of the same basic form as G, save 
- perhaps for a scale factor. More specifically, we want to know whether 
F ( s )  = exp(-k) for some X > 0 is an acceptable model for F. The answer 
has to rely on the data Ul = u1, U2 = er2, . . . , U, = un which we have at our 
disposal. The parameter A just adds some flexibility to our procedure. 

For an increasing and right-continuous function F(z ) ,  we define the 
generalized inverse function F-l (y) by 

F-'(y) = inf{z : ~ ( z )  2 9 ) .  (2.6.6) 

If F is a distribution function, then function QF defined by Q F ( ~ )  = F- l (g )  
is called the quantile function of F.  Simultaneously, we construct the empirical 
version of the quantile function by considering the generalized inverse of the 
empirical distribution as defined in (2.6.2). More specifically, Qn(y) = QF, (y), 
so that for the ordered sample U(l) 5 U,,, 5 . . . 5 U(nl we have 

{Qn(y) = U(k)} = {(k - 1)n-l < y 5 kn-'}. 
For the standard exponential distribution G the quantile function has a 
simple form Q G ( ~ )  = - log(1 - y) if 0 < y < 1. If we want to compare 
the sample values with those of a standard exponential then it suffices to 
compare the two quantile functions. To do exactly that, we plot the two 
functions QG and Qn in an orthogonal coordinate system. If our data are 
coming from a (not necessarily standard) exponential distribution, then we 
expect the resulting graph to show a straight line pattern since the quantile 
function of the exponential distribution with parameter X is given by QF(Y) = 
-AW1 log(1 - y). The slope of the line would be given by X- ' ,  offering us a 
possible estimate for this unknown parameter. If the data are coming from 
a distribution with a heavier tail than the exponential, then we expect the 
graph to increase faster than a straight line; if the tail is less heavy, then 
the increase will be slower. The resulting quantile plot immediately tells us 
whether or not our data are coming from a distribution which is close to an 
exponential. 

From the definition of the empirical quantile function Qn(g) it follows that 
the quantile plot will be a nondecreasing left-continuous step function; its only 
points of increase are situated at the values {k/n, 1 5 k 5 n} which form a 
lattice on the positive horizontal axis. It therefore would suffice to just plot the 
graph at the points y E {k/n, 1 5 k 5 n}. However, there is a slight problem 
at the right extreme of the picture since for k = n we have Q ~ ( k / n )  = 00. For 
this reason one often applies a continvity cornt ion  by graphing the scatter 
plot at the points {k / (n  + l), 1 5 k 5 n}. We will stick to this practice in our 
examples at the end of this section. 

Apart from the visual conclusion obtained from the Q-Q plot we can 
also derive quantitative information from the graph. If the exponential dis- 
tribution seems acceptable then we can fit a straight line through the 
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sca.tter plot by using a traditional least-squares algorithm. The slope A-' 
of the straight line should be chosen to minimize the sum of squares 
Ei=l (U(k) + A-1 log (1 - k / ( n  + 1)))2. This yields the classical formula for 
the least-squares statistic A-1 

k = l  k=l 

The fit itself can then be quantified by looking at the practical value of the 
empirical correlation coefficient. r(u1,. . . , u,) based on the experimental data 
u1 212,. . . ,un. Note that r(u1,. . . , u,) is given by the formula 

QG=---QG(-) l n  k = - - x l ~ g ( l - - ) .  1 "  k 
n + l  

k=l  n + l  k= 1 

As is known: Ir(u1,. . . ,uJ 5 1, while r(u1,. . . ,tin) = f l  if and only if the 
points (1, ul), . . . , (n, u,) lie on a straight line. 

In actuarial practice it often happens that data are truncated on the left, 
on the right or even on both sides. For example a reinsurance company will 
often not know the values of the claims that have been covered by the first 
line insurance under a retention. Suppose that the claim U is exponentially 
distributed with parameter A. Then, for a > 0, the truncated exponentid 
distribution Fp,,] is of the form 

The corresponding quantile function is given by 

1 
&[o,n](Y)=a-Xlogtl-Y), O < g l < l .  

If data come from a truncated exponential distribution, then the intercept 
of the Q-Q plot at the origin y = 0 will give an estimate of the parameter 
a. If data are not well represented by an exponential distribution, then of 
course we can suggest other candidates. Among the most popular candidates 
in aa actuarial context are the normal and lognormal distributions, the Pareto 
distribution and, to a lesser extent, the Weibull distribution. We shortly deal 
with all four cases separately. 
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0 The normal quantife plot. R,ecall that we denote the standard normal 
distribution function by 

Let *-'(y) be the corresponding quantile function. A standard normal 
quantile plot will graph the points 

{ (@.-'(R/(n + 1)>, U(k)) 1 1 5 k 5 n} * (2.6.7) 

Note that the general normal distribution N ( p ,  a2) has the quantile function 
Q(y) = p + d - ' ( p ) .  We leave it to the reader to show this as an exercise. 
Thus, if there results a straight line pattern in the plot (2.6.7): then the 
slope of the line will provide an estimate for the parameter c while the 
intercept at 0 will estimate the parameter p. 

0 The lognormal quantile plot. This is easily defined since U will be lognormal 
distributed if and only if log U is normal distributed. Hence the scatter plot 
will be given by {(*-'(k/(n + l)),logU(k)), 1 5 k 5 n}. The lognormal 
distribution frequently shows up when dealing with car claim data, as will 
be illustrated later. 

0 The Pareto pantde plot is an important actuarial tool. Recall that for a 
claim U with Pareto distribution Par(a, c) we have P(U 5 z) = 1 - ( Z / C ) - ~  

for 2 2 c, so that log &(y) = log c - a-1 log (1 - y), which resembles the 
truncated exponential distribution. The Pareto quantile plot is obtained by 
plottingthegraphofthepoints {(-log(l-k/(n+l)),logU~k)), 15 k I n). 
If the data come from a Pareto distribution, then the above graph will have 
a linear shape with intersect log c and slope Note that the Pareto 
quantile plot is also useful when we have a Paretetype distribution, i.e. a 
distribution with tail of the form P(U > x) - z-OL(z), where L is slowly 
varying at  00. The plot will then show a linear trend for the data points to 
the right of the plot. The Pareto distribution is popular among actuaries 
when modelling fire claim data or other data with very heavy tails. 

0 The Weibull qvantde plot. Recall that in this case F(z) = exp(-m'). The 
quantile function is obviously Q(y) = (-.-I log (1 - Y))' '~ for 0 < y < 1. 
If we take the logarithm of this expression once more, then we find that 
log Q(y) = - r - l  log c f  r - l  log(- log(1- y)), which automatically leads to 
the Weibull quantileplot {(log(-log(l-k/(n+l))),logU~k)), 15 k 5 n}. 
Under the Weibull model we expect a straight line behaviour where the slope 
estimates the parameter r-l. E'urther the intercept estimates the quantity 

Figure 2.6.1 gives these four Q-Q plots for 227 industrial accident data 
collected in Belgium over the year 1992. The claim sizes have been given 

-r-1 log c. 
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in multiples of 1000 BEF with a prior deductible of 23.000 BEF. Because we 
use real data, there is no reason to believe that one of our four distributions 
gives a perfect fit over the entire range of the data. By comparing a slate 
of possible candidates, we will, however, get a better feeling for the overall 
structure of the portfolio. For example, the exponential distribution seems to 
do well for the smaller claims but not for the largest values in the portfolio. For 
the not very small claims, the Weibull distribution fits much better. Both the 
lognormal and the Pareto distributions seem to overestimate the importance 
of the larger claims in the portfolio since both show a concave bending away 
from a straight line fit. 

exponential Q-Q plot Pareto Q-Q plot 

20000 

15000 

loo00 

5000 

0 

exponential quantiles 

Figure 2.0.2 

exponentid quantiles 

Q-Q plots 

Figure 2.6.2 shows two plots of 105 Norwegian industrial fire claim data (in 
lo00 Kroner). They have been collected in a combined portfolio over the year 
1971 but only the values above 500 Kronen have been reported. The straight 
line fits are obtained by a classical linear regression procedure. We clearly 
see that the Pareto distribution fits very well with a correlation coefficient 
of 0.9917, whereas the exponential distribution provides a very poor fit even 
when the correlation coefficient equals 0.8445. From the slope of the straight 
lime in the Pareto-plot we can infer that the value of 01 should be about 1.25. 
It has often been reported that industrial fire claim data are well modelled by 
a Pareto distribution with an a-value close to 1. There is no need to stress 
again that taking insurance or reinsurance on industrial fire portfolios is a 
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very delicate undertaking. 
Figure 2.6.3 shows a lognormal Q-Q plot for motor insurance claim data. 

The data result from a random selection of 1250 out of a large portfolio 
that resulted fiom a combination of car claim portfolios of six leading car 
insurance companies for 1989. Out of the 1250, 14 values had to be discarded 
because of incompleteness of the data. The resulting plot generally shows 
that a lognormal distribution seems like a good choice. A straight line fit 
can be made by an obvious linear regression. Note that in the middle of the 
log(c1aim) values we see a rather long flat stretch. This value corresponds to 
an upper limit that is often applied when an older car is classified as total 
loss. One of the six companies applied a slightly higher value than the others; 
as a result there is a second smaller flat stretch to the right of the first. The 
straight line fit deteriorates at both ends of the picture. On the left there is 
an obvious truncation for the claim sizes. On the right, however, the values 
seem to increase faster than we expect under a lognormal assumption. This 
indicates that the upper part of the claim values might be better modelled by a 
distribution that has an even heavier tail than the lognormal distribution. For 
example, a Pareto distribution could be more appropriate. A closer look at the 
data shows that the upper right tail of the picture is crucially determined not 
only by the usual amounts for material damage but by legal and administrative 
settlements. The latter costs are constant for the major and central part of 
the claim portfolio. Leaving out the settlements costs reveals an even better 
fit by a lognormal distribution. 

2.6.3 Mean Residual Hazard Function 

Another global method to discover heavy-tailed distributions relies on the 
mean residual hazard function p p ( z )  considered in (2.6.5). It is often an 
instructive exercise to evaluate explicitly or asymptotically the form of 
the function p ~ ( z ) .  If we start again with the exponential distribution, 
then obviously ~ F ( z )  = A-'. Conversely, if p1;(z) is constant, then F is 
exponential. We leave it to the reader to show this as an exercise. 

In order to see whether the claim distribution F is comparable to an 
exponential, we use the empirical analogue P , , ( U [ ~ - ~ ) )  to p ~ ( z )  which has 
been introduced in Section 2.6.1. When the distribution F of U has a heavier 
tail than the exponential distribution, then the empirical mean residual 
hazard function (pla(U(,,-k)), 0 < k 5 n}  will consistently stay above the 
analogous function for the exponential. In particular, when the empirical 
mean residual hazard function tends to 00 as n + 00, then this is the case 
of a heavy-tailed distribution at, indicated in Section 2.6.1. For example, the 
mem residual hazard function of the Pareto distribution is typical. Then 
p ~ p ~ ( ~ , ~ ) ( z )  = ~ , " ( ~ / y ) " + ~  (c/z)-(~+') dy = %/a, which increases linearly. 

If the tail of the distribution F is lighter than that of any exponential, 
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Figure 2.6.3 Lognormal Q-Q plot 

then the mean residual hazard function p ~ - ( x )  will typically decrease. For a 
concrete example let us take U to be uniformly distributed on (a,b). Then, 
for a < x < b, 

is linearly decreasing over the interval (0,b).  When plotting the empirical 
mean residud hazard function we can hope to recognize the shape of one of the 
standard pictures. In Figure 2.6.4 a number of mean residual hazard functions 
are depicted in the same coordinates. The heavy-tailed distributions like the 
Pareto distribution, the lognormal distribution and the Weibull distribution 
with T < 1 show a clear upward trend. Light-tailed distributions such as 
the uniform distribution show a decreasing profile, while the exponential 
distribution and the Weibull distribution with 0 < T < 1 are intermediate 
examples. 
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Figure 2.6.4 hfean residual hazard functions 

2.6.4 Extreme Value Statistics 

In this section we collect a few results concerning extreme value statistics. 
Extreme value theory is a vast subject in probability and statistics. As we only 
want to highlight the role of extremal claims in insurance mathematics, we will 
not prove a number of the following results. However, we provide the necessary 
intuitive background to make the results as natural as possible. Assume that 
{ U I ,  U2,. . . , Un} is a set of independent and identically distributed claims 
all with claim size distribution F. If we order the claim sizes, then the 
maximum U(,, = max{UI,Uz,. . . , Un} gives the largest claim in the sample. 
If the underlying distribution F is not concentrated on a bounded set, then 
the maximum U(.) will ultimately tend to 00 as n + 00. Hence, we can 
hope to find norming and centring constants that provide an asymptotic 
approximation to the distribution of U(n). To be more precise we look for 
constants a,, > 0 and b, E R for which a;’(U(,) - b,) + Y where 
Y is assumed to be nondegenerate. The answer to this limiting problem 
is that the distribution of Y, up to some scaling and shifting parameter, 
belongs to a oneparameter family of distributions G, = EV(y), the extreme 
value distributions introduced in Section 2.2.2, Recall that G, is given by 
G,(z) = P ( Y  5 x) = exp(-(l+yz);”’) for a1I.t E R. For y = 0 we interpret 
the exponent as e-”, which gives the Gumbel distribution Go(z) = exp(-e-z). 

d 
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A necessary and sufficient condition on F to end up with a specific extremal 
distribution G, is that F E C,, a condition that is expressed in terms of the 
inverse quantale function IF : [I, 00) + W, of F .  This function is defined by 
I F ( z )  = F-l( l -  z-l)? where F-' denotes the generalized inverse function 
introduced in (2.6.6). Then F E C, if and only if 

(2.6.8) 

for some (ultimately) positive and measurable function c&) and all t > 1. 
The function C F ( X )  is called the amXary function of F. In the next theorem 
we show how the above condition comes into the picture. To simplify the proof 
we additionally assume that F is absolutely continuous. 

Theorem 2.6.1 Assume that Ul,U2, ... is a sequence of independent and 
identically distributed random variables With absolutely wntanuous distribution 
F satisfying (2.6.8). Then (c~(n)) - ' (U( , , )   IF(^)) 4 Y 0s n + 00, where Y 
has distribution G,  = EV(7). 

Proof Let h(z)  be any real-valued, continuous and bounded function on R. 
Since {U(nl 5 z} is equivalent to n,,,,,{Ui 5 z} we find that P(V(,,, 5 r )  = 
Fn(x)  by independence. Introduce thesuggested centring and the norming as 
well as the substitution F ( s )  = 1 - (w/n) to find the expression 

&om condit.ion (2.6.8) we see that we should take bn =  IF(^) and an = cF(n). 
The bounded convergence theorem implies that the limit of the last expression, 
as n + 00, exists and equals 

By the Helly-Bray theorem (see (2.1.12)) the latter is equivalent to 



78 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

as can be easily recovered. 0 

We have to stress the fact that the converse of Theorem 2.6.1 is also valid 

For actuarial applications the most interesting case is that where y > 0. 
but its proof is outside the scope of this book. 

Then, condition (2.6.8) takes the form 

(2.6.9) 

which can be transformed into the equivalent condition I&) - s’L(z), 
where L(z) is slowly varying at 00. Hence, for 7 > 0 we fall back on the class 
of Pareto-type distributions, introduced in Section 2.5.2. The fact that this 
condition is sufficient is easily proved by t.aking cp(z) = yz7L(z). 

Bibliographical Notes. For the limit theory of extremes and other order 
statistics references abound. We refer to Bingham, Goldie and Teugels (1987), 
De Haan (1970) and Resnick (1987). Moat of the properties about regularly 
varying functions that have been referred to can be found in these books 
and their references. The approach in Section 2.6.1 is from Beirlant and 
Teugels (1996), streamlining previous fundamental results in extreme value 
theory by Fisher-Tippett and Gnedenko. Further statistical techniques for 
analysing heavy-tailed distributions can be found, for instance, in Adler, 
Feldman and Taqqu (1997), Embrechts, Kluppelberg and Mikosch (1997), and 
Reiss and Thomas (1997). Empirical processes and their use in gooduess-of-fit 
statistics are dealt with in d’Agostino and Stephens (1986) and in Shorack and 
Wellner (1986). Benktander and Segerdahl (1960) seems to be the f is t  paper 
which applies mean excess plots to actuarial data. The first paper which uses 
quantile plots in this context is Benckert and Jung (1974). 



CHAPTER 3 

Premiums and Ordering of 
Risks 

3.1 PREMIUM CALCULATION PRINCIPLES 

In this section we study on rules how to fix an adequate price, called a 
premium, for a family of risks X to be insured. The investigation of such rules 
is an essential element of actuarial science. Clearly, premiums cannot be too 
low because this would result in unacceptably large losses for the insurer. On 
the other hand, premiums cannot be too high either because of competition 
between insurers. Consider a certain family of risks X. A premium calculation 
principle is a rule that determines the premium as a functional, assigning a 
d u e  l l(Fx) E RU{foo} to the risk distribution Fx.  Following our notational 
convention we usually write H(X) instead of ~(Fx). Typically, the premium 
n(X) depends on certain characteristics of Fx like the expectation EX or the 
variance Var X. For easy application, a premium calculation principle should 
require as little as possible information on the distribution of the risk X. For 
example the simplest premium principle is the (pure} net premium pp-incipie 
n(X) = E X .  The difference H(X) - EX is called the safety loading. The 
safety loading should be positive unless the distribution of X is concentrated 
at a single point. Otherwise, in the long run, ruin occurs with probability 1 
even in the case of very large (though finite) initial reserves. 

Recall that, throughout this book, a risk is modelled as a nonnegative 
random variable. However, sometimes it is convenient to define the value n(X) 
also for real-valued (not necessarily nonnegative) random variables X. 

3.1.1 

Before we survey some of the most common principles of premium calcula- 
tions, we discuss the general properties which one associates with the idea of a 
rigood” premium principle. Usually, the premium n(X) is finite; a risk X (or 
its distribution F x )  is then called insurable. Let X ,  Y, 2 be arbitrary risks for 

Desired Properties of “Good” Premiums 

Stochastic Processes for Insurance and Finance 
Tomasz Rolski & Hanspeter Schmidli 

Copyright 01999 by John Wiley & Sons Ltd, 
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which the premiums below axe well-defined and finite. We have the following 
list of desirable properties: 

0 no unjustified safety Eoading if, for all constants a 3 0, n(a) = a, 
0 proportionality if, for all constants a 2 0, n ( a X )  = an(X), 
0 subadditivity if n ( X  + Y) 5 n(X)  + n(Y) ,  
0 additivity if n(X + Y) = n(X) + II(Y), 
0 consistency if, for all a 3 0, n ( X  + a) = n(X) + a, 
0 presewation of stochastic order if X ssr Y implies n (X)  5 II(Y), 
0 compatibility under mizing if, for all p E [0,1] and for all 2, n(X) = n(Y) 

Note that an additive premium calculation principle with no unjustified safety 
loading is also consistent. Typically, additivity is required for independent 
risks. The subadditivity of a premium principle implies that policyholders 
cannot gain advantage from splitting a risk into pieces. We also remark that 
in general n ( X  + Y) depends on the joint distribution of X and Y. 

implies n(pFx + (1 - p ) F z )  = II(pFy + (1 -p )Fz ) .  

3.1.2 Basic Premium Principles 

One of the simplest premium calculation principles is the 

0 expected value principle. For some a 2 0 

n(X) = (1 + a ) E X ,  (3.1.1) 

provided that E X  < 00. For a = 0 we get the net premium principle. 

The expected value principle looks fair but it does not take into account the 
variability of the underlying risk X, and this may be dangerous to the insurer. 
In an attempt to overcome this disadvantage, one introduces principles where 
the safety loading n(X) - EX depends on the variability of X. For some 
constant a > 0 one has the 

0 variance principle 

0 standard deviation principle 

n(X) = EX + aVarX ,  

II(X) = E X  + a m ,  

0 modified variance principle 

E X  +aVarX/EX if E X  > 0, 
i fEX=O, 

(3.1.2) 

(3.1.3) 

(3.1.4) 

0 exponential principle 
n(X) = a-* logEea". (3.1.5) 
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Note that the variance principle is additive for uncorrelated risks, whereas it 
is subadditive if X and 1' are negatively correlated. The standard deviation 
principle and the modified variance principle are proportional. They are also 
subadditive provided that Cov(X,Y) 5 0. The proof of these properties is 
left to the reader. Unfortunately, the disadvantage of the premium calculation 
principles given by (3.1.2)-(3.1.4) is that they are not monotone with respect 
to stochastic ordering. 

We will study the exponential principle in Section 3.2.4. We will show 
that it can be characterized by rather natural conditions. Notice, however, 
that the exponential principle is not suitable for heavy-tailed risks. In the 
present section we first prove the monotonicity of the exponential principle 
with respect to the parameter a > 0. In connection wit<h this, we need the 
following classical Lyapunov inequality. 

Lemma 3.1.1 For all 0 < v < w and a nonnegative random variable X ,  

(EX")'/" 5 (EX")'/". (3.1.6) 

The inequality (3.1.6) is strict unless X is concentrated at a single point. 

Proof Tdce the convex function h(z )  = zw/" (z 2 0) and apply Jensen's 
inequality to Y = X". This gives E X "  = Eh(Y)  2 h(EY) = (7 

Theorem 3.1.1 Consider a risk X with EeaoX < 00 for some CQ > 0 .  Then 
(a) ll,(X> = Q-' logEeaX ds a strictly increasing function of a E (O,Q] 
provided that Fx U not concentrated on a single point, 

lim u-l log Ee"" = EX, (3.1.7) 
(b) 

a-tO+ 

(c) i fEeQx < 00 for all Q > 0,  

lim u-' logEenx = r F  = sup{z : P(X 5 L) < 1) .  
a- iw  

(3.1.8) 

Proof Assume that Fx is not concentrated at a single point. From Lyapunov's 
inequality (3.1.6) we have (EeVX)'/' < (EevX)"" for 0 < w < w 5 cao: 
i.e. &(X) is strictly increasing on (0, %I. Using log(1 + z) = z + o(z), z + 0, 
we get logEeaX = u-'(Eea" - 1 + o(EeUX - l)) ,  which proves (3.1.7) 
since lim,,o+ a-1 (EeaX - 1 = E X .  To prove (3.1.8) notice first that since 
X 5 r~ we have Q-' logEeaJ 5 a-l logexp(arF) = TF. To prove the reverse 
inequality, let 0 < 6 < r F .  From XI 5 X, where X' = 0 if X 5 6 and 
X' = 6 if X > 6, we have Eeax 2 F(6)  + (1 - F(6))ead 2 (1 - F(6))ea6. 
Hence II,(X) 2 a-'(log(l -F(6))+a6) and consequently 1ima+= II,(X) 2 6, 

c3 which completes the proof because 0 < 6 < r F  is arbitrary. 

A further modification of the net premium principle is the 



82 STOCHASTIC PROCESSES FOR INSURANCE -4ND FINANCE 

risk-adjusted principle 

n(X) = im(l - F X ( S ) ) ' / ~  dz (3.1.9) 

for some p 2 1 .  Assume that FX has a density. Then, the premium given 
by (3.1.9) can be interpreted as the net premium of another risk Y with tail 
function F y ( z )  = (1 - Fx(x))'/P and with the proportionally lower hazard 
rate function rny(t)  = d/dt logFy(t) = p-'rnx(t) .  Thus, Y can be seen as 
the risk corresponding to X after deflating the hazard rate function of X 
by the constant factor p - l .  This is consistent with the practice of adding a 
safety margin to the mortality rates in life insurance. It is easily seen that the 
risk-adjusted principle has a nonnegative safety loading, but no unjustified 
safety loading. Moreover, this premium principle is proportional, consistent, 
subadditive and monotone with respect to stochastic ordering of risks. The 
formal proof of these properties is left to the reader. 

3.1.3 

Before introducing another premium principle, we first study the concept of 
the quantile function defined in Section 2.6.2. 

Lemma 3.1.2 Let F ( x )  be an increasing and right-continuous hnction. The 
generalized inverse function F-' (9) has the following properties: 
(a) F-l (y)  is  increasing, 
(b) y 5 F ( x )  if and only if F - l ( y )  5 x .  

Proof Part (a) is an immediate consequence of the definition. To show part 
(b) observe that, by (2.6.6), 9 5 F ( x )  yields F - ' ( y )  5 z. Now assume that 
F-' (y) 5 x .  Then, because of the monotonicity of F ,  there exists a sequence 
(z,,} such that x,, -1 z and F ( z J  2 y for all n. This gives F ( r )  2 y because 

Quantile Function: Two More Premium Principles 

F is right-continuous. 0 

Theorem 3.1.2 Let F be o distribution functaon. If the random variable 
Z : R + [0,1] i s  U7&2f07'm& distributed on [0,1], then the random variable 
F-' (2) has distribution function F .  

Proof Observe that the mapping F-' : IR + R is measurable since it is 
increasing. Thus F-'(Z)  is a random variable and, because of Lemma 3.1.2, 

0 P(F-'(Z) 5 2)  = P(Z 5 F ( x ) )  = F ( x ) ,  5 E R .  

Let 0 < E < 1. Using the notion of the quantile function F;' of a risk X 
we define the 
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0 c-quantile principle 

i.e. the smallest premium such that the probability of a loss is at most c. 

deviation rcx = E IX - Fy* (1/2)1. Then, for arbitrary risks X, Y we have 

rI(X) = Fil(1- E )  , (3.1.10) 

Note that Fi1(1/2) is a median of X. Consider the expected absolute 

KX+Y I K X  + KY (3.1.11) 

A modification of the standard deviation principle is the 

0 absolute deviation principle 

n ( x ) = E X + a ~ x ,  (3.1.12) 

where u 3 0 is some constant. From (3.1.11) and (3.1.12) we see that the 
absolute deviation principle is subadditive. Moreover, this premium principle 
is proportional and consistent and if a 5 1 it is monotone with respect to 
stochastic ordering. Note that Theorem 3.1.2 gives EX = Jt F;’(z) d t  and 

1/2 1 

IEX = 1 (Fi1(1/2) - F;’(z)) dz + (FT1(z) - Fy1(1/2)) dz. I,, 
Hence, for the absolute deviation principle, 

1 
n(x) = 11’2F;1(t)(l -a)dz+~,2F;’(z)( l+u)dt .  (3.1.13) 

Bibliographical Notes. More details on premium calculation principles, 
including a detailed discussion of their properties, can be found, for example, 
in Biihlmann (19801, Denneberg (1990), Gerber (1979), Goovaerts, De Vylder 
and Haezendonck (1982,19841, Kaas, van Heerwaarden and Goovaerts (1994), 
Ramsay (1994), Reich (1986) and Wang (1995, 1996). 

3.2 ORDERING OF DISTRIBUTIONS 

3.2.1 Concepts of Utility Theory 

We begin with some concepts from utility theory. Assume that a utility v(x) 
is related to some wealth of x currency units. It is plausible that utility is 
growing with wealth and so we suppose that the function w(x) is increasing. 
Next, the increments of v(z) for small values of x should exceed those for large 
values of x (because giving a bank note to a poor person niakes more sense 
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than giving it to a millionaire). Therefore we impose the condition that v(z) 
is increasing and concave. 

Consider two lnT-valued random variables X and Y, which can be interpreted 
as the risky outcomes of currency units (gain, profit, reward, etc.) under two 
different types of decisions. Assume that we are able to compare the expected 
utilities Eu(X'), Ev(Y) and that 

Ev(X) 5 E u ( Y ) .  (3.2.1) 

Then, with respect to expected utility, the decision corresponding to Y is 
better than that corresponding to X. A function v : ( b l , b z )  + R which is 
increasing and concave on a certain interval (b l ,b2)  C R is called a. utiZity 
function. Possible examples of utility functions are 

0 v(x) = 2, 
0 v ( z )  = (1 - eVnz)/a, 
0 u(5) = -(a - z)+, 

where z+ = max(0,z). If the random variables X, Y describe risks or losses 
under two types of decisions, then the reasoning is different. In this case, the 
utility of X and Y is given by v(-X) and u(-Y) ,  respectively, and the risk X 
is preferred to Y if Ew(-X) 2 Eu(-Y) .  With the notation w(z) = -u ( -z ) ,  
this inequality is equivalent to 

a > 0, 
a E R, 

E w ( X )  5 Ew(Y)  , (3.2.2) 

where the function w(x) is increasing and convex. A function w : ( b l ,  b 2 )  + R 
which is increasing and convex on ( b l ,  bz)  is called a loss function. Examples 
of useful loss functions are 

0 w ( r )  = 2 ,  
0 w(z) = eaz, 
0 w(z) = (z -a)+, 

In real insurance problems, we often do not know the explicit form of the 
underlying utility or loss functions. However, in some cases one can show that 
the inequalities (3.2.1) and (3.2.2) hold for all possible utility or loss functions, 
respectively. This motivates the following three orderings of distributions. We 
precede the formal definitions by some general remarks on orderings. 
By an ordering we mean a partial orderang 4 of a set X which is a binary 

relation on X fulfilling 

0 x < x  (nzjleziwity), 
0 {z 4 y,y 4 z }  implies 2 4 z 
0 {z < y,y + z) implies z = y 

a > 0, 
a E R. 

(trunsitiuitg), 
(antisyrnmetry). 
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a X la X 

Figure 3.2.1 The "angles" (z - a)+ and (0 - x)+ 

In the following we will mainly concentrate on the case where X is the set 
of distributions of real-valued random variables. In later chapters we will 
also compare distributions of random vectors and of stochastic processes. In 
connection with orderings of distributions of real-valued random variables, the 
functions x -+ (Z - a)+ and x + (a - x)+ depicted in Figure 3.2.1 play a 
central role. In Hardy, Littlewood and Prjlya (1929) these functions have been 
cdled "angles". They satisfy the identity 

( r - a ) +  - ( a - z ) +  = x - a .  (3.2.3) 

Let F be a distribution on R. Then, for all a E R, integration by parts 

(Z - a)+ dF(z) = I" F ( x )  dx, 

( a  - 4+ dF(z) = [; W )  dx 7 

gives the following useful identities: 
oc 

(3.2.4) 

(3.2.5) 

provided that J-", 1x1 dF(x) < 00. For any partial ordering 4 of distributions 
considered in this book, we will write X 4 Y if Fx 4 F y  holds for the 
corresponding distributions. 

Deftnition 3.2.1 Let X , Y  be two real-valued random variables. 
(a) W e  say that X is stochastically dominated bv (or stochastically smaller 
than) Y and we write X Sst Y if for all increasing functions g : R -+ R 

L 00 

L 

EdX) I E S P - )  > (3.2.6) 

provided the expectations E g ( X ) ,  Eg(Y)  exist and are finite. 
(b) Assume that EX+, EY+ < 00. We say that X U smaller than Y in stop- 
loss order and we write X Y i f  (3.2.6) holds for all increasing convex 
finctions g : R + R provided the expectations E g ( X ) , E g ( Y )  exist and are 
finite. 
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(c) Assume that E(-X)+,E ( -Y)+ < 00. We say that X is smaller than 
Y in increasing-concave order and we write X <icv  Y if (3.2.6) holds 
for  all increasing concave functions 9 : R + R provided the expectations 
E g ( X ) , E g ( Y )  ezist and are finite. 

Literally speaking, relation (3.2.6) as well as t.he symbols <st,5s~ and <icv 
mean "not larger than"; for simplicity we will say "smaller than", not 
excluding equality. This is in agreement with the notions of an increasing, 
decreasing, convex and concave function, introduced in Section 2.4 in the same 
weak sense. In other areas of applied probability like reliability or queueing 
theorj-, one usually says increasing-convex order instead of stop-loss order, 
writing <icx instead of I S i .  In insurance mathematics, however? the notion of 
stop-loss order is quite common due to its connection with reinsurance; see 
Section 3.3 and the remark following Theorem 3.2.2. 

3.2.2 Stochastic Order 

Next we show that the notion of stochastic order given in Definition 3.2.1 
is equivalent to that introduced in Section 2.4. Recall that the symbol 
X 5 Y means that the random variables X and Y are defined on a common 
probability space (R,T,P) and that X ( w )  5 Y ( w )  for almost all w E R, 
i.e. P ( X  5 Y )  = 1. For the generalized inverse function F- ' ( z )  see (2.6.6). 
Part (b) of the following characterization of stochastic ordering is sometimes 
called the couplang theorem for Lst. It formalizes the useful fact that stochastic 
dominance can always be expressed by comparing realizations of certain 
auxiliary random variables with the same distributions, where these random 
.variables are defined on a common probability space. 

Theorem 3.2.1 The following statements are equivalent: 

(b) There mist a probability space (P,F',P') and two random variables 
X', Y' defined on at such that X' 5 Y, X 
(c) For all z E R, 

(a) x I s t  Y. 

X' and Y 2 Y'. 

F x  .I F Y  (2) * (3.2.7) 

Proof To show that (c) follows from (a) it suffices to insert the increasing 
function g ( t )  = & ( t )  in (3.2.6), i.e. g ( t )  = 0 for t < 2 and g(t)  = 1 for t 2 x. 
Assume now that (c) holds. Consider a random variable 2 which is uniformly 
distributed on [0, 11 and defined on some probability space (a', P', P'). Put 
X'  = F;'(Z) and Y' = FY'(2) .  horn Theorem 3.1.2, we get that X' P X 
and Y' 

- 

Y .  Moreover, from (2.6.6) and (3.2.7) we have 

F,G'(Z) = min{t : F x ( t )  1 2)  5 min{t : &(t) 2 2 )  = FG'(2): 
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i.e. X' _< Y t  and statement (b) follows. Finally, from (b) we get that Eg(X) = 
Eg(X') 5 Eg(Y') = Eg(Y) for any increasing function g : R + R, 
i.e. X Lst Y holds. 0 

The notion of stochastic dominance can be naturally extended to (mui- 
tidimensional) distributions of random vectors. Property (c) of stochastic 
ordering given in Theorem 3.2.1 has to be reformulated but the coupling 
property (b) essentially remains unchanged. However, the proof becomes much 
more complicated; see Section 7.4.1. In the special case that two random 
vectors ( X I ,  . . . , Xn) and (YI , . . . ) Y,) have independent components for which 
X i  ist I< for all i = 1 , .  . . , n, it is relatively easy to derive a multidimensional 
analogue to the coupling property. Indeed, it suffices to consider n independent 
random variables Z1, . . . , 2, on some common probability space (Q', F', P') 
which are uniformly distributed on [0,1]. Then, using Theorem 3.1.2, we 
get that the random vectors (XI). . . , X,) and ( X i , .  . . , XL) have the same 
distribution, where .Yi = F;: (Zi) for i = 1,. . . n. Analogously, the random 
vectors (Yl). . . , Y,) and (Y;). . . , YA) have the same distribution, where yi' = 
FG' ( ~ i )  for i = I,. . . , ra. Moreover, X: 5 I<' for i = I,. . . , ra. 

3.2.3 Stop-Loss Order 

Similar to part (c) of Theorem 3.2.1, the next characterization of the stoploss 
order holds. 

Theorem 3.2.2 The following statements are equivalent: 
(a) X ISl Y. 
(b) For all x E R, 

E (X - s)+ 5 E (Y - 2)+ . (3.2.8) 

Pmof To show that (b) follows from (a) it suffices to insert the increasing 
and convex function g(t) = (t - x)+ in (3.2.6). Assume now that g : R + R 
is increasing and convex. First we consider the case g(-co) > -oc. Then 

g(z) = g(-m) + g+(t)  dt = g(-oo) + (z - t) dg+(t) 
-03 .L 

for all x E R, where g+( t )  is the right derivative of g(t). Thus, 

= d - ~ >  + 1% Jm (5 - Y)+ flx(4dg+(gl) 
--3o -m 

by hbini's theorem. Hence, (3.2.8) implies (3.2.6) under the additional as- 
sumption that g(-oo) > -%. In the general case, take g( t )  increasing and 
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convex, but 9(-00) = -00 and put gn(t)  = m w { - n , g ( t ) }  for n E IN. The 
functions gn(t)  are increasing and convex with gn(-m) > -00. Assuming 
(3.2.8), the first part of the proof tells us that 

a2 47 

g n ( z )  dF.x (2 )  I lw gn(x) ~ F Y  (2) n E N a 

The proof is completed using the monotone convergence theorem. 
L 

0 

Remark The characterization given in (3.2.8) explains the name of stoploss 
ordering for as used in insurance mathematics. For if X is a risk to be 
insured with a retention level S, then the net premium E(X - z)+ is called 
the stop-loss premium. 

Similarly to part (b) of Theorem 3.2.1, there is also a coupling theorem for 
the stoploss order; see Baccelli and BrCmaud (1994). Here, the notion of the 
conditional expectation E (Y’ I X’) is required. This is a random variable that 
can be interpreted as the expectation of Y’ taken with respect to a certain 
“random” conditional distribution depending on the actual value of X‘. 

Theorem 3.2.3 The following statements are equivalent: 

(b) There ezist a probability space (W,F‘,P’) and two random variables 
X’, Y’ defined on it  svch that X’ 5 E (Y’ I X‘) and X = X ’ ,  Y = Y .  

The proof that statement (b) follows from (a) is rather difficult and goes 
beyond the scope of our book. We therefore omit it and refer the reader to 
the bibliographical notes. On the other hand, assuming (b), for all x E R it 
follows from Jensen’s inequality for conditional expectations that 

(a) x I s 1  y. 

d d 

E ( X  - s)+ 5 E (E (Y‘ I X ‘ )  - x)+ i E ( E  ((Y’ - x)+ I X‘)) 
= E(Y‘-z)+ = E ( Y  - z ) + .  

Because of Theorem 3.2.2 this gives (a). 0 

We next derive a sufficient condition for the stop-loss ordering to hold 
between two random variables. This so-called cut criterion appears in the 
literature under various names and is  attributed to numerous authors (e.g. as 
Ohlin’s lemma or the Karlin-Novikoff cut criterion). 

Lemma 3.2.1 Suppose h : R -+ R is a measurable function such that s-”, Ih(t)l d t  < 00 and J-”, h(t)  dt  2 0. If h( t )  5 0 for all t < to and h ( t )  2 0 
for all t > to f o r  some to E R, then J,” h( t )  dt >_ 0 for  all x E R. 

Proof Note that the function x c) J,” h ( t )  dt is continuous and increasing on 
0 

We begin with a simple auxiliary result. 

(-00, to),  decreasing on (to, 00) and nonnegative at -w. 
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The one-cut criterion for the stoploss ordering of two random variables X 
and Y with distributions Fx and F y  is given nexc. 

Theorem 3.2.4 Suppose EIX( < co, ElYl < 00 and E X  L E Y .  If, for 

Proof Put h(t)  = Fx( t )  - Fy(t) = 1 - Fy( t )  - (1 - F,y(t)) .  Then, h(t)  I0 
for all t < to and h(t)  2 0 for all t > t o .  Moreover, integration by parts gives 

= E Y - E X > O .  

Thus, by Lemma 3.2.1, the proof is finished. 

order. 
We continue by studying some basic extremality properties of the stoploss 

Theorem 3.2.5 Let X be an arbitrary random variable with distribution F 
and expectation 1.1. Then 

6, 581 F .  (3.2.9) 

Proof Note that 6,( t )  5 F ( t )  for all t < p and d , ( t )  2 F ( t )  for all t > p. 
0 

Inequality (3.2.9) means that within the class of all distributions with a 
fixed expectation the degenerate distribution is minimal with respect to s t o p  
loss order. Further, we apply Jensen's inequality to see that 

Thus, the assertion follows from Theorem 3.2.4. 

holds for all concave functions v : R -+ R. In terms of utility theory, this 
means that deterministic wealth maximizes the expected utility in the class of 
all random wealths with the same expectation. Next, we look for the minimal 
and maximal expected utility Ev(X) within the class of all (nonnegative) 
wealths X with fixed first and second moments I.( = p(I )  and ,d2), where the 
utility function u : R+ -+ R is assumed to be a 2-concave function. By this 
we mean that v(z) is bounded from above and can be represented either as 

V(Z) = v(+w) - (3.2.11) 
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for all 2: E R+ = [O,CQ), or as a monotone limit of such functions. Here 
(t - z ) ~  - ((t - z )+ )~  and v(t) is an increasing and right-continuous function 
with JF't2dq(t) < 00. Clearly, 2-concave functions form a subclass of the 
class of all concave functions. An example of a 2-concave function is given 
by ~(2:) = 1 - e-az; a > 0. According to (3.2.10), the degenerate distribution 
6, maximizes the expected utility E v ( X ) .  Moreover, for any given 2-concave 
utility function ~(t), the distribution F m  given by 

minimizes E v(X) within the class of all distributions of nonnegative random 
variables with fixed first and second moments. 

Theorem 3.2.6 If w(x) is a 2-concave function and X is  a nonnegative 
random variable with distribution F and expectation p, then 

Proof The upper bound is nothing but (3.2.10). To get the lower bound, it 
suffices to prove that s,"(t - ~ ) ~ d & ( z )  2 s,"(t- z)2dF(z) for all t 2 0 because 

t I" ~ ( 2 )  dFm (2:) = ~(+m) - Jm ( I  ( t  - zI2dFm ( ~ ) ) d ~ ( t )  
-OG 

for functions of the form (3.2.11). Observe that 

Thus, it suffices to show that 

Assume first that t 2 ~ ( ~ ) / p .  Then 

l ( t  - 2:)2dF(z) 5 (t - z)2dF(2:) = t2 - 2tp + p(2). I" 
On the other hand, using the substitution z = t - l ,  it is easily seen that 

t I ( t  - z)2dF(s) = E (t - X): 5 t2  (1 - p2 /p@))  
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for d l  t < ~ ( ~ ) / p  if and only if E (1 - zX): 5 1 - p2//h2) for all z > ~ / p ( ~ ) .  
Since 

E( l  - z X ) :  5 E ( l  - ZOX)? 5 E.(l  - Z O X ) ~  = 1 - - P2 
p(2) 

for z > 20 = p / ~ ( ~ ) ,  the proof is complete. 0 

3.2.4 The Zero Utility Principle 

In this section we take v : R + R to be a strictly increasing utility function. 
Given this utility function, the zero utilatg principle defines the premium n(X) 
of a risk X as the solution to the equation 

E ( v ( I I ( X )  - X ) )  = ~ ( 0 ) .  (3.2.13) 

This means that the insurer fixes the premium at such a level that, with 
respect to the utility function v(z), the utility v(0) of the initial surplus z = 0 
is equal to the expected utility of the surplus n ( X )  -X resulting from insuring 
the risk X at the premium n ( X ) .  Note that the premium n ( X )  is the same 
for all utility functions az,(z) + b, where a > 0 and b E R. The formal proof 
of this property is left to the reader. 

A premium principle n is said to be monotone with respect to an order 4 in 
a certain family of distribution functions if Fx 4 F y  implies n(X) 5 II(Y). 

Theorem 3.2.7 The zero utility principle given by (3.2.13) has nonnegative 
safety loading and no unjustified safety loading. Moreover, it is monotone with 
respect to stop-loss order SS1. 

Proof From (3.2.13) and from the strict monotonicity of v, we immediately 
get n(z) = z, i.e. ll has no unjustified safety loading. Moreover, Jensen's 
inequality gives v(0) = E(v(n(X) - X ) )  <_ v(n(X) - EX).  Thus, v(0) 5 
u ( n ( X )  - EX), which gives n(X) - EX 2 0. To prove that Il is monotone 
with respect to stop-loss order, consider two risks X,X' such that X SSl X'. 
Then, by Definition 3.2.1 of the stop-loss order, Ev(c  - X) 2 Ev(c- X') for 
each increasing concave function ~(z) and for all c E IR because -v(c - z) is 

0 

By way of an exercise, the reader should show that the exponential principle 
H,(X) = 0-l IogEeO" solves the equation (3.2.13) for the utility function 
v(z) = (1 - e-az) / a  probided that a > 0 is such that EeaX < 00. 

Furthermore, the exponential principle is additive for independent risks. 
Under some regularity conditions on the utility function, the exponential 

principle is characterized as the only zero utility principle which is additive 
for independent risks. 

an increasing and convex function of z. Hence n ( X )  5 H(X'). 
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Theorem 3.2.8 Assume that the utility function w : R + R ds twice 
continuously daflerentiable and that 

w(0) = 0 ,  w(1)(0) = 1 ,  w(2)(0) = -a (3.2.14) 

for some a 2 0. Let rI be the zero utility principle defined for nonnegative 
mndom variables by (3.2.13) and assume that 

rI(X + Y) = n(x) + n(Y) (3.2.15) 

for all independent and isurable risks X, Y .  Then 

n(x) = { a-logEeax af a > O? 
if a = 0. 

Before proving Theorem 3.2.8 we show the following auxiliary result. For 
arbitrary fixed b > 0 and p E [0,1], we consider a two-point risk Xb 
with distribution f i b  + (1 - p)&. Next we consider the premium cpa(p )  = 
n($b + (1 - p)60) for this risk defined by the zero utility principle (3.2.13), 
i.e. $7b(P) is the solution to 

p ( ( P b 0 3 )  - b )  f ( 1  - 4))v((Pb@)) = 0 .  (3.2.16) 

Lemma 3.2.2 Under the assumptions of Theorem 3.2.8 the function (Pb : 
[0,1] + R+ is twice continuously differentiable. 

Proof We apply the implicit functions theorem to the bivariate function 
F ( z ,  y) = zw(g - b) + (1  - z)v(y). This function is continuous, has continuous 
second-order partial derivatives and Fy(z,y) # 0 for all (2, y )  E [0,1] x R. 
Thus, the theorem on implicit functions [see Theorems 17.1.1 and 17.4.1 in 
H i e  (1966)) yields that ‘&,(P) is twice continuously differentiable on [0,1]. 0 

We also need a result from differential equations. 

Lemma 3.2.3 Under the assumptions of Theorem 3.2.8, the only solution to 

(3.2.17) v ( t  + h) - d l ) ( h ) v ( t )  - v(h)d’ ) ( t )  - uU(h)w(t) = 0 

is w(t) = (1  - e-at) /u when Q > 0 ,  and w ( t )  = t when a = 0. 

Proof By inspection, one can see that v(t) = ( 1  - e-at)/a and w(t) = t 
are solutions to (3.2.17) in the cases that Q > 0 and a = 0, respectively. It 
remains to show that there axe no other solutions to (3.2.17) which satisfy 
(3.2.14). Assume first that Q > 0. Since w ( t )  is concave and u(0)  = 0, we have 
w(2t) 5 2v(t) for all t 2 0. Thus, for h = t > 0, (3.2.17) gives 

w(2t) - a(v( t ) )2  2c(t) - a(w(t))2 U 

2 4 t )  2 = 1 - - w ( t )  . W y t )  = I 
2 4 t )  
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This meam that v(t) must be bounded because otherwise we would have 
v(')(t) < 0 for sufficiently large t ,  which is impossible since v(t) is increasing. 
Hence limt+oo v(l)(t) = 0 and limt+w v(t + h)/v( t )  = 1 for all h E R. Now, 
dividing both sides of (3.2.17) by v(t) and letting t + 00, we arrive at the 
linear differential equation 1 -v(l)(h) -av(h) = 0. From the theory of ordinary 
linear differential equations (see, for example, Hille (1966)) we know that this 
equation has exactly one solution satisfying v(0) = 0. If o = 0, then (3.2.17) 
takes the form 

u(t + h) - v(')(h)o(t) - o(h)v(')(t) = 0. (3.2.18) 

Assume for the moment that ~ ( t )  is bounded. Then, in the same way as before, 
we would get that v(')(h) = 1 for all h E R, which leads to a contradiction. 
Thus, limt+oo v(t)  = oc and, consequently, limt_,= v(t  + h)/v( t )  = 1 since 
v(h) + v(t) 2 v(t + h) 2 u(t) .  Furthermore, limt+oo v( ' ) ( t ) /v ( t )  = 0, since 
dl)(t) is decreasing. Now, dividing both sides of (3.2.18) by v(t) and letting 

0 

Proof of Theorem 3.2.8. Taking the derivative with respect to p in (3.2.16), 
and letting p = 1, we get 

pb"(1) = u ( b ) .  (3.2.19) 

Rom the assumed additivity property we obtain 

t + 00, we see that d')(h) = 1 for all h E R, i.e. v(h) = h. 

nI((Psh + (1  - p)60)  * (@t -k (1 - q)60))  
= nwh + (1 -p)60)  + R(q6t + (1 - q)60) = V h b )  + pt(q) 

for h, t > 0 and 0 5 p, q 5 1. Therefore, by (3.2.13), 

pQv((Ph@) cPt(q) - h - t )  p(1- q)c((Ph@) + u't(q) - h, 
+ (1 - P)qv(ph@) + pt (q)  - t )  + (1 - p)(l - q)v((Phb) + V t ( q ) )  = o(3-2-20) 

is obtained. DiiTerentiating this equation twice, first with respect to p and 
then with respect to q, and setting p = q = 1, we get 

(v(0) + u q o ) ( P p ( l ) )  + (v(')(o)(Pp(l) + v'2'(0)~~)(l);ot1)(1)) 

+ (-v(t)) + (-v(l)(t)&)(l)) + (-v(h) - v(l)(h)&)(l)) + ( w ( t  + h) )  = 0 .  

Together with (3.2.14) and (3.2.19) this yields 

v(t + h) - v(')(h)v(t) - v(h).'l'(t) - av(h)v(t) = 0 (3.2.2 1) 

for all h, t > 0. To prove that (3.2.21) holds for all h, t < 0 we can use similar 
arguments. Namely, taking in (3.2.16) the derivative with respect to p and 
setting p = 0, we obtain 

'pb (1)  (0) = -v(-b). (3.2.22) 



94 STOCHASTIC PROCESSES FOR INSCrRANCE AND FIN AVCE 

Differentiating (3.2.20) twice, first with respect to p and then with respect to 
q, setting p = q = 0, and using (3.2.14) and (3.2.22); we get (3.2.21) for all 

0 h,t < 0. By Lemma 3.2.3 this finishes the proof. 

Bibliographical Notes. Surveys on various orderings of distributions are 
given, for example, in Marshall and Olkm (1979), Mosler and Scarsini (19931, 
Shaked and Shanthikumar (1993), Stoyan (1983) and Szekli (1995). For the 
proof of the necessity part of Theorem 3.2.3, see, for example, Baccelli and 
BrCmaud (1994) or Lindvall (1992). Sometimes the implication (a) * (b) of 
Theorem 3.2.3 is called Strassen’s theorem. RRsults like Theorem 3.2.4 can 
be traced back to Hardy, Littlewood and Pblya (1929) or Karamata (1932); 
see also Ohlin (1969). Some generalizations are given in Karlin and Novi- 
koff (1963). An application of Theorem 3.2.4 to optimal reinsurance structures 
is considered in Hesselager (1993); see also Section 3.3. Results like those 
given in Section 3.2.4 can be found, for example, in Gerber (1979) for the 
zero utility principle, and in Kaas, van Heerwaarden and Goovaerts (1994) 
for the so-called mean value principle, where further characterizations of the 
exponential principle are discussed. 

3.3 SOME ASPECTS OF REINSURANCE 

If a risk X is too dangerous (for instance if X has large variance), the insurer 
may want to transfer part of the risk X to another insurer. This risk transfer 
from a first insurer to another insurance company is called reinspsrunce. The 
first insurer that transfers (part of) his risk is called a cedant. Often the 
reinsurance company does the same, i.e. it passes part of its own risk to a third 
company, and so on. By passing on parts of risks, large risks are split into a 
number of smaller portions taken up by different risk carriers. This procedure 
of risk exchange makes large claims less dangerous to the individual insurers, 
while the total risk remains the same. 

A reinsurance contract specifies the part X - h ( X )  of the claim amount X 
which has to be compensated by the reinsurer, after taking off the retained 
amount h ( X ) .  Here h : lR.+ + R+, the retention function: is assumed to have 
the following properties: 

0 h(z) and s - h(s) are increasing, 
0 0 _< h(s) _< T and in particular h(0) = 0. 
It is reasonable to suppose that both the retention function h(z) and the 
compensation function k(z) = z - h(z )  are increasing, i.e. with the growing 
claim size, both parts contribute more. In practice, retention functions are 
often continuous or even locally smooth, but we do not require such properties 
in this section. Possible choices of retention functions h(s) are 
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h(x) = ax for the proportional contract, where 0 < Q 5 1, 
0 h(s) = min{a,z} for the stop-loss contract, where a > 0. 

Consider risks of the form X = xEl Vi, where N is an IN-valued random 
variable and where the nonnegative random variables V,  are interpreted as 
local risks. We can model local retnsunznce with local retention functions hi(x) 
as follows: for the i-th claim of size Ui the part Uj - hi(Ui) is carried by the 
reinsurer. The local retention functions hi(z) are assumed to have the same 
properties as their global alternatives h(z). Let v(x) be a utility function. 
If n ( X )  is the premium paid to the reinsurer, the utility of the reinsurer is 
v(ll(X) - EL, ki (Ui) ) ,  where k+(s) = s - hi(x) are the corresponding local 
compensation functions. If a global contract is used with retention function 
h(x) the utility of the reinsurer is v(II(X) - k ( X ) ) ,  where k(x) = x - h(s) is 
the corresponding compensation function. The following result suggests that 
in some cases a global contract is better for the reinsurer. 

Theorem 3.3.1 Let X be an insurable risk of the form X = xzl V ,  and 
let v : R 3 R be an increasing and concave function. For a local reinsurance 
with compensation functions ki (C = 1,2, . . .), there exists a function k ( z )  suck 
that 

N 

i=l 

and Ev(lI(X) - xzl ki(Vi)) 5 Ev(II(X) - k ( X ) ) .  

Proof For each x 2 0, define 

N 
k ( z )  = E ( C k i ( U i )  I X = x). 

i=l 
(3.3.1) 

By the definition of conditional expectation Ek(X) = E (xi”=, kj(Ui)).  Since 
the funct.ion v(rI(X) - z) of 2 is concave, we can a.pply Jensen’s inequality 
for conditional expectation to obtain 

Remark The following example shows that (3.3.1) does not always give a 
compensation function. Take A’ = 2 and suppose that P(Ul = 4) + P(Ul = 
5 )  = 1 and n”(U-2 = 5 )  + P(& = 7) = 1, where all four probabilities are 
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assumed to be strictly positive. If kl(s) = s/2 and b ( z )  = 5/8, then it is 
easily seen that the function k ( z )  given in (3.3.1) is not increasing. 

Under appropriate conditions, however, k(z) defined in (3.3.1) is a 
compensation function. To show this, we first extend the notion of stochastic 
order as given in Definition 3.2.1. Let X = (Xi,. . . , Xn) and Y = (Yi, . . . , Yn) 
be random vectors taking values in R". We say that X is stochastically 
dominated by (or stochastic& smaller than) Y and we write X I 9 t  Y if 
for 4 1  measurable function g : Rn + R which is increasing in each of its 
arguments, 

EdX) I E d Y )  1 (3.3.2) 
provided that the expectations E g ( X ) ,  E g ( Y )  exist and are finite. By X t  
we mean a random vector with the same distribution as the conditional 
distribution of X = (XI,. . . ,Xn) given C:=, Xi = t .  

In the next lemma, sometimes called Ehn's  theorem, a special class of 
functions is considered. A function f : R + R+ is said to be a Pdlya frequency 
function of order 2, or PF2 for short, if 

(3.3.3) 

whenever 21 5 x2 and y1 5 y 2 .  We leave it to the reader to show that the 
gamma distribution r(a, A) with a 2 1, the uniform distribution U(a, b) ,  and 
the Weibull distribution W(r,c) with T 2 1 are PF2.  

Lemma 3.3.1 Let XI,. . . , Xn be independent and nonnegative random 
variables with densities f1,. . . , fn, respectively. If f j  is PF2 for all i = 1, .  . . ,n, 
then X t ,  sst Xt, for all 0 5 tl 5 t2. 

The proof of Lemma 3.3.1 goes beyond the scope of the book; we refer 
to the bibliographical notes. Sufficient conditions for k(z) in (3.3.1) to 
be a compensation function are contained in the following consequence of 
Lemma 3.3.1. 

Theorem 3.3.2 Let n 2 1 be a f i e d  natural number and k ~ ,  . . . , kn arbitrary 
compensation functions. Consider the risk X = xzl U,, where N = n is 
deterministic, U1, . . . , U, are independent and each Ui. is continuous with PF2 
density function fui. Then the function k defined in (3.3.1) is a compensation 
function. 

Proof By Lemma 3.3.1 we immediately get that k(z) is increasing. However, 
n n 

1: - k(z) = E (z - x k i ( U i )  1 X = z) = E ( ~ ( U Z  - k,(Ui)) I X = z) 
i= 1 i= l  

and also g ( u )  = Cb, (ui - k,(ui)) is increasing in each argument. Hence, 
Lemma 3.3.1 also implies that z - k ( z )  is increasing. Furthermore, using the 
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monotonicity of conditional expectation and the fact that ki is a compensation 
function, we have 0 5 E(CY=’=, ki(Lri) I X = 2:) 5 E(CY==, Ui 1 X = s) = z 

0 

For a given risk X, a reinsurance contract with retention function h ( z )  is 

for each 2: 2 0. Thus, 0 I k(z) S x and in particular k(0) = 0. 

said to be compatible with respect to a premium calculation principle ll if 

n(X) = rI (h(X))  + rI(X - h ( X ) )  . (3.3.4) 

For example, the proportiond contract is compatible with respect to the 
expected-value and standard-deviation principles, but not with respect to the 
variance and modified variance principles, unless the variance VarS of X 
vanishes. The stoploss contract has the same compatibility properties, with 
the exception that in general it is not compatible with respect to the standard- 
deviation principle. Further, both the proportional contract and the stop- 
loss contract are compatible with respect to the absolute deviation principle 
given in (3.1.12). The compatibility of the stoploss contract (and of other 
reinsurance contracts) with respect to the absolute deviation principle follows 
from the following property of quantile functions. 

Lemma 3.3.2 Let v, w : R + R be two dncreasang functions. Then, for each 
real-valued random variable 2, 

F&+”(a) (2) = F;;) ( 2 )  + F;(z, ( z )  3 
0 I 2 I 1 ’ (3.3.5) 

Proof For any two functions z ( t ) , z ‘ ( t ) ,  by z o z ’ ( t )  denotes the siiperposition 
z(z’(t)). Note that 

F-’ = v o FF1 . (3.3.6) 

Indeed, by Lemma 3.1.2b1 for all t E (0,l) and t E R 
V ( Z )  

F$)(E) s t - E J ( Z ) ( t )  2 - P ( 4 Z )  I t> 2 2 

* 
w 

P ( Z  I v - l ( t ) )  2 t J Fz(v-l(t)) 2 f 
F&) 5 v-’(t) e v(FF’(t)) I t 

which gives (3.3.6). In the same vain we obtain F<il  = v o Fi’  and 
F&)(z) = ( u  + w) o Fi’, yielding 

F&+WCZ, = (v + 20) o Fg’ = v o F i 1  + UI 0 FF1 = Fv7&, + Fuy[z,. 0 

We say that two risks X,k’ are cornonotonic if there exist two increasing 
functions v ,  w : R + R, and a probability space with a random variable 2 
defined on it such that ( X , Y )  2 (v(Z),w(Z)). 
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Lemma 3.3.3 Let II be the absolute deviation pr-inciple and let X,Y be 
arbatrary comonotonic risks with E X ,  EY < 00. Then II(X + Y )  = n(X) + 

Proof Using (3.1.13) and (3.3.5) we have 

w.7 * 

H ( X + Y )  = F;iY(z)(1 - a) dz + F-;iy(z)(l + a) dz 

= I I ( X ) + r I ( Y ) .  0 

Theorem 3.3.3 For each retention function h.(x), the corresponding 
reinsurance contract is compatible with respect to the absolute deviation 
principle. 

Proof Since the functions h(x) and k(z) are increasing, t,he random variables 
h ( X )  and k ( X )  = X - h ( X )  are comonotonic. Hence by Lemma 3.3.3 we get 

0 (3.3.4) for the absolute deviation principle. 

Bibliographical Notes. Lemma 3.3.1 has been derived in Efron (1965). 
More recent references to Efron's theorem are Shanthikumar (1987) and 
Daduna and Szekli (1996). hr ther  effects on premium calculation of 
splitting a risk into two or more components have been studied for 
instance in Hurlimann (1994a,b), Mack (1997) and Michaud (1994); see also 
Hiirlimann (1995). The compatibility of reinsurance contracts with respect to 
the absolute deviation principle has been investigated in Denneberg (1990). 
For a discussion of reinsurance premium calculation without arbitrage, see 
Albrecht (1992) and Venter (1991). 



CHAPTER 4 

Distributions of Aggregate 
Claim Amount 

4.1 INDIVIDUAL AND COLLECTIVE MODEL 

In this chapter we study different concepts related to aggregate claim amounts. 
As in this chapter we assume that the time horizon is fixed we do not include 
the time parameter. Traditionally, computing or approximating (graduating) 
trhe distribution function of the aggregate claim amount has been one of 
the central points in insurance mathematics. More recently, in the era of 
computers, approximation methods often lost their practical value. On the 
other hand, numerical methods like recursions or numerical inversion of 
Fourier transforms are becoming more important and produce excellent results 
for the case of a finite range of values. Nevertheless, bounds and asymptotic 
techniques, like the study of the tail behaviour of the distribution of the 
aggregate claim amount are still of interest. In order to investigate the 
distribution of the aggregate cIaim amount it is customary to consider one 
of the following two models. 
Individual Model Consider a portfolio consisting of 'I) policies with 
individual risks Ul, . , . , C;, over a given time period (one year, say). We 
assume that the nonnegative random variables Ul , . . . , V ,  are independent, 
but not necessarily identically distributed. Let the distribution Fu, of Ui be 
the mixture Fu, = (1 - 6,)& + @,Fq, where 0 < 0, 5 1 and where Fv, is 
the distribution of a (strictly) positive random variable I<, i = 1,. . . , n. In 
actuarial applications, the probabilities 05 are small and can be interpreted 
as the probability that the i-th policy produces a positive claim V,. The 
aggregate claim amount in this model, which we call the tndavidpral model, 
is Xind = Ca=l V, with distribution Fu, * . . . * Fun. A portfolio is called 
homogenww if Fv, = . . . = Fv,. 
Collective Model We suppose that a portfolio consists of a number of 
anonymous policies which we do not observe separately. The total number 
N of claims occurring in a given period is random. Further, the claim sizes 
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Ui are (strictly) positive and are assumed to form a sequence L'I, U2,.  . . of 
independent and identically distributed random variables. We dso assume 
that the sequence U l ,  172,. . . of individual claim sizes is independent of 
the claim number N .  Typically, N has a Poisson, binomial or negative 
binomial distribution, but other choices are possible. This model is called 
the collective model, and the aggregate claim amount is the random variable 
Xeol = xEl U,. Here and throughout the whole book we use the convention 
that E:=l Ui = 0.  

The idea is to amroximate the individual model by a suitably chosen 
collective model if the size n of the portfolio is large. This is done beduse the 
collective model is often mathematically easier to handle. In this connection, 
a crucial problem is how to specify the parameters of the collective model to 
have a good approximation. In Section 4.6 we study such approximations by 
collective models, in particular by Poisson compounds. 

Bibliographical Notes. For a more extensive discussion of the practical 
background of the individual and the collective model investigated in in- 
surance mathematics we refer, for instance, to Albrecht (1981), Beard, 
Pentiksnen and Pesonen (1984), Bohman and Esscher (1963), Bowers, 
Gerber, Hickman, Jones and Nesbitt (1986), Buhlmann (1970), Daykin, 
Pentikainen and Pesonen (1994), Gerber (1979), Goovaerts, Kaas, van 
Heerwaarden and Bauwelinckx (1990), Heilmann (1988), Mack (1997), Panjer 
and Willmot (1992), Straub (1988) and Sundt (1993). 

4.2 COMPOUND DISTRIBUTIONS 

4.2.1 Definition and Elementary Properties 

Suppose that w-e want- to evaluate the total payment over a period (one year, 
month, week etc.) from a portfolio, either using the individual or the collective 
model. Let N be a nonnegative integer-valued random variable and U1, UZ, . . . 
a sequence of nonnegative random variables. Then the random variable 

(4.2.1) 

is called compound and describes the aggregate claim amount in the individual 
model as well as in the collective model. We assume throughout this chapter 
that the random variables N,Ul lU2,  ... are independent. If not stated 
otherwise, we also assume that L'I> Uz,  . . . are identically dist.ributed. The 
latter assumption is sometimes omitted when considering the individual 
model. We say that X has a compound distribution determined by the 
(compounding) probability function { p k ,  k E IN} of N and by the distribution 
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Fu of V, if the distribution of X is given by 

M 

(4.2.2) 

where F;" denotes the k-fold convolution of Fu. Note that compound dis- 
tributions form a special class of mixtures of distributions as considered in 
Section 2.2.4. 

We first show how to express the Laplace-Stieltjes transform ix (9) in terms 
of the generating function & N ( s )  and the Laplace-Stieltjes transform iu(s). 

Theorem 4.2.1 For each s 2 0, 

ix (8) = h ( d j ( s ) )  * (4.2.3) 

Proof We apply the law of total probability, using the fact that the random 
variables exp(-s EL, Vi) and N are independent and that e-8ul, e-eu2,. . . 
are independent and identically distributed. We get for each s 2 0 

N 00 N 
E e x p ( - s x U i )  = x E ( e x p ( - s c U . )  I N = k ) P ( N = k )  

i=l k=O i= 1 

m k m k 

. .  
k=O i= 1 k=O i=l 
00 

= C ( E e - 8 u ) k P ( N  = k) = gN(Ee-Su). 
k=O 

See (2.1.11) for the last but one equality. 0 

Remark Similarly, the moment generating function 7iLx(s) of X is well- 
defined at least for s 5 0 and can be expressed as r i . l ~  (s) = g N ( & U ( s ) ) .  If the 
claim sizes are lattice (e.g. take values in Pi), then X is also lattice and we can 
determine the generating function of X by Jx(s )  = a ~ ( g " ( s ) ) ;  -1 < s < 1. 

&om Theorem 4.2.1 we easily get formulae for the first two moments of X. 

Corollary 4.2.1 Assume that the relevant moments exist. Then 

E X  = E NE U , Vax X = Var N ( E  U)2  + E NVar U . (4.2.4) 

Proof To use formulae (2.1.7) and (2.1.8) compute the first derivative of i.x(s) 
at s = O+ to obtain 

(1) 71) E X  = -d/ds ~X(S)~~=O+ = - g N  (1)lU (O+) = E N E U .  
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Further, the second derivative at s = O+ yields 

E ( X 2 )  = d2/ds2 ~x(s)~~=o+ = &'(l)q:'(O+) + gg'(l)(ig)(O+))2 
= E(N2)(EU)' + E N V a r U .  

Thus, VarX = E(X2) - (EX)2 = VarN(EU)* +EiVVarU. 0 

Remark Note that the first identity in (4.2.4) is a special case of Wald's 
identity (9.1.33) given in Section 9.1.6. Furthermore, the second identity shows 
that the variance of the compound X consists of two component<s: one is 
induced by the variance of the compounding random variable N ,  the other by 
the variance of the summands UI, U2, . . .. 

Note also that for each distribution F" of a nonnegative random variable U 
we have F$(z) 5 @(z) for all k E K, z E R. This entails for the compound 
distribution FX in (4.2.2) that F,y(z) 5 Czop&(z) = &,v(Fu(z)). Thus, 

(4.2.5) 

If the claims U,, Uz,. . . are unbounded but finite, that is Fu(z) < 1 for all 
z > 0 and limz+m Fu(r) = 1: then (4.2.5) implies the inequality 

(4.2.6) 

since mN (1) (1-) = EN. 
Equation (4.2.6) clearly shows that if the tail of the claim size distribution 

Fu converges dangerously slowly to zero, then also the aggregate claim 
amount will suffer from a similar drawback. If we require some further 
specific properties of the underlying ingredients ( p c }  and Fu, then the 
above inequality will actually turn into an asymptotic equalit.y. To be more 
specific, recall Theorem 2.5.4, where it has been shown that if the generating 
function ~ N ( s )  of the claim number N is analytic at the point s = 1 then 
limX+* K ( z ) / F ( z )  = EN if the claim size distribution is subexponential. 
However, in what follows in this chapter we will mainly be interested in cases 
where the claim size distribution is not heavy-tailed. This will then lead to 
exponential-type bounds. 

In many cases it is rather difficult to determine a compound distribution 
analytically, i.e. in terms of a closed formula. Although by Theorem 4.2.1 we 
are able to determine transforms of compound distributions, we are unable 
to invert them analytically except for a few rather specific cases. However, 
as mentioned in Section 4.2.3 below, it is of great importance for actuarial 
purposes to know the probability P(X > s) of the compound X exceeding 
a given level 2. For these reasons, several numerical methods have been 
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developed to compute probabilistic characteristics of a compound distribution, 
using, for example, recursive algorithms, asymptotic techniques, bounds and 
further numerical approximation methods. They will be discussed in the 
following sections. 

4.2.2 Three Special Cases 

In actuarial applications three cases are of special interest: 

Poisson compounds where M has a Poisson distribut.ion; in this case 
the distribution of the compound, determined by A = EN and by 
the distribution FLr, is called a compound Pokson dhtribution with 
characteristics (A, Fv) .  
Pascal (or negatiwe binomial) compounds with compounding distribution 

Geometric cornpounds where N has a. geometric distribution; in this case 
the distribution of the compound is determined by p = 1 - P(N = 0) and 
by the distribution FL: and is called a compound geometric distribution. 

"a, PI. 

Recall that the binomial, Poisson, negative binomial, normal, Erlang and x2- 
distributions are closed under convolutions, as stated in Section 2.2. We now 
show that Poisson compounds share this useful property. 

Theorem 4.2.2 For some n E N, let X = X 1  + . . . + X, be the sum of the 
independent Poisson compounds X1 , .. . X ,  with characteristics (Aj, Fj)  (j = 
1 , .  . . , n). Then X has 0 compound Poisson distribution with characteristics 
(A, F )  given b y  

n n .  

A = c A j  and F = Z \ i F j .  A 
j=1 j=1 

(4.2.7) 

N .  Proof Consider the representation Xj = Ci2,Uij of Xj  where Nj has a 
Poisson distribution with parameter A j ,  and where U l j ,  Uz j , .  . . are indepen- 
dent and identically distributed with distribution Fj. Let U, be a generic 
random variable with distribution Fj. Since N j  has generating function 
~ N ~ ( S )  = exp(-Aj(1 - s ) ) ,  we get from Theorem 4.2.1 that the Laplace- 
Stieltjes transform f x ( s )  of X is given by 

To complete the proof note that the Laplace-Stieltjes transform Of F is 
given by C;=, $luj (s) and that, consequently, exp(-A(l - Cy=, $bj(s))) 
is the Laplace-Stieltjes transform of a Poisson compound with characteristics 
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(A, F ) .  Now use the one-to-one correspondence between distributions and their 

Examples 1. Consider the following special case of a Poisson compound. If 
the compounding probability function ( p k }  is Poisson with parameter X and 
if the claim size distribution Fu is exponential, i.e. Fu = Exp(c5) for some 
6 > 0, then the distribution function F'x of the aggregate claim amount has 
the form F x ( z )  = Cr=o e-A(Xn/a!)FGn(z), where 

Laplace-Stieltjes transforms. D 

for n = 1,2 , .  . .. Note that the distribution function F x ( z )  has a jump of size 
at the origin and is differentiable in the interval ( 0 , ~ )  with 

Using definition (2.2.1) of the modified Bessel function 11 ( z )  we see that 

2. Another example with an explicit expression for the density part F$)(z) is 
obtained for Pascal compounds with compounding distribution NB(cr, p) and 
exponential claim size distribution FU = Exp(6). Here the aggregate claim 
amount. X has distribution function 

As a special case assume that the parameter u = rn, a strictly positive 
integer, and that the claim size distribution is the same as above, i.e. Fv(z) = 
exp(-dx). Then we find that F x ( z )  has a jump of size (1 -p)" at the origin. 
For the density part we need a bit more work. Introducing the densities of 
Fcn in the above formula we find that 

for all z > 0. Put y = p6z. Then the series in (4.2.9), call it R(y), can be 
tackled by the use of the confluent hypergeometric function defined in (2.2.3): 

R(y) = (,,a - 1 -=-C yn d m(m+ 1) ... ( m + n -  1) yn 
n n! dY n=O 1 . 2 .  . . . '  n a! ' 9  n=O 

A 
U 

= --M(rn,l;y). 
dY 
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We now use that 
d 
-M(n, 1;y) = mM(m + 1,2; y) , M(m + 1,2; y) = eyM(-m + 1:2; -9) 
dY 

to write R(y) = mA4(rn + 1,2;y) = rnegM(-rn + 1? 2; -g). The latter factor 
M(-m + 1,2; -y) is a polynomial. It can be transformed into a generdi7A 
Laguerre polynomial defined in (2.2.6) by 

Hence we ultimately find that, for x > 0, 

(4.2.10) 

where Lc) ( z )  = d/&LO,(s) denotes the derivative of the Laguerre polynomial 
Lm(z) = LL(x) .  Note that in the last equality we applied a classical identity 
(2.2.7) for Laguerre polynomials, in that d/& L%(x) = -t&-l(~). 

4.2.3 Some Actuarial Applications 

There are a variety of reasons why information on the distribution of the 
aggregate claim amount is of prime importance in actuarial practice. Let us 
illustrate its use by three examples. 

1. In our first example we consider the risk reserve R(t) of a portfolio at 
time t where we assume that the random variable R(t) is given by R(t) = 
u + n(t) - X ( t ) .  Here u 2 0 is the initial reserve, D(t) is the totality of 
premiums collected up to time t and X ( t )  is the aggregate claim amount up 
to time t ,  i.e. X ( t )  = Cz;’ Ui: where N ( t )  is the number of claims up to time 
t. The random fluctuation in time of the risk reserve process {R(t),t 2 0 )  is 
one of the main topics investigated in later chapters of this book. Assume 
now that we can derive a transparent upper bound for the tail function 
F x ( ~ , ( z )  = P ( X ( t )  > x) of the aggregate claim amount X ( t )  at time t. 
So, p ~ ( ~ , ( x >  5 g+(t,z). The actuary wants to safeguard himself against a 
deficit at the end of the year, say at time point. to.  To do this, he allows a very 
small probability of at most E that at to the risk reserve is negative. More 
precisely, he puts g+( to .x)  = E .  Solve this equation for x =  to,^). If the 
actuary chooses u + n(t0) 2  to,^), then 

- 

- 
P(R(t0) < 0) = P ( X ( t 0 )  > u +  W o ) )  = F X ( t o ) ( U  + n(to)) 

If we can solve the equation g+(t, z) = e for all x = z(t ,  E )  and arbitrary t 2 0; 
then ‘LC can be chosen by the equality u = z(0, E ) .  The premium n(t) that has to 
be collected by time t should then satisfy the inequality H ( t )  2 z(t, E )  -z(O: E ) .  
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2. In the next example we consider a risk X with distribution Fx and we 
assume that X is the aggregate claim amount over a certain period of time. 
One of the popular premium principles is the stoploss principle, already 
considered in Chapter 3. We look at a slightly more general situation if we 
look at the generalized stop-loss premium IIa,m(X)e This is defined by 

30 

I Ia ,m(X) = (3 - a)m d r x ( z ) ,  u 2 0, PII E IN . (4.2.11) 

In terms of expectations, this reads IIa,,(X) = E ((X - y)+)". Often one 
restricts attention to the special case where m = 1, the usual stoploss 
premium. Note that also the case rn = 0 is of particular interest since 
II,,o(X) = P ( X  > a)  = F ~ ( Q )  is the tail function of the aggregate 
claim amount X. Instead of (4.2.11) we can use an alternative definition 
of the generalized stop-loss premium derived from integration by parts. If 
EXm < 00, then it is easily seen that, for rn = 1,2,. . . 

I" 00 

II,,,(X) = n vm-'Fx(a + 91) dv = m wm-lHa+v,o(X) dv. (4.2.12) 

Thus, if we know a way to handle the tail function of the aggregate claim 
amount X, then a simple additional integration gives us full insight into the 
generalized stoploss premium. 
3. Let us turn to reinsurance. One of the most frequently applied reinsurance 
treaties is proportional reinsurance; see Section 3.3. On the basis of past 
experience, the first insurer wants to buy reinsurance from a reinsurance 
company. If the insurer has experienced an aggregate claim amount X in 
a certain year, then he might decide to reinsure a proportional part of next 
year's total claim mount ,  say Z = ax for 0 < a < 1. It is obvious that 

P(Z 5 z) = P ( X  5 za-1) = Fx(za-1). 
In particular the (pure) net premium for this reinsurance contract is EZ = 
aEX. Now assume that we are able to derive a simple monotone lower 
bound for the tail function of X ,  say P (X 2 z) = Fx(z) 2 g-(z). The 
first insurer wants to avoid that the price for this reinsurance - his own 
premium - will be excessively large if he chooses Q too large. One way of 
estimating this proportion goes as follows. First determine a value xo such 
that P(Z 1 zo) < E for a given E. If the insurer takes a to satisfy the inequality 
g-(zo/a) < P(Z > ZO) < E, then by inversion a < zo/gI'(a), where gI'(s) 
is the generalized inverse function of g- (x). 

4.2.4 Ordering of Compounds 

In Section 4.2.3 we saw that, for actuarial purposes, it is useful to know lower 
and upper bounds for the tail function of a compound. This is closely related 
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to the idea of ordering of risks. We now compare compounds with respect to 
stochastic and stop-loss orderings. Further bounds for compound distributions 
will be studied in Section 4.5. 

Lemma 4.2.1 Let Ul,Uz,. .  . ,Un and U[,Ui ,... >UA be two sequences of 
independent and identically distributed random variables. 
(a) If U Sst U’ then Cj”=, L> Ist C;=’=, Uj’ . 
(b) If U s51 U’ then C;=, Uj &I C,”=, U,! . 
The proof is left to the reader. 

Theorem 4.2.3 Consider two compounds X = zEl Ui and X‘ = 
(a) If N sat N‘ and U sat U’ then X Sst XI. 
(b) If N Isl il“ and U <J U’ then X Isl X ’ .  

Proof Define an = Eh(C;=, U j )  for n = O , l , .  . .. If h : R+ + EL+ 
is increasing then the sequence {an} is inueasing. To prow (a) we take 
h(z) = l (x  2 b) for some fixed but arbitrary b. Then by Lemma 4.2.la 
we have an = E h(C;=, Uj) I Eh(Cy=,  U,!) = a;. Thus, 

” 
Ui.  

N 00 00 M ” 

E h ( C U j )  = CPnan 5 x p k a n  I C P ; ~ ;  =.,(xu;) - 
j=1 n=1 n=l n=l j= 1 

To show (b), take now h(z)  = (z - b)+ for some fixed but arbitrary b. This 
function is increasing and convex. With a, as before and Lemma 4.2.lb 

n n 

a n = E h ( Z U j )  < E h ( x U i )  = a ; .  
j=1 j=1 

We show that {a,} is a convex sequence that is a,, + an+2 2 2Qn+1 for all 
n = 0 , l : .  . .. For n fixed, define hhe function k ( z )  = E h(Cy==, Uj + 2). Since 
k is convex we have k ( z  + y) + k(0) 1 k(z) + k(y) for 2, y 1 0. This gives 
Ek(Un+l +Un+a) +k(O) 2 Ek(Un+l) +Ek(Un+2), from which the convexity 
of {a,} follows. Now 

4.2.5 

In this section we collect a few results in connection with the larger claims that 
are part of the aggregate claim amount. Recall that for the claims UI, . . . , U,, 

The Larger Claims in the Portfolio 
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the largest claim is denoted by U(,,, = max(U1,. . . , Un}. The second largest 
claim is ti(n-l) and in general the k-th largest claim is t!J(n-k+lj. Consider now 
a random number A: of claims Ul, . . . , Un;, where U1, U z , .  . . are independent 
and identically distributed and independent of N .  Fix the integer k and ask 
for the distribution of the t-th largest claim. We put U ( N - - Q + ~ )  = 0 if IV < k. 
Theorem 4.2.4 The distribution of the k-th largest claim is given by 

00 1 
P(qv-&+l)  2 .) = - djVk’(FV(Y))(l - Fu(Y))k-l dFv(9). 

(4.2.13) 

Proof Fix the integer k = 1 , 2 . .  .. One possibility is that not even k claims 
have occurred yet and then N c k. This event happens with probability 

Hence P(U(N-&+l) 5 z) = 1 - rk + c;=, P ( ~ ( N - ~ + I )  5 z I = n)Pn by 
the law of total probability. The conditional pr0babilit.y equals 

(k - I)! JI 

P ( N  5 k - 1) = 1 - rk, where r& = P k  + P&+l + . . . and P k  = P(N = k). 

Indeed, any of the n claims ca.n play the role of the requested order statistic 
Cr(n--k+l). Assume the latter takes a value in an interval [y,y + dy) which 
happens with probability dF~(y). The remaining n - 1 claims can be 
binomially distributed into n - k smaller than Un-k+l and k - 1 larger than 
Un-k+l. The probability to have a claim smaller than the one in [y,y + dy) 
equals Fu(y), while the claim will be larger with probability 1 - Fv(y). The 
remaining sum can be written in a simplified version thanks to the expression 

which can be derived from the definition of the generating function in 
Section 2.1.5 whenever Is1 < 1. We therefore obtain the expression 

1 
P(L‘(&++l) 5 z) = 1 - ?-& + - (k - l ) !  lzgN * ( k )  ( F (Y))(l - FU(Y))k-l dFu(Y) 

Changing to complementary events gives the statement of the theorem. 0 

Note in particular that the distribution of the largest claim in a portfolio 
has the rather transparent tail function P(U(”, > x) = 1 - i j~ (Fu(z ) ) ,  a 
formula that caused excitement in actuarial circles when it was discovered. 

Another consequence of Theorem 4.2.4 is that we can obtain formulae for 
the moments of the It-th largest order statistics. Namely, using (4.2.13) we 
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It is obvious that the explicit evaluation of the above integrals in closed form is 
often impossible. Even in the simplest cases the resulting integrals can seldom 
be expressed by simple functions. 

Example Let the claim number N be Poisson distributed with mean X 
while the claim size distribution FU is exponential with mean 6-l. Then 
B ~ ( z )  = e-A[l-z) and &)(z)  = Xke-A(l-z). Further, Fu(y) = 1 - e-6Y. 
Changing e-6Y = x we derive that 

which cannot be further simplified. 
Similarly: the case of a Pareto distribution Fu does not simplify. In the 

latter case we assume that Fu(2) = 1 - z - ~  for z > 1. As before we have now 

which only exists when n < ak. Note that the existence not only depends on 
n but also on the relative position k of the order statistic U(N-k+l). 

To show the difference between the two situations above and their influence 
on the aggregate claim amount we consider the mean EU(N) of the largest 
claim on the total portfolio. For a proper and simple comparison we take 
X = 100 and 6 = a - 1 = 1, i.e. the means of the claim size distributions 
coincide. In Table 4.2.1 we compare the mean aggregate claim amount EX = 
ENEU = 100 with the percentage that the largest claims are expected to 
contribute to this mean. We use the abbreviations 

and 
look e-100~zk-3/2 & br: = - 

(k - l)! 1 
corresponding to the exponential, respectively the Pareto, case. To have an 
even better comparison we also consider the cumulative values a i  = Cjlk aj 
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and b; = Cjsk b? of the percentages that the largest claims contribute within 
the aggregate clam amount. For example, the largest claim in the Pareto case 
can be expected to be more than three times larger than in the exponential 
we .  Furthermore, the eleven highest claims in the Pareto case take on the 
average 2/3 of the total, while this is only 1/3 in the exponential case. 

k ak ai h i  b; 
1 5.18 5.18 17.72 17.72 
2 4.18 
3 3.68 
4 3.35 
5 3.10 
6 2.90 
7 2.73 
8 2.58 
9 2.46 
10 2.35 
11 2.25 
12 2.16 

9.36 
13.06 
16.40 
19.50 
22.39 
25.13 
27.72 
30.18 
32.53 
34.78 
36.94 

8.86 
6.65 
5.54 
4.85 
4.36 
4.00 
3.71 
3.48 
3.29 
3.12 
2.98 

26.58 
33.23 
38.77 
43.62 
47.98 
51.98 
55.69 
58.17 
62.46 
65.58 
68.56 

Table 4.2.1 Comparison of the largest claims 

Bibliographical Notes. The material presented in Section 4.2 is standard. 
For another version of (4.2.10) see Panjer and Willmot (1981). Ordering of 
compounds as in Theorem 4.2.3 is considered, for instance, in Borovkov (1976), 
Goovaerts, De Vylder and Haezendonck (1982,1984), Kaas, van Heerwaarden 
and Goovaerts (1994), Jean-Marie and Liu (1992) and Rolski (1976). Stop  
loss ordering for portfolios of dependent risks are studied in Dhaene and 
Goovaerts (1!396,1997) and Miiller (1997). 

4.3 CLAIM NUMBER DISTRIBUTIONS 

As before, let N denote the number of claims incurred by the insurance 
company in a given time period. In Section 4.2 we saw that the probability 
function ( p k }  of N is an important element of compound distributions. In this 
section we collect some popular examples of claim number distributions and 
their properties. The reason to use these particular examples has often been 
based on actuarial intuition. More sound arguments will come from our study 
in later chapters in connection with models for the time-dependent behaviour 
of portfolios. 
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4.3.1 

There are at least three particular cases that are immediately applicable in 
insurance. The Poasson distribution Poi(X) is by far the most famous example 
of a claim number distribution. Recall that then Pk = e-’Xk/k! for k E IN, 
where X = EN is the mean number of claims. Moreover, Var N = X so that 
the index of dispersion IN = Var N/E .V equals 1. 

In the next two examples we show an overdispersed distribution (index 
of dispersion greater than 1) and an underdispersed distribution (index of 
dispersion less than 1). 

The negative binomial or Pascal distribution NB(cr,p) is another favoured 
claim number distribution. Recall that then 

Classical Examples; Panjer’s Recurrence Relation 

where a > 0 and p E (0,l) .  Now, E N  = a p / ( l  - p )  and VarN = ap/(l - P ) ~ .  
Notice that IN = p-’ > 1. The overdispersion of the Pascal distribution is 
one reason for its popularity as an actuarial model. 

The binomial distn’bution Bin(n, p )  is an underdispersed distribution. 
Assume that an insurance policy covers the total breakdown of a vital 
component in a computer system. At  the beginning of the year the portfolio 
covers n identically manufactured and newly installed components in a 
computer park. The probability that an arbitrary but fixed component will 
fail before time t is given by a distribution function G(t) .  The probability pk 
that the number N of breakdowns up to time t is equal to k is given by 

O < k < n ,  

where p = G(t). For such a binomial model the mean number of claims equals 
E N = np, while Var N = np( 1 - p ) .  The index of dispersion is now IN = 1 - p ,  
which is less than 1.  The latter result is intuitive since the larger the value of 
t ,  the smaller is 1 - p = 1 - G ( t ) ,  and hence the smaller the dispersion. 

We can check that the probability functions { p h }  of the Poisson, negative 
binomial and binomial distribution all fulfil Panjer ’s fecumnce relation 

(4.3.1) 

where a < 1 and b E R are some constants. The following result shows that 
there are no other distributions which satisfy (4.3.1). 

Theorem 4.3.1 Suppose that the probability finction {pk} of the K-valued 
random variable ,V satisfies (4.3.1). Then {pk} is the probabilaty function of 
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a binomial, Poisson o r  negative binomial distribution. Mare specifically: 
(a) If a = 0, then b = X > 0,  and N has the Poisson distribution Poi(A). 
(b) If0 < a < 1, then a + b  > 0, and N has the negative binomial distrdbution 
I%B(a,p) with p = u and Q = 1 + bp-’. 
(c) If a < 0,  then b = -a(n + 1) for some n E IN, and N has the binomial 
distribution Bin(n,p) with p = a.(a - l)-I and n = -1 - bu-l. 

Proof First take the case a = 0. Then b > 0 is needed. Inserting the left-hand 
side of (4.3.1) repeatedly into its right-hand side, we see that p k  = @ ( b k / k ! )  
and hence, since Cz0pk = 1, we deduce that pa = e-6. Thus, { p k }  is 
the probability function of the Poisson distribution Poi(b). Assume now that 
a # 0. Then by repeated application of the recursion (4.3.1) we find that 

U k  
pk =m(A + k: - l)(A + k  - 2) ...( A + l ) A g ,  k E IN, 

where A = bu-l + 1. Since CLo c(c + 1) .  . . (c + k - l)xk/k! = (1 - z)-‘ for 
Iz I< 1 and all c E R, we see that formally 

A + k - 1  
P k = (  ) a k ( l - a ) A ,  k E W .  

Note that for 0 < a < 1 the expression on the right is positive for all k 6 lN if 
and only if A > 0 or equivalently b > -a. This is the case if and only if we are 
in the negative binomial situation. For u < 0 the probabilities in (4.3.1) are 
nonnegative only if b = -a(n+ 1) for some n E IN. This means that -A E IN, 
which leads to the binomial case. 0 

It is rather obvious that (4.3.1) can be weakened so that many other specific 
distributions appear as candidates. For example, if we start recursion (4.3.1) 
only at k = 2 rather than at k = 1 then pa appears as a free parameter while 
the other terms are given by a shifted version of the distributions appearing 
in Theorem 4.3.1. However, there are a few new solutions as well. 

4.3.2 Discrete Compound Poisson Distributions 

Assume that claims occur in bulk, where the number of bulks h” occurring in 
a given period of time follows a Poisson distribution with parameter A. Each 
bulk consists of a random number of claims so that the total number of claims 
is of the form N = xEl Zj, where Zi denotes the number of claims in the 
i-th bulk. Assume that { Zj, i = 1,2, .  . .} is a sequence of independent random 
variables with values in {1,2,. ..} and with common probability function 
{ p f  , Ic 2 1). If the claim numbers Z1 , 22,. . . are independent of the bulk 
number N‘ then i N ( s )  = ( - X ( l  - i z ( s ) ) ) .  F’rom Corollary 4.21 we have 
EN = A E 2 and Var N = X E ( Zz). The total number of claims N henceforth 
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follows a (discrete) compound Poisson distribution. The probability function 
(pk}  of N is given by 

(4.3.2) 

where {(pz);", k = 1,2,. . .} is the n-fold convolution of {pf}. Needless to 
say that the explicit evaluation of the probabilities p k  in (4.3.2) is mostly 
impossible because of the complicated nature of the convolutions. However 
there exists a simple recursive procedure for bhese probabilities shown in 
Section 4.4.2. 

In a few special cases it is possible to determine the probabilities pk directly. 
Consider the following example. Assume that 2 is governed by the truncated 
geometric distribution TG(p), i.e. a^z(s) = (1 - p)e-8(1 - pe-8)-1 with 
0 < p < 1. The Laplace transform of N is then 

The probabilities pk can be evaluated in terms of the generalized Laguerre 
polynomials (I) using formula (2.2.8). Note that 

The distribution given in (4.3.3) is called the Pdlya-Aeppli distribution. 

4.3.3 Mixed Poisson Distributions 

Imagine a situation where the counting variable N consists of two or more 
Werent subvariables that individually follow a Poisson distribution but with 
a different parameter value. In motor insurance, for example, one might l i e  
to make a difference between male and female car owners; or the insurer may 
use layers in the age structure of his insured drivers. In generd one assumes 
that the claims come from a heterogeneous group of policyholders; each one 
of them produces claims according to a Poisson distribution Poi(X), where 
the intensity of claims X varies from one policy to another according to an 
intensity distribution. 

In mathematical terms this means that the parameter X for a subvariable 
should be considered as t.he outcome of a random variable A in the sense that 
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P(N = k I .4 = A) = e-AAk/k! for each k E N. The random variable A itself 
is called the mixing or structure variable. Its distribution is called the rni~cdng 
or structure dGtn'bution and denoted by F;  F(A) = P ( A  5 A). Furthermore, 
we say that N has a mixed Poiason distribution with mixing distribution F. 

We get for the (unconditional) probability function { p k )  of N 

Ak 
Pk = I" e-Ap d F ( A ) ,  k E lN , 

which gives i ~ ( s )  = exp(-A(l - e-s)> dF(A). The latter relation immedi- 
ately yields E N  = AdF(A) = EA and similarly Var N = EA + Var A. 
This expression for the variance Var N shows that among all mixed Poisson 
distributions with fixed expectation, the Poisson distribution has the smallest 
variance. Also note that the index of dispersion is easily found to be equal to 
IN = 1 + (Var A / E  A) = 1 + In which is minimal for the Poisson distribution. 
In other words, a mixed Poisson distribution is overdispersed provided that 
t.he mixing distribution F is not degenerate. The latter property has been 
at the origin of the success of mixed Poisson distributions in actuarial data 

Let us give an example which shows the flexibility of the mixed Poisson 
model. Further examples are discussed in the bibliographical notes at the end 
of this section. Assume that A has the gamma distribution r(o, c). By a simple 
calculation we obtain 

fitting. 

o + k - l  " = (  k ) 
We immediately recognize the negative binomial distribution NB(a, 1/(1 +c)) 
which appeared in Section 4.3.1. 

Bibliographical Notes. Since Panjer (1981), a variety of generalizations of 
the recursion (43.1) have appeared in the actuarial literature. Occasionally, 
one considers a somewhat larger class of claim number distributions assuming 
that (4.3.1) merely holds for k = P, T + 1,. . ., where r 2 1 is an 
arbitrary h e d  natural number; see, for example, Sundt and Jewell (1981) 
and Willmot (1988). Note that the logarithmic distribution belongs to 
that class with r = 2. For more general recursions and related results, 
see Sundt (1992). Because of their importance in forthcoming evaluations 
of compound distributions we have treated some of these claim number 
distributions here, leaving further examples to the exercises. We also remark 
that Sichel (1971) introduced a distribution that can be obtained as a mixed 
Poisson distribution with mixing distribution F being a generalized inverse 
Gaussian distribution. This means that the density f(z) of F has the form 
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where the three parameters a,b and c are nonnegative. The function Kb 
is the modified Bessel function of the third kind. The case where b = 
- 1/2 is particularly interesting since then the general inverse Gaussian 
distxibution simplifies to the classical inverse Gaussian distribution. The 
resulting mixed distribution is called the Sichel distribution or Poisson- 
inwerse Gauss distribution. Willmot (1987) illustrate the usefulness of the 
Poisson-inverse Gauss distribution as an alternative to the negative binomial 
distribution. In particular the distribution has been fitted to automobile 
frequency data. Ruohonen (1988) advocates the Delaporte dfstribution which 
had been introduced in Delaporte (1960) for claim number data involving car 
insurance. This distribution is obtained as a mixed Poisson distribution with 
a shifted gamma mixing distribution whose density f(t) has the form 

b" f ( A )  = -(A - c)"-l exp(-(A - c)b) ,  A > c r(4 
More recently the Delaporte distribution has been considered by Willmot 
and Sundt (1989) and Schroter (1990). The probability function { p t }  of 
this distribution can be given in terms of degenerate hypergeometric func- 
tions. A comprehensive survey on mixed Poisson distributions is given in 
Grandell (1997). 

4.4 RECURSIVE COMPUTATION METHODS 

We now discuss recursive methods to compute the distribution of the 
aggregate claim amount for individual and collective risk models. We first 
assume that, the individual claim amounts are discrete random variables, 
say random integer multiples of some monetary unit. Note that continuous 
individual claim amounts can also be analysed by these methods provided that 
the claim amounts are previously given under discretization. An alternative 
approach to computing the distribution function of a continuous compound 
uses the integral equations stated in Section 4.4.3. 

4.4.1 

Consider the following individual model which describes a portfolio of n 
independent insurance policies. Suppose that each policy has an individual 
claim amount which is a random integer multiple of some monetary unit. 
Furthermore, suppose that the portfolio can be divided into a number of 
classes by gathering all policies with the same claim probability and the same 
conditional claim amount distribution. Let nit be the number of policies with 
claim probability 0, < 1 and with conditional claim amount probabilities 
pi"', . . . ,&), , i.e. the individual claim amount distribution Fij for each policy 

The Individual Model: De Pril's Algorithm 
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of this class is given by the mixture &j = (1 - B j ) &  + e j  c::, pr'bk. The 
generating function g(s) of the aggregate claim amount Xind in this model is 

~ ( 8 )  = n (1 - ej + e j  ~ p t ) s k ) ~ "  (4.4.1) 

where a is the number of possible conditional claim amount distributions and 
6 is the number of different claim probabilities. Using (4.4.1) we can calculate 
the probabilities pk = P(Xind = k) recursively for k = 0,1,. . . , rn, where 
m = Cb, C:=, nijmi is the maximal aggregate claim amount. 

Theorem 4.4.1 The probability function { p k }  of Xind can be computed by 

a b  mi 

k 1  j=1 k=1 

for k = 1,. . . , rn, where 

(4.4.3) 

for k = 1,. . . , rn and vij(k) = 0 otherwise. 

Proof Letting s = 0 in (4.4.1) leads to the first formula. In order M prove the 
second, take the derivative on both sides of (4.4.1}. This gives 

where 

(4.4.4) 

and gi (s)  = Erll p t ) s k .  Taking the derivative of order Is - 1 and inserting 
s = 0 yields 

where V i j ( k )  = ((k - l)!)-l&~-l)(s)ls=o. Furthermore, (4.4.3) is obtained 
by differentiating the following expression k - 1 times, which is equivalent to 
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(4.4.4): & j ( S )  = 0 j ( l  - O j ) - ' ( j i * ) ( S ) j ( S )  - &(s)&~(s)) and letting s = 0. By 
differentiation, 

This completes the proof. 0 

In the special case of an individual model which describes a portfolio of 
independent life insurance policies, i.e. pii) = 1, we get the following result. 

Corollary 4.4.1 Ifp,(') = 1 for all i = 1, .  . . , a, then the probabilaty function 
( p k }  ofXind can be computed by (4.4.2) where 

Notice that the result of Corollary 4.4.1 is an efficient reformulation of 
mother recursive scheme which is usually called De Pril's algorithm. 

Corollary 4.4.2 Ifpii' = 1 for all i = 1 , .  . . ,a, then the probability function 
{ p k }  of Xind satisfies the rec~lrsion formula 

where lzJ = max{n E IN : n 5 z} and 

(4.4.6) 

(4.4.7) 
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Proof Define fik for k = 0 , l . .  .,am by j3o =yo and 

for k 2 1. Inserting (4.4.7) into (4.4.8) gives 

(4.4.8) 

(4.4.9) 

where Gij (k)  = i 
Gij(k) = 0 otherwise. Furthermore, utilizing 

(-1)'" (Sj/(l - Sj) ) ' f ik- t i  for k = 1,2,. . . , m and 

(4.4.10) 

and comparing (4.4.2)-(4.4.3) with (4.4.9)-(4.4.10), we see that f ik  = P k .  0 

In practical applicat.ions, the coefficients qr defined in (4.4.7) will be close 
to zero for all 1 large enough, since the claim probabilities 6, will be small. 
This means that the recursion formula (4.4.6) can be used in an approximate 
way by truncating the inner summation. If the coefficients cg are neglected 
for I > r the following r-th order approximation 9)k,p to p k  is obtained: 

4.4.2 

In this section we consider a compound X = CiZl .??i satisfying the following 
assumptions. Let the claim sizes Crl U2,. . . be (discrete) independent and 
identically distributed random variables taking their values on a lattice. We 
also assume that the sequence Ul , L5,.. . of claim sizes is independent of the 
claim number N. Without further loss of generality we can and will assume 
that P(Ui E IN) = 1. We denote the probability function of Ul ,L72 , .  . -  
by { Q k , k  E IN}. Besides this we suppose that the probability function 

The Collective Model: Panjer's Algorithm 
N 
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{ p k ,  k E IN} of the number of claims N satisfies Panjer's recurrence relation 
(4.3.1). Theorem 4.3.1 shows that (4.3.1) is exactly fulfilled for the three 
most important parametric families of distributions B(n,p), Poi(X), NB(r,p). 
Furthermore, it is not difficult to show that for the logarithmic distribution 
Log@), the recursion formula (4.3.1) holds for k = 2,3, . . .. 

Lemma 4.4.1 For any j , k  E IN and n = 1: 2, .  . ., 
We need the following auxiliary result. 

and 

i= 1 

(4.4.12) 

(4.4.13) 

where {qZn} denotes the n-fold convolution of { q k } .  

Proof Since U1, Uz, . . . are identically distributed, we have for X = xb, U i  

nE(CT1 I X = j j = C E ( U k ) X = j ) = E ( X I X = j ) = j .  

This yields (4.4.12). Moreover, because U l ,  U2, . . . are independent, we have 

n 

k=l 

P (U1 = k, u2 + . . , + c:, = j - k) 
P(U1 + . . . + u, = j )  P(V1 = k  I Ul + .. . + un = j )  = 

In the following theorem we state a. recursive met.hod which is called 
Panjer's algorjthm and which can be used to calculate the probabilities 
$ = P(X = k) of the compound X = Ezl U, provided that (4.3.1) holds. 

Theorem 4.4.2 Assume that (4.3.1) is fulfilled. Then 

Proof For j = 0 we have p$ = po +plqo + pz (qo)2  + . . . = gpj(q0). Let j 2 1 
and note that then q;O = 0. Thus, using (4.3.1) and (4.4.12) we get 



120 STOCHASTIC PROCESSES FOR INSC?RANCE A-UD FINANCE 

Because of (4.4.13), this yields 

Example We show how to compute the stop-loss transform n n  = E (X-n)+ 
for n = 0,1,. . . by means of Theorem 4.4.2. Note that 

m XI 

E ( X - n ) + =  c (pn-n)+p:= CF(m) ,  
rn=n+l m=n 

- 
which gives E ( X  - n)+ = C;=,-, F(m) - F ( n  - l) ,  where F(m) = 
E;rn+l pj x. Hence, IIo = E X  and nn = n,- 1 + F(n - 1) - 1 for n = 1 , 2, . . ., 
where F(n - 1) = ~ ~ ~ ~ p j ~  and the pj" can be cdculated recursively by 
(4.4.14). 

4.4.3 

Panjer's algorithm stated in Theorem 4.4.2 has the disadvantage that the 
individual claim sizes need to take their values on a lattice. In order to 
overcome this drawback we derive an integral equation for the distribution 
FX of the aggregate claim amount. It holds for an arbitrary (not necessarily 
discrete) distribution FIJ of individual claim sizes provided that the com- 
pounding probability function {pk} satisfies Panjer's recursion (4.3.1). 
Theorem 4.4.3 If the compounding probability function {pk} is governed 
by the recursion (4.3.1) with parameters a and b and Fu(0) = 0,  then the 
compound distribution Fx = CEopkFGk satdsfies the integral equation 

A Continuous Version of P e e r ' s  Algorithm 

dFu(w), z > 0.  
(4.4.15) 

Fx(s) = po + aFr; * Fx(z) + b 
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, where this If Fu(0) = a > 0, then Fx(0) = ((1 -a)/(l  - aa))  
expression is anterpreted as e(Q-l)b if a = 0. 

Proof Assume first that Fu(0) = 0. Since F'O(z) = 60(x), using (4.3.1) we 
can write successively 

(a+b)a-' 

and equivalently Fx(x) = po + aFu * Fx(2) + bG'(z), where 

In order to prove (4.4.15j we still have to derive an alternative expression 
for the function G(s). Note that for independent and identically distributed 
random variables U1 , U2, . . . with distribution Fu, the following identities hold: 

I ; U I +  ... un+l I x  Ul 
= (n + llE [ u1 +...&+I 

Thus, st v J,"-"(v + y)-l dF;"(y) dFU(v) = F$"+"(z)/(n + 1) and cons& 
quently 

This proves equation (4.4.15). Now it remains to show the result on the atom 
at the origin. If the distribution F ~ J  has an atom a 6 (0 , l )  at the origin, then 
also Fx has an atom at the origin with size g(a) = ELo pnan. Following the 
same kind of argument as before we see that g(a) = po++&ag(cr )+bJ~  g(u) du. 
Rewriting this equation in the form of a differential equation for the auxiliary 
function %(a) = J,*g(v)du gives z(l)(u)(l - aa) = bz(a) + po.  This yields 
%(a) = c(1 - ~ a ) - ~ ~ - '  - b-'po for some constant c. Note, however, that 
g(a) = z(l)(a). If we put a = 0 then we have g(0) = po.  Hence g(a) = 
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((1 - 4 / ( 1  - ad) when a # 0 and g(a) = e(a-1)6 when a = 0. This 
0 

We now additionally assume that the distribution F ~ J  of the individual claim 
sizes is absolutely continuous and that the density fr,-(z) of Fu is bounded. 
Then the aggregate claim distribution Fx can be decomposed in a discrete 
part which is the &tom at the origin, and in an absolutely continuous part, 
that is F.y(B) = poSo(B) + S,fx(z)dz for all Bore1 sets B E l?(lR), where 
ix(z) = xgl p k  f;"(z) y d  fGk(z) is the density of F;". In order to derive 
an integral equation for fx(z), we need the following representation formula 
for the function: 

gk(4 = 6' Y f U ( Y ) f $ b  - Y) dsr (4.4.16) 

finishes the proof of the theorem. 

Lemma 4.4.2 For 2 > 0, k = 1,2, .  . ., 

(4.4.17) 

Proof We show (4.4.17) by induction with respect to k. Note that 

where the substitution z = z - y is used. Thus, (4.4.17) holds for k = 1. 
Suppose now that. (4.4.17) has been proved for n = 1, .  . . , k - 1. Then 

= k I" zf~(z) f$(z  - z )  dz = kgk(z). 

This shows that (4.4.17) holds for n = k ,  too. 0 

Theorem 4.4.4 If {pk} i s  governed by mursion (4.3.1) with parameters a, b 
a n d m ,  and Fu U absolutely continuous with bounded density f(x), then the 
density &(x) of the absolutely wntinuous part of the compound distribution 
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Moreover, the function fx(z) is the only solution to (4.4.18) in the set of all 
integrable functions on (0: 00). 

Proof Using (4.3.1) and (4.4.17) we can write for z > 0 

This shows that &(z) solves (4.4.18). Since fCk(x) 2 0 and f;"(z) dz = 1 
for each k 2 1, the function &(z) is integrable. It remains to show that fx(zj 
is the only integrable function solving (4.4.18). For an arbitrary integrable 
function g : (0,m) + R we define the mapping g + Ag by 

Then using (4.3.1) and (4.4.17) we have 

Pk(AfGk)(z) = P&+lft*l(k+l)(z) (4.4.19) 

for all z > 0 and k = 1,2, .  . .. Note that g(z) = fx(z) fulfils 

= (As)@) +Plfu(z) * (4.4.20) 

Now let g(z) be any integrable function which fulfils (4.4.20). By induction, 
(4.4.19) implies that (Ang) (z) = g(z) - xi==, p&'Jk(z) for all ra = 1,2, .  , . 
and for each integrable solution g(z) to (4.4.20). However, it is not difficult to 
show that limn-+- (A"g) (z) = 0 for 2 > 0 and for each integrable function 

0 

Example Consider the compound A' = iJi, where A: has the negative 
binomial distribution NB(2,p) with EN = 100 and Lri is Exp(d)-distributed. 
Then, using (4.2.10) the distribution of X can be computed analytically: 

g : (0, .o> + R. Hence, g(z) = Czl p&(z) = ~X(Z). 

- Fx(z) = e-(l-*)"(l- (1 - p ) 2  + p2(1 - p)&z), x 2 o ~ 

In Table 4.4.1 the tail function F(z) = P(X > z) of this "exact" distribution 
of X is compared with Panjer's approximation from Theorem 4.4.2, where 
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we put 6 = 1. Here the exponentially distributed claim amount U has 
been transformed into a discrete random variable according to the rule 
Uh = h[U/hJ, where LxJ = max{n E IN : n 5 z}. In the fourth column 
of Table 4.4.1, an alternative approximation to F ( s )  is stated which uses 
the continuous version of Panjer’s algorithm given in Theorem 4.4.4. We first 
computed f ~ ( k h ) ,  1 5 k 5 1O00, from (4.4.18) using the trapezoid method to 
perform the integration. Then we used the approximation J(k - l )h  fx(x) dz % 

kh 

hfx(kh) and Fx(kh)  F x ( ( k  - 1)h) - h,fx(kh) .  

X exact discrete Panjer continuous Panjer 
h = 0.01 h = 0.01 

0.2 
0.4 
0.6 
0.8 
1.0 
2.0 
4.0 
6.0 
8.0 
10.0 

0.999 457 6849 
0.999 285 7597 
0.999 099 8702 
0.998 900 1291 
0.998 686 6458 
0.997 416 9623 
0.993 909 1415 
0.989 196 0212 
0.983 375 4927 
0.976 539 7011 

0.999 467 0538 
0.999 297 1743 
0.999 113 4705 
0.998 916 0536 
0.998 705 0343 
0.997 449 7336 
0.993 980 7697 
0.989 319 4873 
0.983 563 2134 
0.976 803 5345 

0.999 087 9445 
0.998 915 6727 
0.998 729 4395 
0.998 529 3566 
0.998 315 5350 
0.997 044 1967 
0.993 533 2344 
0.988 817 1510 
0.982 993 7890 
0.976 155 2479 

Table 4.4.1 Panjer’s algorithm for a negative binomial compound 

Bibliographical Notes. The recursive computation method considered in 
Theorem 4.4.1 has been given in Dhaene and Vandebroek (1995) extending 
the algorithm established in Waldmann (1W) for the individual life insurance 
model (see Corollary 4.4.1). Another recursive procedure for computing the 
probability function of the aggregate claim amount in the individual model 
with arbitrary positive claim amounts has been derived in De Pril (1989). 
The recursion formula (4.4.6) is due to De Pril (1986). The efficiency of these 
algorithms as well as recursive procedures for approximate computation of the 
Pk as in (4.4.11)> are discussed, for example, in De Pril (1988), Dhaene and De 
Pril(1994), Dhaene and Vandebroek (1995), Kuon, Reich and Reimers (1987), 
Waldmann (1994,1995). The recursion formula (4.4.14) is due to Panjer (1980, 
1981); see also Adelson (1966). Recursions for the evaluation of further related 
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compound distributions are developed, for example, in Schroter (1990) and 
Willmot and Sundt (1989), where a kind of twofold Panjer-type algorithm is 
considered. The application of Panjer’s algorithm for computing the stoploss 
transform nn = E(X - n)+ is considered in Gerber (1982). For reviews 
see Dhaene, Willmot and Sundt (1996), Dickson (1995) and Panjer and 
Wang (1993). 

4.5 LUNDBERG BOUNDS 

In this section we investigate the asymptotic behaviour of the tail F x ( z )  = 
P(X > z) of the compound X = EL, V, when t becomes large. As usual: 
we assume that the random variables N ,  U1, U2,. . . are independent and that 
U1, Uz, . . . are identically distributed with distribution Fu. In addition, we 
will assume in this section that Fu has a light tail; the subexponential case 
has already been mentioned at the end of Section 4.2.1. 

4.5.1 Geometric Compounds 

First we consider the case where N has a geometric distribution with 
parameter p E (0,l). Then the compound geometric distribution Fx is given 

Fx(z) = C(1 - P ) P k F $ ( Z ) .  (4.5.1) 
00 

bY 

k=O 

Writing the first summand in (4.5.1) separately, we get 

Fx = (1 -P)& +pFu * F x  (4.5.2) 

which is called a defective renewal equation or a tmnsient renewal equation. 
Such equations are analysed in Section 6.1.4, where in Lemma 6.1.2 it is shown 
that the (bounded) solution Fx to (4.5.2) is uniquely determined. Moreover: 
replacing the distribution Fx on the right-hand side of (4.5.2) by the term 
(1 - p)bo + pFu * Fx and iterating this procedure, we obtain 

F x ( z )  = hli Fn(z) , L 0 , (4.5.3) 

where Fn is defined by the recursion 

Fn = (1 - p)60 + pFu * Fn-1 (4.5.4) 

for all n 2 1 and Fo is an arbitrary (initial) distribution on El+. 
Assume additionally that the distribution Fu is such that 

fiu(7) = P-l (4.5.5) 
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has a solution y > 0, which is usually called the adjustment cueficient If no 
explicit solution to (4.5.5) is available, then it is not difficult to solve (4.5.5) 
numerically. A statistical method for estimating 7 from empirical data will be 
discussed in Section 4.5.3 below. 

t 

I Y S 

Figure 4.5.1 Moment generating function 

If we say that (4.5.5) has a solution y > 0, then we tacitly assume 
that rfau(s) < 03 for all s 5 y. The existence of a positive solution y to 
(4.5.5) is guaranteed if the abscissa of convergence of Fu is positive, that is 
CYU = limsup,,, -2-l logpu(z) > 0, and if Au(av) = 03, as is usually the 
case. The uniqueness of such a solution y > 0 to (4.5.5) can be seen from 
Figure 4.5.1. 

We get the following lower and upper Lundberg-tvpe bounds for the tail of 
the compound distribution Fx. Let 50 = sup(z : Fu(z) < I}. 

Theorem 4.5.1 If X is a geometric compound with characteristics (p, Fu) 
such that (4.5.5) admits a positive solution 7, then 

(4.5.6) 

where 

Proof To get the upper bound in (4.5.6), we aim to find an initial distribution 
Fo such that the corresponding distribution Fl defined in (4.5.4) for n = 1 
sat k%es 

Fli;Z> 2 Fo(Z), 2 10. (4.5.8) 
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Then Fu * Fl(z) 2 Fu * Fo(z) for z 2 0 and, by induction, F,,+l(o) 2 &(z) 
for all z 2 0 and n E IN. In view of (4.5.3), this means that 

- 
Fx(z)IFo(4,  a:50. (4.5.9) 

Let &(z) = 1 - ae-yz = (1 - u)So(o) + aG(z), where a E (0,1] is some 
constant and G(z) = 1 - exp(-.yt). Inserting this into (4.5.4) we get 

for all o 2 0. Since we want to arrive at (4.5.8) we look for a such t.hat 

1-p+p(Fu(z) -a/ze-T(z-Y)dFU(II)) 2 1 z 2 0. (4.5.10) 

This inequality can be simplified to a(1 - p s :  e7g dFu(y)) 2 peyzPu(z), 
which is trivial for z 2 50. Using 

0 

we notice that (4.5.10) is equivalent to apJzweeYYdFu(y) 2 peT"Fu(z). 
Hence, setting a+ = supzElo,zo) e7'FU(z)(SZm e7Y dFu(y))-' we get (4.5.8) 
and consequently (4.5.9). Fkom this the upper bound in (4.5.6) follows. The 

0 lower bound in (4.5.6) can be similarly derived. 

Corollary 4.5.1 
y = 6(1 - p ) ,  a- = a+ = p and, consequently, 

Suppose that Fu is exponential with parameter 6. Then 

- (1 -p)6z , x > o .  (4.5.11) 

Proof n'ote that Fv(z) = 1 - e x p ( 4 z )  implies that the solution y > 0 to 
(4.5.5) satisfies the equation pd(6 - = 1. Thus, y = 6(l - p). Moreover, 

0 

A generalization of formula (4.5.11) is given in Lemma 8.3.2 below, for the 
caqe that Fu is a phae-type distribution. 

Remark For the constants a- and a+ appearing in Theorem 4.5.1, we 
obviously have a- 5 a+. Moreover, since Szweyydfi:(g) 2 eTzFu(z), we 
conclude that a+ 5 1. Furthermore, note that 

- 
F x k )  = P  

by inspection we get e'zpu(x)(&m e?g dFu(y))-' = p for o 2 0. 
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where the residual hazard distribution Flr,z at x was defined in (2.4.8). If Fu is 
DHR, then by Theorem 2.4.2, the value of E (e7(U-r) I U > z) is increasing 
in z. Analogously, for FU being IHR the above is decreasing in z. Hence 
u+ = 1/4jl.~(y) = p for Fu being DHR (by our definition it cannot have an 
atom at zero) and, if Fu is IHR, a+ = limz+m e?'Fu(z)(JzW ety dFu(y))-'. 

4.5.2 More General Compound Distributions 

Generalizing the previous results, we now only assume the existence of a 
constant 8 E (0,l) such that the distribution of N is stochastically smaller 
than the (1 - Po)-modification of the truncated geometric distribution TG(8). 
More precisely, 

{pk) 5 s t  {pi} = P O S O  -k (1 - Po)TG(e) 9 (4.5.12) 

pk. 

rj+l I orj , j 2 1 , (4.5.13) 

which is equivalent to rj+l I (1 - p O ) @  for all j E IN, where T j  = 
Note that the inequality (4.5.12) holds provided that 

because r1 = 1 - = ELl pk and because (4.5.13) yields 

k= j k = j + l  

for all j 2 1. However, in general, (4.5.13) does not follow from (4.5.12). 
Theorem 4.5.2 If (4.5.12) hold3 for some 8 < 1, then 

where y > 0 fulfils 1 = Briiu(y) and a+ is defined by (4.5.7). 
Proof Since for 2 2 0, the tail F x ( z )  can be represented by 

k-1 

w m  

we get from (4.5.14) 

(4.5.15) 

00 

- - -(1 1 -Po - c(1 -O)ekFGk(z)). 
k=O 

9 



DISTRIBUTIONS OF AGGREGATE CLAIM AMOUNT 129 

Applying Theorem 4.5.1 to the right-hand side, we get (4.5.15). 0 

The logconcave probability functions { p k }  form a subclass of I H b  and lead 
to further improvements. 

Corollary 4.5.2 If { p k }  is  logconcave with po + p1 < 1, then 

(4.5.16) 

where a+ as defined as in (4.5.7) and 7 > 0 is the solution to the equation 

(4.5.17) 

Proof In view of Theorem 4.5.2 it suffices to show that (4.5.13) holds with 
6 = (1 - p o  -pl)( l  - p ) o ) - ' .  Clearly we have r2t-F' = (1 - p o  -pl)( l  -PO)-'. 
Note that the ratio r j + l / r j  is decreasing because, by assumption, the ratio 
p j + l / p j  is decreasing and that 

- - I -  rj+l - 1 
1 +  Pj+l  : Pj+2 Pj+l : P j + 3 P j + ~ P j + l  : ... * p j  

P j  P j + l  P j  Pj+2 Pj+l P j  

Hence (4.5.13) holds and consequently (4.5.12) holds as well. The statement 
then follows from Theorem 4.5.2. 0 

Note that, unless the counting variable N is geometrically distributed, the 
exponent y in the bounds (4.5.15) and (4.5.16) is not optimal. This can be 
seen from the following example. Consider the tail F(z) of the compound 
X = CE, Ui, where N has the negative binomial distribution NB(2,p) and 
U is Exp(6)-distributed. If y > 0 is computed from (4.5.17), then 

2(1 - p)26 
2 - P  

< (1 - p ) d .  y =  

However, the advantage of bounds like (4.5.15) and (4.5.16) is their simplicity 
and wide a.pplicability. Moreover, in many cases these bounds seem to be 
satisfactory. 

4.5.3 

Let us have a closer look at a slight generalization of equation (4.5.5), 

Estimation of the Adjustment Coefficient 

f iaU(3)  = c > 1 ,  (4.5.18) 

which appears over and over again in risk theory. Assume that we have a 
sample U1 , U 2 ,  . . . , Un of n independent claim sizes with common distribution 
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Fu. How do we get an estimate for the unknown solut.ion 7 > 0 to 
(4.5.18) based on this sample? A rather natural procedure is to replace the 
moment generating function riau(s) by its empirical analogue, the empirical 
moment generating function r?aFn(s): which is obtained as the moment 
generating function of the empirical distribution F,. The latter has been 
defined in Section 2.6.1 by Fn(s) = n-l max {i : U(q 5 x}. Hence %F,, (9) = so" esz dFn(z) = n-l EL, eszJi. It seems natural to define an estimator ;i,& 
for y by the equation 

(4.5.19) 

We 
the 

show that this procedure can indeed be followed. The proof is based on 
following consistency property. 

Lemma 4.5.1 Assume that au > 0 and ~Au(au)  = 00. Then for any closed 
interval I c (--00, au) and any k E IN 

(4.5.20) 

The proof of Lemma 4.5.1 is left to the reader. Note that (4.5.20) implies that 
;in + y with probability 1. 

Theorem 4.5.3 If 27 liea anside the region of converyence of the moment 
generating function &.u(s), then 

Proof We start from the two equations (4.5.18) and (4.5.19) and write 

. n  

We now represent the difference eqnui -eyui as an integral of the form s," ez dx 
and apply the mean value theorem to get 

(% - r>ui 7 
e+nC'i - ,rUi = ,en,iUi 

where Q,,i lies in the interval determined by qn and 7. Thus, we get 
equivalently 

n n 

i=1 i= 1 
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Solving for the difference .i;l - y we get the fundamental equation 

(4.5.21) 

In the numerator we can immediately apply the central limit theorem since 
that quantity converges in distribution to a normal distribution with variance 
equal to that of eYu, i.e. \'are7U = &~(2*~)-(7jE~i(y))~. The application of the 
central limit theorem is, however, only possible if the value 27 lies in the region 
of convergence of T?IV(S). By Lemma 4.5.1 we have Tn + y and consequently 
en,i + 7. Thus, the denominator in (4.5.21) converges by the law of large 
numbers and the bounds on en,i to the quantity E(eYUU) = h c ) ( y ) ,  which 
always exists, since within the region of convergence the moment generating 
function IjEu(s) is infinitely often differentiable. The a.bove, together with a 

13 

The variance of the limiting normal distribution in Theorem 4.5.3 depends 
both on the unknown value of 7 and on the moment generating function h u  (8) 
that is usually unknown as well. In practice one will, of course, use the result 
in an empirical form where the unknown quantity y is replaced by the sample 
variable Tn, while h a  (5) is similarly replaced by %F,, (3). 

Slutsky argument in (2.1.14), gives the desired result. 

Bibliographical Notes. The results of this section are essentially due to 
U'illmot (1994,1997a11997b) and Willmot and Lin (1994,1997a); see also 
Willmot and Lin (1997b). The idea of the actual proof of Theorem 4.5.1 is 
from Bergmann and Stoyan (1976). An algorithm for the numerical solution of 
(4.5.5) can be found in Hipp and Michel(l990). Other bounds for compounds, 
asymptoticdly better than those given in this section, can be found in 
Runnenburg and Goovaerts (1985); see also Kalashnikov (1997). For the 
case of Pascal compounds, we refer to an application of renewal theory. 
Theorem 4.5.3 is due to Csorgo and Teugels (1990). 

4.6 APPROXIMATION BY COMPOUND 
DISTRIBUTIONS 

Consider the aggregate claim amount Xind = c:=, U, in the individual model, 
where we assume that the random variables Ul , . . . , U, are independent, but 
not necessarily identically distributed. As in Section 4.1, let the distribution 
Fui of Ui be the mixture Fui = (1 - 6i)& + B& I where 0 < 6j 5 1 and Fvi 
is the distribution of some (strictly) positive random variable K. Remember 
that in actuarial applications the weight 8j is small for each i and can be 
interpreted as the probability that the i-th risk produces a positive claim. 
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If we want to compute the percentile premiums for the risk Xind, one has to 
know the distribution of Xind. Without the help of computers, this is a difficult 
task, especially for large portfolios. However, in some concrete situations the 
computation of the distribution of the aggregate claim amount in collective 
models is much easier. This is particularly true when N follows a Poisson, 
binomial or negative binomial distribution. Hence, a lot of effort has gone into 
finding the best possible fit of the individual model by a collective model. In 
Section 4.4.2, we explained the reason why the compounds appearing in such 
collective models are computationally tractable. Let us start from a collective 
model with the aggregate claim amount Xcol = EEl Ui but where Ui , Ui, . . . 
are independent and identically distributed. We have to evaluate the quality 
of the approximation between Xind and P o l .  Possible choices to define a 
distance between these two quantities are, for example, the supremum distance 

the stop-loss distance 

~ s L ( X ~ ~ ~ ,  XcO') = SUP IE (Xind - z)+ - E (XCo1 - Z)+! (4.6.2) 
220 

or the total variation distance 

(GTV(Xind,Xco') = sup IP(X'"d E B) - P(XC0) E B)I , (4.6.3) 
BEB(W) 

Ciearly, dSD(xind, xCo1) 5 dTV(xind, X C O ' ) .  

The Compound Poisson Approximation The idea is to approximate 
each random variable Uj by a Poisson compound yi with characteristics 
(&>FK).  Xote that EU, = EX. Taking Y1,...,lrn independent, 
Theorem 4.2.2 implies that Y = YI + . . . + Y n  is a Poisson compound with 
characteristics (A, F) given by 

(4.6.4) 

The Compound Binomial Approximation Here, the compound is 
binomial with N Bin(n,p)-distributed, where p = A/n, Ui) has the distribution 
F, and A, F are as in the compound Poisson approximation. 

The Compound Negative Binomial Approximation Now N is taken 
to be NB(n,p/(l +p))-distributed, wherep = A/n, U{ has the distribution F, 
and A, F are as in the compound Poisson approximation. 
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We leave it to the reader to check that in all the cases considered above 
E Xind = E XCo1 and Var Xind < Var Xco'. Furthermore, the variances of the 
aggregate claim amounts in the approximating collective models are in the 
following ascending order: binomial model, Poisson model, negative binomial 
model. 

4.6.1 The Total Variation Distance 

Let F and G be two arbitrary distributions on R and let 

&v(F,G) = SUP IF(B) - G(B)I. 
BEB(R) 

(4.6.3) 

Note that the mapping (F, G) + dTv(F, G )  is a metric, i.e. dTv(F. G )  = 0 if 
and only if F = G, dTv(F,G) = dTv(G,F) and dTv(FI,&) 5 h ( F l , & )  + 
dTV(FS,&) for arbitrary distributions F1, F2, F3 on R. 
Lemma 4.6.1 An equivalent form of (4.6.5) is 

~TV(F, G) = SUP (F(B)  - G(B)). 
BEB(IR) 

Proof The assertion follows directly from 

F(B) - G(B) 5 IF(B) - G(B)I = mm{F(B) - G ( B ) , F ( p )  - G(BC)) 
where BC denotes the complement of the set B. U 

Lemma 4.6.2 Let F = Czop,Si and G = Czoqi.idi be two discrete 
distributiow. Then dTv(F,G) = 2-1 Cgo lpi - qii. 

Proof Let C = {i : pi 2 qi} .  Then F ( C )  - G(C) 2 F(B) - G(B) for all 
B E B(R). Therefore we have 

= 
= 

F(C) - G(C) + G(Cc) - F(CC)  
2(F(C) - G(C)) 2 2(F(B) - G(B)) 

for all B E B(R). This completes the proof in view of Lemma 4.6.1. 0 

Let X and Y denote random variables with distributions F and G, 
respectively; then we also write dTv (X, Y) instead of dTv (F, G). 
Lemma 4.6.3 Let XI,. . . , X, and Y1 , . . . , Y, be two sequences of independent 
random variables. Then 
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Proof By Fi and Gi we denote the distributions of Xi  and x, respectively; 
1 5 i 5 n. First we show that (4.6.6) holds for n = 2. Namely, 

4.6.2 The Compound Poisson Approximation 

We next investigate the distance between the distribution of the risk 
x = cbl ui in the individual model and the distribution of the Poisson 
compound Y = xy.l Y,  with the characteristics (A, F) given in (4.6.4), 
where the YI , . . . , Y, are independent Poisson compounds wit.h characteristics 
(61, F v ~ ) ,  . . . , (en ,  Fvn) respectively. 

Theorem 4.6.1 The following upper bound holds: 

(4.6.7) 

Proof We first compare the distributions of Ui and Y,. For each B E 13(R), 

P(Ui E B )  - P(K E B )  
= (1 - Bd)do(B) + 6iFK ( B )  
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< - (1 -B i )60 (B)+BiF~i (B) -e -8 i60 (B)  -13ie-8iF~:(B). 

Thus, using 1 - 8i 5 e-6i we obtain 

P(Ui E B )  - P ( K  E B )  5 BiFK(B)(l - e-6i) 5 B:FVi(B) 5 0: .  

Lemmas 4.6.1 and 4.6.3 now imply &v(X,Y) 5 Cy='=, &v(Cri,X) 5 CE, 8;. 
This proves the theorem. 0 

4.6.3 Homogeneous Portfolio 

Theorem 4.6.1 tells us that the compound Poisson approximation is good if 
the probability 8i  that the i-th policy produces a positive claim is small for 
all i = 1, .  . . n, in comparison to the number n of policies. If it is possible 
to group the risks U, , . . . , Un into almost identically distributed compound 
risks CrLl Ui, Cyznl+, Ui, . . . , C:.,ak+l U,, then still another bound for the 
approximation error d ~ v  (X, Y )  can be given. This grouping procedure 
is sometimes called a homogenization of the portfolio. For homogeneous 
portfolios we get a better bound than in (4.6.7) if Cy=18, > 1. Since in 
practice we deal with large portfolios, this condition seems to be realistic. 

Theorem 4.6.2 For a homogeneous portfolio, i.e. Fv, = . . . = Fv, = F ,  

(4.6.8) 

In the proof of Theorem 4.6.2 we use the following auxiliary results. Let 
11,. ..:I,, be independent Bernoulli 0-l-variables with P(1, = 1) = &. 
Furthermore, take N Poisson distributed with parameter X = CLIO, and 
independent of 1 1 , .  . . , In. Define N' = zizl Ii with p i  = P(N' = k) and 
probability generating function ~ N I  (8 )  = n,=, (l-&+Bis). Then the following 
is true. 

Lemma 4.6.4 If Fv, = . . . = Fv,, = F, then 
n 

(4.6.9) 
i=l  

Proof We show that the Laplace-Stieltjes transforms of the distributions on 
both sides of (4.6.9) coincide. Indeed, for the transform &J,+...+LJ~ (s) we have 
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n 

= x p i  (1" 0 e-" d F ( s ) ) j ,  
j=O 

where the last expression is the Laplace-Stieltjes transform of CT=, pjF*j .  
This proves the lemma. 0 

Lemma 4.6.5 If Fvl = . . . = Fv, = F, then 

dTV(x, Y )  5 dTV(N', nr) * (4.6.10) 

Proof Let C = {i E (1,. . . ,n} : pi 2 pi}, where pi = P(N = i). Then from 
Lemma 4.6.4 we get that, for each B E B(R), 

n 00 

P(X E B) - P(Y E B)  = C p : F * ' ( B )  - C p z F ' ' ( B )  
k 0  i=O 

Thus, 
n 

P(X E B )  - P(Y E B )  5 x@; -pi)F*'(B) 5 c@:: - pg) 
i=l iEC 

= P(N' E c) - P(N E c) 5 dTV(N', N) , 
where the last inequality follows from Lemma 4.6.1. Taking the supremum 

0 

Proof of Theorem 4.6.2. In view of Lemma 4.6.5 it suffices to show that 

over all B E B(R) and using Lemma 4.6.1 again, we get (4.6.10). 

(4.6.1 1) 

Let B c IN be an arbitrary set of natural numbers. Furthermore, let 
ck = {0,1,. . . , k - 1) and define 

1 
(4.6.12) g(k) = - (P(N E B n Ck) - P(N E B)P(N E Ck)) 

b k  

for k = 1,2 , .  . .; we set g(0) = 0. Since (k + 1)pk+1 = xpk, we have 

1 - (P(N E B fI Ck+1) - P(N E B)P(N E c k + l ) )  
Pk Xg(k + 1) - kg(k) = 

1 
P k  

- - (P(nr E B n ck) - P(N E B)P(N E ck)) 

1 - (P(N E B n {k}) - P(N E B)P(N = k)) 
P k  

= 

= &(B) - P(N E B ) .  (4.6.13) 
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Consequently, 

P(N' E B) - P(X E B) = 
= 
E ( 6 ~ t ( B )  - P(N E B ) )  
E (AS(" + 1) - N'g(N'))  . 

With the notation A'(') = 11 + . . . + 1i-, + 1i+, + . , . + I, this yields 

R 

P(N' E B )  - P(Iv E B) = CE (Big(" + 1) - I ig(N') )  
i=l  

n 
= CE ((1 - 6,)19ig(N(~) + 1) + 6:9(N(') + 2 )  - 6ig(N(i)  + 1)) 

C6TE ( g ( M i )  + 2 )  - g(N(')  + 1)) . 
i=l 
n 

= 
i=l 

From the last equation, we see that for (4.6.11) it suffices to show that 
g(k + 1) - g ( k )  5 A-' holds for all k = 1,2 ,.... Since from (4.6.13) we 
get 

A(g(k + 1) - g ( k ) )  = 6k(B) - p(N E B )  + (k - A)g(k) 3 

it suffices to show that 

( k  - X)g(k) 5 P ( N  E B ) ,  k = 1,2, .  . . . (4.6.14) 

First consider the case k > A. Then 

P(N E B n Ck) - P(N E B)P(X E Ck) 
5 P(iv E B)P(N 4 Ck) = P(N E B)P(N 2 k) 

Together with the definition (4.6.12) of g ( k ) ,  this results in (4.6.14) for k > A. 
On the other hand, if k 5 A, then (4.6.12) yields 

0 and t.hus (4.6.14) for k 5 A because (A - k ) P ( N  5 k - 1) 5 kpk. 
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4.6.4 Higher-Order Approximations 

We show how the compound Poisson approximation discussed in Sections 4.6.2 
and 4.6.3 can still be refined further. A numerical example will be given in 
Section 4.7. 

For notationd ease, we first consider the special case of a portfolio consisting 
of a single policy (n = 1). Then the distribution F of the claim amount X 
can be given in the form F = (1 - 0)do + OF,,-, where 0 < B 5 1 and FV is 
the distribution of some positive random variable V .  For the characteristic 
function $(s) of X we have 

g(s) = 1 + e($v(s) - 1) . (4.6.13) 

If Bl+v(s) - 11 < 1, then we can rewrite (4.6.15) in the following way: 

(4.6.16) 
Thus, for ejdv(s) - 11 < 1, we can approximate $(s) by 

We prove that is the characteristic function of a certain signed measure 
Hr on It, i.e. S r ( S )  = JeistW,.(t). It turns out that H p  is a good 
approximation to F if F is large enough. Here and in the following, under 
the notion of a (finite) signed memure M we understand a o-additive set 
function ll;i : B(R) + R for which IM(B)( < OCI for all Bore1 sets B E B(R}. 

An application of the one-to-one correspondence between distributions and 
their characteristic functions to (4.6.17) shows that H I  is the compound 
Poisson distribution with characteristics (0: Fv) .  This fact provides a first- 
order approximation to F .  Analogously, Hp is called the r-th order Kornya 
approximation to F .  We show that H, is of the compound-Poisson type with 
certain characteristics (AT,GT), where A, > 0 and Gr is a signed measure. 

Theorem 4.6.3 For each r >_ 1, $?(s) is  the characteristic finction of the 
signed measure 

(4.6.18) 

here, A, = EL=, Bkjk ,  while GT i s  a signed measure on R with G,(B) = 0 
for all B E B((-oo,O]) which solves the equation 

Ok((FV - do)*k = Xr(G, - 60) .  (4.6.19) 
L= 1 
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Before proving Theorem 4.6.3 we state some elementary but useful properties 
of signed meaures. Let MI, k f 2  : B(R) + R be two signed measures. The 
convolution M I  * hlz of M I  and M2 is the signed measure given by 

The n-fold convolution A4*. of a signed measure M is defined recursively by 
M*O = 60, and M*R = M*("-')*M,n 2 1. It is easily seen that the ezponential 
set function exp(M) of a signed measure M, i.e. exp(M) = CEo(k!)-lM*kk, 
is a well-defined (finite) signed measure. We leave it to the reader to prove 
this. It is also well known that each signed measure M can be represented as 
the difference M = .%I+ - M- of two (nonnegative) measures M+, M- ,  called 
the Hahn-Jordan decomposition of M. The total variation of M is given by 
llMll = M+(R) + M-(IR). We will need the following auxiliary result. 

Lemma 4.6.6 Let M, MI, M2 be arbitmry signed measures on R. Then 
(a) exp(+at (a)) is the characteristic function of exp(M), 
(b) exp(Ml + Adz) = exp(M) * exp(M2), 

(d) IIexp(M) -doll 5 ellMll - 1. 

The proofof Lemma 4.6.6 is left to the reader. 

fc) IWl * 11.1211 I IlJ~fllI 111~f211, 

Proof of Theorem 4.6.3. Consider the signed measure 

(4.6.20) 

Then, by Lemma 4.6.6a, ++(s) is the characteristic function of H,. Note that 

k = l  
k 

k l  

and C;=l(-l)'i+l(Bk/k)(F~~ - ~ o ) * ~ ( B )  = 0 for all B E a((-o0,O)). Thus, 
there exists a signed measure G, on R satisfying (4.6.19) and such that 
G,(B) = 0 for dl B E B((-oo,O]).  Xow, by Lemma 4.6.6b, (4.6.19) and 

0 

For the more general case of the individual model describing a portfolio 
of n policies, we can approximate the distribution F of the aggregate claim 
amount Xind = CZl Lii in a completely analogous manner. Defining 

(4.6.20) give H ,  = exp(ArGr - A&) = eFA- C,",o(A:/j!)G,tj. 

we can derive the following error bound. 
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Theorem 4.6.4 For t- = 1 , .  ..,n, let 8i < $,& = &(2ei)r+1(l - 2&)-', 
and E = Cy='=,&. Then d~v(F,Hr) 5 eE - 1 .  

Proof Note that, by (4.6.16), we have the following representation of F: 

Thus, using Lemma 4.6.6, 

&V(F,Hr) = IIF- H v I I  

i=l k=l  

Since IlCEv+, Cy=l(-l)k+'k-lB~(Fc., - d ~ ) * ~ l (  5 [, the proof of the 
statement is complete. 0 

Similarly to the case n = 1 considered in Theorem 4.6.3, the Kornya 
approximation Hr defined in (4.6.21) can be represented as a signed measure of 
the compound-Poisson type with some characteristics (A,, Gr).  For example, 

and 
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Inserting these formulae into (4.6.18) and applying the Fourier transform 
method (see Section 4.7) to the signed measure H ,  of the compound-Poisson 
type, reliable approximations can be obtained. For a practical illustration, see 
Figure 4.7.2. 

Bibliographical Notes. The compound Poisson approximations given in 
Theorems 4.6.1 and 4.6.2 have been derived in Barbour and Hall (1984). 
More error bounds can be found in Gerber (1984). For example, it is 
shown that for the compound Poisson approximation to the individual 
model &,(Xind,XCol) 5 C:=, O;p%. Further, in the individual model with 
deterministic claim sizes K ,  d s ~ ( P " ,  XcO') 5 2-1 Cy.-'=, S;pK . The total 
variation distance between Bin(n,p) and the distribution of EL, I,, where 
1 1 , .  . . ,In are independent Bernoulli random variables with P(Ii = 1) = Oi 
and p = C:=l Si is given in Theorem 9.E in Barbour, Holst and Janson (1992). 
Bounds with respect to the metric d s ~  are studied in Hipp (1985) and 
Kuon, Radke and h i &  (1991). Further bounds are given in de Pril and 
Dhaene (1992), where the individual risk model is approximated by compound 
Poisson models with more general characteristics than those given in (4.6.4); 
see also Barbour, Chen and Loh (1992) and Dhaene and Sundt (1997). Higher- 
order approximations to the compound-Poisson type have been introduced 
in Kornya (1983) and Hipp (1986); see also Dufresne (1996) and Hipp and 
Michel (1990). 

4.7 INVERTING THE FOURIER TRANSFORM 

Besides the algorithms presented in Section 4.4, we can use a formula for 
inverting the Fourier transform when calculating the probability function of 
a discrete random variable. In particular, this inversion formula can be used 
to calculate the probability function of the compound cf=l u k  when the 
claim sizes 171, V Z ,  . . . are lattice. In comparison to Panjer's algorithm, this 
method has the advantage that no special assumptions on the distribution of 
N are needed. Recall that the characteristic function of an IN-valued random 
variable with probability function {pk} is given by the Fourier transform 

co 
$(s) = c eiSk*k , s E R .  (4.7.1) 

It is useful to introduce the Fourier transform in a more general situation. 
For some fixed n E lK, consider a sequence -,PI,. . . ,pn-l of arbitrary real 
numbers. The Fourier transform 9(n)(s) of {po ,  . . . ,pn-l} is defined by 

k=O 

n- 1 
(s) = c eiskpk , s E R . (4.7.2) 

k=O 
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Clearly, if {PO, . . . ,pn- l}  is a probability function, then $J{~ ) (S )  is the 
characteristic function of { p ~ , p l , .  . . ,pn-l}. We now show that the row vector 
p = ( p o , p l , .  . . ,pn-l) can be caJcuIatcd from limited information on the 
Fourier transform $J(n)(~) .  Assume that the values p(n)(~j) of $(n) are given at 
the points S j  = 27rj/n for j = 0,1, .  . . , n - 1. Write these values of the Fourier 
transform $(n)(~) as a row vector 9 = ($(nl (SO), . . . , $J(n)(sn-l)). Then 

pT = FpT,  (4.7.3) 

where F is the n x n matrix given by 

1 1 ... 1 

... - - 

and zT is the transpose of 2. Note that the rows of F form orthogonal vectors 
because 

1 eisjk&ii = C ei(sj-st)k = ej(si-sL) - 1 = 0 for j # C, 
k=O k=O { n  for 3' = l .  

9l-1 n-1 ei(sj-sa)n - 1 

Therefore the inverse matrix F-' of F is given by 

Thus, from (4.7.3) we get pT = F-'vcp', i.e. for all k = 0,. . . !n - 1 

(4.7.4) 

Note that computing p directly from v, requires n2 operations. However, 
if n = 2'" for some nonnegative integer rn, then there exist algorithms with 
complexity of order nlog, n. For this reason, the wrresponding procedure 
for computing p o , p l , .  . . ,p,,-1 on the basis of (4.7.4) is cailed the fast 
Fourier tmtasfonn (FFT) or the inverse fast Fourier transform (IFFT). 
These procedures are available in many software packets like MAPLE, 
M.4THEMATICA or M.4TLAB. 
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Amount at risk 
8i 1 2  3 4 5 6 

0.02 3 1 - 1 2 - 
0.03 - - 2 3 - 2  
0.04 - 4 - 1 -  
0.05 - 3 1 1 - 1 
0.06 - - 3 -  1 

Table 4.7.1 A sample portfolio of 29 policies 

k Tk k r k  k r k  
0 1.00000 7 0.19154 14 0.01866 
1 0.67176 8 0.15469 15 0.01246 
2 0.65166 9 0.11344 16 0.00807 
3 0.53802 10 0.08019 17 0.00529 
4 0.43065 11 0.05778 18 0.00336 
5 0.35297 12 0.04053 19 0.00211 
6 0.28675 13 0.02674 20 0.00133 

Table 4.7.2 The distribution of aggregate claims 

Suppose now that we know the Fourier transform $(s) = Cg0eiskpk of 
an infinite, summable sequence @,PI ? .  . . (that iS czo Ipkl < 00). Then it 
is possible to obtain an approximation to the first n terms p o , .  . . ,pn-1 of 
the sequence po,p1,. . . by sampling the Fourier transform $(s) at the points 
sj = 27rj/n, j = 0,1,. . . ,n - 1. Since for each k = 1,2,.. . the function 
{ei*k, s 2 0) has the period 2x, we obtain 

03 n-1 n-I 

k=O P=O k=O b=O 

where fik = PkcnC for k = 0,1,. . . , n - 1. The d u e s  &,PI , .  . . , &-I can 
be calculated from {@(sj),j = 0,1,. . . , n - 1) by the same argument which 
led to (4.7.4), i.e. 

(4.7.5) 

Note that. fik approximates pk for each k = 0,. . . , n - 1: since by the assumed 
summability of po,pl,. . ., the error Pa - p k  = c,"=, Pk+ne becomes arbitrarily 
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Figure 4.7.1 Approximation by compound distributions 

smdl if a tends to infinity. When bounds on the tail of { p k }  are available, we 
can even estimate the error @k - pk. 

We turn to the compound X = cf=l uk, where Ut, C5,. . . axe independent 
and identically distributed IN-valued random variables. Assume that the 
generating function j~ of N and the values {$u(sj), j  = O , l ,  ..., n - 1) 
of the characteristic function @ ~ ( t )  are known. Then the values { @ x ( s j ) ,  j = 
0,1 , .  . . , n - 1) of the characteristic function +x (9) can be computed from the 
formula cjx(s)  = $N(&T(s) ) ,  (s E R), which can be derived as in the proof 
of Theorem 4.2.1. Thus, the probability function ( p t }  of X can be calculated 
or, at least, approximated in the way given above. 

Example Consider the following portfolio of 29 life insurance policies which 
is defined in Table 4.7.1 following a proposal in Gerber (1979). For this reason 
we will call it Gerber's portfolio. The characteristic function of the individual 
risk of each policy has the form @&(s)  = (1 - &) + 8teifik8, k = 1,2, .  . . ,29, 
where & is the probability of death and pk is the amount of risk for 
the k-th policy. Fkom Table 4.7.1 we see that the aggregate claim amount 
Xind = cf"=, Crk takes values in the set (0,. . . ,96}. Let { p k , k  = O , l , .  . . ,96} 
denote its probabilit function. The corresponding characteristic function is 
given by +(s) = nkll $L(B). The computa.tion of the rI; = pk + pe+x + . . ., 
k = 0,1,. . ., uses the Fourier transform method and is shown in Table 4.7.2. 

Other possibilities to compute the r k  are provided by approximations 

d 
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4 

0.2 - Kornya of order 2 = - - - 
Kornya of order 3 = . . . . 

- 1  I 1 I I I I 1 r - 1 - r .  

-?& k 
c 

10 15 

Figure 4.7.2 Higher-order Kornya approximation, A1 = 1.09, A2 = 1.11325, 
A3 = 1.113976 

by Poisson, negative binomial and binomial compounds or by higher-order 
(Kornya) approximations, as proposed in Section 4.6. In Figures 4.7.1 
and 4.7.2 we present t,he relative errors of these approximations with respect to 
the rk as computed by the Fourier transform method. For Gerber's portfolio, 
the relative errors of second-order and third-order Kornya approximations are 
practically negligible. 

Bibliographical Notes. The computation of the probability function of 
a discrete compound by inverting the Fourier transform is reviewed in 
Buchwalder, Chevallier and Kluppelberg (1993), Embrechts and Kluppel- 
berg (1994) and Kaas (1987). There are other numerical methods to compute 
compound distributions where the claim sizes are of lattice type; see, for 
example, the algorithms considered in Sections 4.4.1 and 4.4.2, If one wants 
to use these methods in the case of general claim sizes, one first has to 
approximate the claim sizes by lattice alternatives. Hipp and Michel (1990) 
discuss such discretization techniques as well as the error caused by them. 
Using a linear upper bound for the concentration function of a distribution 
function, they derive a linear bound for the discretization error when a 
compound with characteristics ( { p k } , F )  is replaced by a compound with 
characteristics ( { p k } , F h )  and where Fh is a discrete distribution defined by 
Fh(z)  = F(h( i+l ) )  for hi 5 2 c h(i+l); h > 0. Second-order approximations 
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are derived in Embrechts, Griibel and Pitts (1994). In den Iseger, Smith and 
Dekker (1997) an approximation method is proposed which is based on cubic 
splines. Panjer and Lutek (1983) examine various discretization methods of 
the claim size in order to calculate stop-loss premiums recursively; see also 
Kaas (1987). Buhlmann (1984) compares the efficiency of Panjer’s algorithm 
versus the Fourier transform method. 



CHAPTER 5 

Risk Processes 

5.1 TIME-DEPENDENT RISK MODELS 

In the preceding chapter we considered a risk X ,  which was an aggregate 
claim over a single period. For simplicity we thought of the period being one 
year, but other lengths of time would have been possible. Now we consider 
the reserve at  the end of a number of such periods of equal length. Hence, 
we suppose that a sequence XI, X 2 : .  . . of risks is given which are assumed to 
be independent and identically distributed, where X, is the aggregate claim 
over the n-th period (n - 1, n]. Moreover, we assume that Xn takes values in 
N and that the common probability function is {pk} = {P(Xn = k)}. Apart 
from the sequence X I ,  X2, . . . we take into account that constant premiums 
are collected during each period. For simplicity we take the premium equal 
to 1. Finally, suppose that the initial reserve is equal to u E IN. Then, the 
reserve R, after the n-t.h period is 

n 

= u + n - EX,. (5.1.1) 
kl 

The sequence {R,,, n E IN} describes the evolution of the reserve checked at 
the end of each period. We will call this process the discrete-time rhk reserve 
process. Stochastic processes of this type in discrete and continuous time are 
one of the main subjects of interest in this book. In particular, we search for 
the probability that the risk reserve process (&} ever falls below a certain 
critical level. 

5.1.1 The Ruin Problem 

Obviously, if po + p1 < 1, then the risk reserve Rn can be negative for some 
n E N. This event { R I  < 0) U (R2 < 0 )  U . . . is called the (technical) man 
of the portfolio. Some knowledge of the probability that ruin occurs c a ~ ~  be 
helpful for determining the solvency of a portfolio. 

Formally, the probability of ruin is defined in the following way. Consider 
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the epoch T d ( U )  = min{n 2 1 : Rn < 0) when the risk reserve process 
becomes negative for the first. time and where we put Td(u) = 30 if & 2 0 
for all n E IN. Thus, ~ d ( u )  is an extended random variable and it is called the 
time of ruin (or ruin time). Furthermore, 

$(u) = P({R1 < 0) U {& < 0) u - -) = p(Td(u)  < 00) 

is called the (infinite-horizon) ruin probability for the initial reserve u E W. 
If Ijl(u) is seen as a function of the variable u, then $(u) is called the win 
function. Another characteristic is the so-called finite-horizon ruin probaba1aty 
$(u;n) = P ( ~ d ( u )  5 n) which is the probability that ruin occurs not later 
than after the n-th period, la E IN. Unfortunately, in many cases it is difficult 
to express the finitehorizon ruin probabilities $(u;n) in a closed form. The 
infinitehorizon ruin probabilities @(u) are mathematically simpler. As will be 
seen in later sections of the book, bounds and approximations to $(u) are 
often available, even for more general risk models. 

Instead of the risk reserve process, it is sometimes preferable to consider 
the claim surplus process {S,,} defined by 

n 

s n = z x i - n ,  n € W .  (5.1.2) 

Then, 

t+b(u) = P({S1 > u }  u {SZ > u} U. ..) = P(max{S~,S2,. . .} > u ) .  (5.1.3) 

With the notation Y,  = Xi - 1, we have 

n 

(5.1.4) 
i=l 

where the YI, Y2,. . . are independent and identically distributed. R’ote that the 
random variables Y1 , YZ , . . . do not need to have the special form fi  = Xi - 1. 
We can consider a more general sequence YI, 12,. . . of independent and 
identically distributed random variables. In particular, the aggregate claims 
Xl,X2,. . . can have a continuous distribution and the premiums collected 
during each period can be random, modelled as a sequence Xi, Xi,. . . of 
nonnegative independent and identically distributed random variables. Then, 
Y, = X, - Xa. A discrete-time stochastic process {Sn, TI E IN} defined by the 
sums S, = ELl f i  of arbitrary independent and identically distributed (not 
necessarily integer-valued) random variables Y1 , Y2, . . . is called a random waZk. 
Random walks will be considered in more detail in Section 6.3. Furthermore, 
as before: for each u 2 0, we can consider the ruin time Td(1) )  = min{ra 2 
1 : S, > u} and the ruin function $(u) defined by @(u) = P(Td(U) < 00). 
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In a random walk setting, the ruin probability $(u) is the probability that 
the random walk {S,} (strictly) exceeds the level u. The finite-horizon ruin 
probability Q(u; n) = p(Td(U) 5 n) is defined similarly. 

Rom the strong law of large numbers we have that S,/n + E Y. This tells 
us that S, + 00 provided that E Y  > 0. Thus, in this case (5.1.3) implies 
that $(u) z 1 for each u E IN. It can be shown that this result extends to 
the case where EY = 0, but the proof given in Section 6.1 requires more 
advanced tools. However, if EY < 0, then S, + -00, i.e. the maximum 
rnax{Sl,S2,. . .} is finite with probability 1 and therefore $(u) < 1 for all 
U E l N .  

5.1.2 

In this section we consider the random walk {S,} with generic increment 
Y = X - 1. We assume El’ < 0. Note that for the maximum M = 
max{O,SI,S2, ...} of ISn} we have $(u) = P(M > u). Furthermore, 
M = max{O,&,YI + SI,& + 9 2  ,... } where $1 = &, 3 2  = 1’2 + Y3, ..., 
i.e. 

A42 ( M + Y ) + .  (5.1.5) 

Thus, with the notations gbf(s) = Eskf,jx(s) = EsX, and p = EX we get 
the following result. 

Theorem 5.1.1 (a) The generating functaon of M is 

Computation of the Ruin F’unction 

(5.1.6) 

(b) The rnwhum A1 of the random walk {Sn} has the same distribution as 
the geometric compound Ui specified by p = P(N 2 1) and P(U = k) = 
P(X > k)/EX, k E IN. 

Proof (a) From (5.1.5) we have 

gM(3)=EsM = E S ( ~ + ~ - ~ ) +  
= E [~(M+x-1)+; &.f + X - 1 > - 01 + E [s(M+-x-I)+. M + - 1 = -11 

1 “  = - c skP(ll! + x = k) + P(M + x = 0) 

s-1&j(S)gX(S) + (1 - s-l)P(M + x = 0) , 
k-1 

= 

i.e. 
(5.1.7) 



150 STOCHASTIC PROCESSES FOR IXSURANCE AND FINANCE 

Since limu1gM(s) = 1 and lim,rlg$)(s) = EX,  L'Hospital's rule gives 
1 = P(M + X = 0)/(1 - p). Thus, (5.1.6) follows from (5.1.7). To prove 
part (b), observe that the generating function &(s) of C' is given by 

1 1 - i x ( s )  
Qc(s) = - EX 1-8 ' 

(5.1.8) 

n=O 
M 

n=O 

This completes the proof because of the one-to-one correspondence between 
0 distributions on Pi and their generating functions. 

5.1.3 A Dual Queueing Model 

The intrinsic goal of mathematical modelling is to capture the most important 
facts of a real problem into a stochastic framework. For this reason, 
mathematical models are rather universal. It may happen that one and the 
same model can describe different situations which seemingly do not have too 
much in common. A nice example where this is clearly visible stems from 
queueing theory. 

It turns out that the simple risk model considered above can be used to 
analyse a problem of data transmission in a computer network. Suppose that 
at each time n E IN a random number of data packets arrives at a node 
of the network; in each time-slot [n,n + 1) one packet can be transmitted 
provided that at the beginning of this slot at least one packet is waiting. Let 
X, be the number of packets arriving at n - 1. As before, we assume that 
the IN-valued random variables XI, X Z ,  . . . are independent and identically 
distributed with common probability function {ph} .  Suppose that just before 
time n = 0 there are LO packets waiting for transmission. We may assume 
that Lo is random, but independent of the XI, Xz, . . .. After one unit of time 
the number of packets decreases by 1. But at the same time XI new packets 
arrive and so (Lo + XI - 1)+ packets are waiting just before the beginning of 
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the next slot. In general, the number L n  of packets just before the beginning 
of the (n + 1)-th slot fulfils the recurrence relation 

L n  = (Ln-I + Xn - 1)+ 7 (5.1.9) 

where L, is called the queue length at time n. We leave it to the reader to 
show that the solution to (5.1.9) is 

L, = ma{O,Y,,Yn-l + Yn?. . . , Lo + Y1 + . . . + Y,} , (5.1.10) 

where Y, = X, - 1. 
An important auxiliary result is the following duality property expressing a 

certain invariance property under inversion of time. 

Lemma 5.1.1 Let YI, Y2,. . . be independent and adentically distributed. Then, 
d (En, Y,-, + Y,, - - - ,& + . . . + Y,) = (Yl, Y1 + Y2,. . . ,Y1 + . . . + Y,) for all 

n = 1 , 2 ,  .... 
Proof Since the random variables Y1,&, . . . are independent and identically 
distributed, the random vectors (& , Yz, . . . , Y,) and (Y,, Yn-1, . . . , Y1) have 
the same distribution for every n = 1,2,. ... Thus, the random vectors 
(Y1,Yl + Y2,. . . , Y1 + . . . + Y,) and (Yn,Yn + Y,-l , .  . . ,Yn + . . . + &) are 
identically distributed. This completes the proof. 0 

Now we are ready to state a relationship between the queueing model of 
data transmission and the risk model considered above. It says that the limit 
distribution of the queue lengths L, can be expressed by the ruin function 
$(u). For simplicity, we assume that LO = 0. 

Theorem 5.1.2 Let Lo = 0, p = EX < 1 and @(a) = P(M > u). Then, 

lim P ( L n s u ) = l - v ( u ) ,  u E I N .  (5.1.11) 
n+cC 

Proof Using Lemma 5.1.1, we get from (5.1.10) that 

P(L, > U) = 

= 
P(max{O.Yn,Yn-l + Yn.. . . , Y1 + . . . + Y,} > U) 
P(max{O,Y1,Yl + 15,. . . ,Y1 + . . . + Yn} > u) . 

Since m a x { O , E i , &  + 15,. . . ,Y1 + . . . + Y,} 5 max{O,Y1,& + K , .  . . ,Yi + 
. . . + Yn+l}, the limit limn+m P(Ln > u) exists. Thus. monotone convergence 
yields (5.1.11). 0 

5.1.4 

The risks X I ,  X z ,  . . . considered in the preceding sections of this chapter 
can take the value 0 with a positive probability po.  This means that in the 

A Risk Model in Continuous Time 
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corresponding period no claim occurs. An equivalent model would be obtained 
by recording the (random) indices of the periods where cla.hs occur, together 
with the corresponding (strictly positive) aggregate claim amounts. We make 
this statement more precise. Consider the 0-1 sequence {IR} = {I(Xn > 
0), n = 1,2 , .  . .} and define the positions of ones and the distances between 
them in the sequence {I,,}: a0 = 0, cr, = min{k > : I&! = 1) and 
Tn = a, - crR-l; n 2 1. The number of ones in the sequence 1 1 , .  . . , I, is 
N ( n )  = czl I ( U k  5 n). Let Ul, U2,.  . . be a sequence of independent and 
identically distributed random variables with distribution being equal to the 
conditional distribution of X provided that X > 0. h4oreover, let the sequences 
{N(n)} and {U,,} be independent. Then, for the risk reserve process {R,,} 
defmed in (5.1.1), we have Rn = R i r  where RL = e6 + n - Cz(r' Uiii. Note 
that an even stronger property holds. Namely, for each n = 1 ,2 , .  . . we have 

d (I&, . . . ,&) = (Ri,. . . Rh). 
We can weaken the assumption that the random variables T and li are 

IN-valued assuming only that they are nonnegative. Then, a more general risk 
reserve model is defined as follows. We are given 

d 

0 random epochs UI, az, . . . with 0 < 01 < uz < . . . at which the claims occur, 

0 the corresponding positive (individual or aggregate) claim sizes U1, U2 , .  . ., 
0 the initial risk reserve p1 2 0, and 
0 the premiums which are collected at a constant rate ,!3 > 0, so that the 

where the random variables 0, can be discrete or continuous, 

premium income is a linear function of time. 

Besides the sequence { (T,, U,)} of inter-occurrence times and claim sizes, 
there are other but equivalent ways to describe the process of arriving claims. 
One such possibility is to consider the sequence {(a,, Un)} of a.rrival epochs 
a,, and corresponding claim sizes U,, where on = C:='=, Ti. Sometimes, the 
random sequence {a,} is called a point process and { (anr Crn)}  a marked point 
process; see Chapter 12. Still another approach is based on the cumulative 
arrival process {X( t ) , t  2 0) 

(5.1.12) 
k= l  k= 1 

where X(t) is the aggregate amount of all claims arriving in the interval (0, t ]  
and the counting process { N ( t ) , t  2 0) is given by 

m 

N ( t )  = c I ( Q k  t )  . (5.1.13) 
k=l 
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The risk reserve process { R ( t ) ,  t 2 0) is then given by 

N(t) 

(5.1.14) 
i=I  

while the claim surplw process {S( t ) ,  t 2 0) is 

N(t )  

S(t)  = c ua - Bt.  (5.1.15) 
i=l 

The tame of ruin T(U) = min{t : R(t) < 0) = min{t : S(t)  > u }  is the first 
epoch when the risk reserve process becomes negative or, equivalently, when 
the claim surplus process crosses the level u. We will mainly be interested in 
the ruin probabilities Q(u; s) = P(T(u)  5 2) and $(u) = lims+m +(u; t) = 
P(-r(u) < 00). Here ?,b(u;z) is called the finite-horizon ruin probabilitg and 
$(u) the infinite-horizon ruin probability. Alternatively, $(u) can be called 
the probabilitg of ultimate ruin. U'e will further need the notion of the survival 
probability ?(a) = 1 - $(u). 

There is a relationship between infinite-horizon ruin probabilities of risk 
models in discrete time and in continuous time. To get T(U) it is sufficient 
to check the claim surplus process {S( t ) )  at the embedded epochs crk (k = 
1,2,. . .); see Figure 5.1.1. Indeed, the largest value 111 = rnaxtlo S( t )  of the 

:\ 

Figure 5.1.1 Claim surplus process 

claim surplus process can be given by 11.1 = maxn10 C;==, (Lrk - BTk)  and 
consequently 

$(u) = P(M > u)  . (5.1.16) 

The representation formula (5.1.16) gives us the possibility to interpret the 
ruin function $(u) as the tail function of the stationary waiting time in a 
single-server sp t em of queueing theory. 
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Xote, however, that one has to be careful when comparing finite-horizon 
ruin probabilities in discrete time with those in continuous time because in 
general 

n 

Anyhow, in order to keep the notation simple we will use the same symbol for 
the finite-horizon ruin function in the continuous-time risk model as in the 
discrete-time risk model, i.e. 

$(u;2) = P(7(u) 5 z) = P(orn3.xzS(t) > u). 
- 

Apart from the time of ruin ~ ( u ) ,  there are other characteristics related to 
the concept of technical ruin. The ouersfioot above the level u of the random 
walk {S,) crossing this level for the first time is defined by 

Y + ( U )  {' 

Q1 0 2  

Figure 5.1.2 Severity of ruin and surplus prior to ruin 

S(T(U))  - u if T ( U )  < 00, 

if T ( U )  = 00. 
I'+(u) = 

Note that it is possible to express Y+(u) in terms of the risk reserve process: 

{ -R('r(u)) if T(U) < 30, 
if T(U) = 00. 

Y+(U) = oo 

In other words, Y+(u) can be interpreted as the severity of ruin at time ~ ( u ) ;  
see Figure 5.1.2. 

Another quantity of interest is the surplus prior to ruin given by 

u - S ( T ( ~ ) - )  if T ( U )  < 00, 

if T ( U )  = 00. 
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Cleady, X+(u)  + Y+(u) is the size of the claim cawing win at time T(u). In 
order to determine the joint distribution of X+(u), Y+(u), we will consider 
the multivariate ruin function $(u, x, y) given by 

(5.1.17) ~ ( u ,  2 , Y j  = p(+) < w XW 5 5, y + b )  > d 
where u, x, y 2 0 or its dual 

(P(u,z, 9) = P(r(u) < 00% X+(4 > x,Y+(u) > Y) > (5.1.18) 

when the latter is more convenient. Another characteristic related to the 
severity of ruin is the time f (u) = inf{t : t > r(u),R(t) > 0) at which 
the risk reserve process {R( t ) }  crosses the level zero from below for the first 
time after the ruin epoch ~(u). Then 

Figure 5.1.3 Time in the red 

- T(u.) if T ( U )  < 00, 

if T(U) = 00, 
T'(u) = { i(u) 

is the time in the red (see Figure 5.1.3), the amount of time the risk reserve 
process { R ( t ) }  stays below zero after the ruin time r(u). It is clear that T'(u) 
does not fully describe the severity of ruin, because it does not carry any 
information about the behaviour of the risk reserve between T(U) and f ( u ) .  
However, for the insurer it makes a difference whether {R( t ) )  remains slightly 
below zero for a long time, or whether the total maxima2 deficit 

Z + ( U )  = max(-R(t) : T(U) 5 t} 

after ~ ( u )  is large. In the latter case, all successive times in the red are taken 
into account. We can finally consider the mwimal deficit 

ZF(u) = m a { - R ( t )  : r(u) 5 t 5 ~ ' ( u ) }  
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during the first period in the red, that is between T(U)  and ~ ‘ ( u ) .  

Bibliographical Notes. Results of the type as in Theorem 5.1.1 can be found 
in many places, such as Daley and Rolski (1984), Feller (1968), Gerber (1988) 
and Shiu (1989). A recursive method to calculate the finite-horizon ruin 
probabilities +(u;n) in the discrete-time risk model has been proposed in 
De Vylder and Goovaerts (1988). 

5.2 POISSON ARRIVAL PROCESSES 

The risk reserve process { R ( t ) )  in continuous time has been defined by (5.1.14) 
in Section 5.1.4. We now consider the special case of the risk model where the 
claim sizes { CTn} are independent and identically distributed and independent 
of the sequence {on} of claim occurrence epochs. Furthermore, we assume 
that the sequence {on} forms a Poisson point process. By this we mean that 
the inter-occurrence times Tn = cn - on-l are independent and (identically) 
exponentially distributed. These asumptions lead to the classical compound 
Poisson model of risk theory. While this model does not really suit the needs of 
the actuary, it is a skeleton for more adequate generalizations discussed in later 
chapters of the book. Thanks to its nice properties, the classical compound 
Poisson model is the most studied model in the literature. 

5.2.1 Homogeneous Poisson Processes 

Let {Tn} be a sequence of independent random variables with exponential 
distribution Exp(X); X > 0. Then, the counting process { N ( t ) }  is called a 
homogeneous Poisson process with intensaty A. As such, the process is a special 
kind of renewal process: a topic discussed in Chapter 6. In the present chapter 
we simply omit the adjective “homogeneous”, since we do not yet deal with 
other types of claim occurrence processes. 

A basic property of Poisson processes is that they have independent and 
stationary increments. These notions are defined first. 

Definition 5.2.1 A red-valued stochastic process { X ( t ) , t  2 0) is sad to 
have 
(a) independent increments if for a12 n = 1,2,. . . and 0 5 to < tl < . . . < tn, 
the random variables X ( O ) , X ( t l ) - X ( t o ) , X ( t z )  - X ( t l ) ,  . . . . X ( t n ) - X ( t n - l )  
are independent, 
(b) stationay increments if for all n = 1,2 ,..., 0 5 to < tl  < ... < t ,  and 
h 2 0,  thedistribution o f ( X ( t l + h ) - X ( t o + h ) ,  . . . , X ( t , + h ) - X ( t , - l + h ) )  
does not depend on h. 

We leave it to the reader to prove that, if a process { X ( t ) }  has independent 
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increments, then { X ( t ) }  has stationary increments whenever the distribution 
of the univariate random variable X(t + h) - X ( h )  does not depend on h. 

Theorem 5.2.1 Let { N ( t ) , t  2 0 )  be a counting process. Then the following 
statements are equivalent: 
(a) { N ( t ) }  i s  a Poisson process with intensity A. 
(b) For dl t 2 0 ,  n = 1,2,. . . the random variable N ( t )  has distribution 
Poi(&) and, given { N ( t )  = n}, the random vector (01,. . . , o ~ )  has the 
same distribution as the order statistics of n independent points uniformly 
distributed on [0, t ] .  
(c) { N ( t ) }  bas independent increments such that EN(1) = A and for all 
t 2 0, ra = 1,2,. . .: given {lV(t) = n}, the random vector (q,. . . ,nn) has 
the same distribution us the order statistics of n andependent points unafonly 
distributed on [0, t]. 
( d )  { N ( t ) }  has stationary and independent increments and satisfies as h J. 0, 

We now give some equivalent definitions of a Poisson process. 

P(N(h) = 0) = 1 - Ah + ~ ( h )  , P ( N ( h )  = 1) = Ah + ~ ( h )  . (5.2.1) 

(e) { N ( t ) }  hus stationary and independent increments and, for each fied 
t 2 0 ,  the random variable N ( t )  is Poi(&) distributed. 

Proof (a)+(b) Note that (a) implies that o,, = C:='=, Ti is the sum of n 
independent random variables with exponential distribution Exp(X), i.e. On 

has distribution Erl(n,X). Thus P ( N ( t )  = 0) = P ( o ~  > t) = e-xt and 

P(N(t) = n) = P(N(t) 2 n) - P(N(t) 2 n + 1) 
= P(an  I t )  - P(on+l  5 t )  

t An+lvn 

n! e-'" dv - 1 -e-xU dv 

for n 2 1, which shows that N ( t )  has distribution Poi(At). Furthermore, since 
for to  = 0 5 t l  I . . . 5 tn I t 5 tn+1 the joint density fml ,.... ( t l ,  . . . ,t,+l) 

of 01,. . . , On+l is given by 
n+l 

jut ,..., un+l(t l , .  . . , t,+l) = n ~ e - ~ ( ~ b - ~ b c - l )  = Xn+'e-xtn+l , 

the joint conditional density ful ,..., ,," ( t l ,  . . . , tn I N ( t )  = n )  of 01 , .  . . , On given 
N ( t )  = la is then 

k = l  

fa1 ,...,urn (tl,  * . . , tn I W t )  = n) 
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This is the density of the order statistics of n independent random variables 
uniformly distributed on [0, t ] .  
fb)+(c) From (b) it clearly follows that EN(1) = A. Furthermore, let 
Z k  E IN and to  = 0 < tl < . . . < t,. Then (b) implies that for z = $1 +. . .+zn, 

n 

p( { N ( t k )  - "tk-1) = .&}) 
k = l  

n 

= P( n ( N ( t 6 )  - N ( t k - 1 )  = 21) 1 N ( t n )  = Z)P(N(tn) = 5) 
k=l 

and therefore { N( t ) }  has independent increments. 
(c)+(d) We now assume that, under { N ( t ,  + h) = m},  the random 
vector ([TI,. . . , u,) has the same distribution as the order statistics of m 
independent points uniformly distributed on [O,t ,  + h]. Hence, for Z k  E IN, 
t o = O  < t i  < ... < t ,  and h > 0 

P( fi { N ( t k  + h)  - N(tk-1 + h) = 26) I A'(tn + h) = n) 
k = l  

n 

= P (  n { N ( t & )  - N(tk-1)  = x k }  I N(tn + h) = m). 
&=I 

Thus the law of total probability yields that { N ( t ) }  has stationary increments. 
Furthermore, the conditional uniformity property of statement (c) implies 
that, for 0 < h < 1, 

P ( N ( h )  = 0) 
w 

= C P ( N ( h )  = 0,  N(1) - N ( h )  = k) 
k=O 

OC. 

= C P ( N ( 1 )  = k) P ( N ( 1 )  - N ( h )  = k I N(1) = k) 

C P ( N ( 1 )  = k)(l - h)k.  

k=O 
00 

= 
k=O 

Thus, 
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1 - (1 - h)k oo 

h = C P ( N ( 1 )  = k) 
k= 1 

Recall that (1 - h)k 2 1 - kh for all 0 < h < 1, whenever k = 1,2, .  . .. This 
means that the functions gh(k) = h-'(l - (1 - in the last sum have the 
uniform bound g ( k )  = k. Moreover, this bound is integrable since 

00 C kP(N(1) = k) = EA'(1) = X < OC. 

By interchanging sum and limit we obtain limh,o h-'P(N(h) > 0) = X from 
which the first part of (5.2.1) follows. In the same way we get that 

k=l 

oo 1 
lim -P(N(h)  = 1) = lim C P ( N ( 1 )  = k)k(l  - h)"-' = A ,  
h+O h h+O k=l 

which is equivalent to the second part of (5.2.1). 
(d)+(e) Let n E IN, t 2 0 and pn( t )  = P(N(t) = n).  Then for h > 0, 

m ( t + h )  = P ( N ( t )  = O , N ( t + h ) - N ( t )  =O) =m(t) ( l -Xh+o(h))  (5.2.2) 

and for t 2 h > 0, 

m(t) = po(t - h)(l  - Xh + o(h)) . (5.2.3) 

This implies that m(t) is continuous on ( 0 , ~ )  and right-continuous at t = 0. 
Rearranging terms in (5.2.2) and (3.2.3) we see that 

for h 2 -t because po(t - h) = pa( t )  + o(1). Thus po(t)  is differentiable and 
fulfils the differential equation 

= -Xpo(t) (5.2.4) 

for t > 0. Since po(0) = P(N(0)  = 0) = 1, the only solution to (5.2.4) is 

N(t) = e-A', t 2 0 .  (5.2.5) 

In order to show that 

(5.2.6) 

holds for all 78 E we can proceed as in the proof of (5.2.5). Namely, observe 
that ($2.1) impiies that P(N(h)  > 1) = o(h) as h 4 0. Kow use (5.2.5) and 
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induction on n to arrive at (5.2.6). The details of this part of the proof are 
left to the reader. 
(e)+(a) Let bo = 0 5 a1 < bl 5 . . . 5 an < 6,. Then, (e) implies that 

n 

P (n { a k  - ok-1 E dxt}) = Xne-A(t1S...+2n) dxl . . . dx,, , 

and therefore these random variables are independent and have a distribution 
0 

k=l 

Exp(X), i.e. { N ( t ) }  is a Poisson process with intensity A. 

5.2.2 Compound Poisson Processes 

We continue to assume that the inter-occurrence times {T,} are exponentially 
distributed with parameter X > 0 or that the counting process { N ( t ) )  is a 
Poisson process with intensity A. Let the claim sizes {Un} be independent 
and identically distributed with distribution Fu and let {Un} be independent 
of { N ( t ) } .  Then the cumulative arrival process { X ( t ) ,  t 2 0) defined in 
(5.1.12) is called a compound Poisson process with characteristics (X,Fu), 
i.e. with intensity X and jump size distribution Fu. This terminology is 
motivated by the property that X ( t )  has a compound Poisson distribution 
with characteristics (At,Fv). Since X ( t )  = cE(:'Ui, it suffices to observe 
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that, by the result of Theorem 5.2.1, N ( t )  is Poisson distributed with 
parameter At. 

The next result follows from Theorem 5.2.1. 

Corollary 5.2.1 Let { X ( t ) }  be a compound Poisson process with 
characteristics (A, Fv). Then, 
(a) the process { X ( t > }  has stationary and andependent increments, 
(b) the moment generating function of X ( t )  i s  given by 

(5.2.7) 

and the mean and variance by 

E X ( t )  = Atp,tr, VarX( t )  = At&) .  (5.2.8) 

Proof (a) We have to show that, for all n = 1,2,. . . , h 2 0 and 0 5 to < tl < 
. . . < tn ,  the random variables 

are independent and that their distribution does not depend on h. Since the 
sequence { Un} consists of independent and identically distributed random 
variables which are independent of {Tn}, we have 

. . . , N ( t n  + h) - N(t,-l  + h) = k n )  

for all 5 1 , .  . . , zn 2 0. Therefore, it suffices to recall that by Theorem 5.2.1, the 
Poisson (counting) process ( N ( t ) }  has independent and stationary increments. 
(b) The proof of (5.2.7) and (5.2.8) is left to the reader as an exercise. 0 

Bibliographical Notes. The material covered in Section 5.2 can be found 
in a large number of textbooks, such as Billingsley (1995). For a discussion of 
Poisson processes in the context of risk theory, see also Schmidt (1996). 
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5.3 RUIN PROBABILITIES: THE COMPOUND 
POISSON MODEL 

In the sequel of this chapter we consider the compound Poisson model. The 
risk reserve process { R ( t ) , t  2 0) is defined in (5.1.14) and claims occur 
according to a compound Poisson process with characteristics (A, Fu). The 
most frequently used property of the process { R ( t ) }  is the independence and 
stationarity of its increments. Considering { R ( t ) }  from time t onwards is like 
restarting a risk reserve process with an identically distributed claim arrival 
process but with initial reserve R(t) .  In particular, if R(t )  = y and ruin has 
not yet occurred by time t ,  then the (conditional) ruin probability is V(y). 
Fbrthermore, considering { R ( t ) }  from the first claim occurrence epoch (TI on 
is like starting a risk reserve process with initial reserve R(t  + 01 - UI). 

Let {S,,a 2 0) be the random walk given by 

n 

S n = C y i ,  y i = U i - D T i -  (5.3.1) 

In Theorem 6.3.1 we will show that limsup,,, Sn = 00 if EY 2 0. Thus, 
(5.1.16) implies that Q(u) 3 1 in this case. Let us therefore assume that 
EY < 0, i.e. B > Xp, where p = pu denotes the expected claim size. 
Recall that ,4 is the premium income in the unit time interval and that Ap 
is the expected aggregate claim over the unit time interval (see (5.2.8)). The 
condition 

B > AIL (5.3.2) 
is therefore called the net profit condition. Throughout the rest of this chapter 
we will assume (5.3.2). Note that in this case S n  = -oc, since from the 
strong law of large numbers we have S,/n + EY < 0. Thus, the maximum 
of {Sn} is finite. Using (5.1.16) we get limU+, @(u) = 0. Moreover, we will 
see later in Theorem 5.3.4 that this implies @(u) < 1 for all ZL 2 0. 

i=l  

5.3.1 An Integro-Differential Equation 

In this section we study the survival probability $(u) = 1 - &(zL). We show 
that $(u) is differentia.ble everywhere on EL+ with the exception of an at 
most countably infinite set of points. Furthermore, we prove that $(u) fulfils 
an integro-differential equation. 

Theorem 5.3.1 The survdval function ?(u) is continuous on R+ with raght 
and left derivatives $+ (u)  and 1c,- (u), mpectiuely. Moreover +I) +I) 

(5.3.3) 
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and 
- 

D$%) = A ( i w  - $(u - Y) d w 8 ) )  . (5.3.4) 

Proof As mentioned before, considering {R( t ) }  from the 6rst claim occurrence 
epoch ~1 is like considering a risk reserve process with initial reserve R(t + 
nl -U1). Thus, conditioning on the first claim occurrence epoch ~ 1 ,  we obtain 

$(ti + Pt - y) dFu(g) Ae-xt dt (5.3.5) 

for all h,u 2 0. Letting h J- 0, (5.3.5) implies that  $(u) is a right-continuous 
function. Moreover, rearrange the terms in (5.3.5) to write 

- h u+Pt-  
$(u) = e-“$(u + Oh) + 1 

This shows that $(u) is differentiable from the right and (5.3.3) follows as 
h -1 0. For h 5 P - h ,  (5.3.5) can be rewritten in the form 

- which implies that $(u) is also left-continuous and that the left derivative of 
0 

An immediate consequence of Theorem 5.3.1 is that the continuous function 
$(u) is differentiable everywhere except for the countable set, where FU (y) is 
not continuous. The importance of this fact is that it implies 

$(u) exists and fulfils (5.3.4). 

J u  

In the terminology of measure theory, this means that $(u) is absolutely 
continuous with respect to the Lebesgue measure. 

Note that in general (5.3.3) cannot be solved analytically. However, one can 
compute the survival probability ?(u) in (5.3.3) numerically. 

Example Assume that the claim sizes are exponentially distributed with 
parameter 6. Then the net profit condition (5.3.2) takes the form 6/3 > A. 
Furthermore, (5.3.3) can be solved analytically. The survival function q(u) is 
differentiable everywhere and satisfies the integral equation 

@)(u)  = A($(u) - e-6u /d” $(y)debu dy) . (5.3.6) 



164 

This equation implies that + 
STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

(u) is differentiable and that -0) 

,!?$2’(u) = A($’)(u) + Se-su 

The general solution to this differential equation is 

U 

$(y)Se6Y dy - S$(u)) = (A - 6B)$”(u). 

- 
+(a)  = c1 - c2e-(J-’/fl)u. (5.3.7) 

- 
where CI,CZ E R. Since limu+oo$(u) = 1 it follows that. c1 = 1. Plugging 
(5.3.7) into (5.3.6) yields 

c2(~p - x)e-(a-x/O)u 

= ~ ( 1 -  c2e-(6-x/P)u - (1 - e - 6 ~ )  + cze- 6uy(eAu/a - 1)) 

from which cz = X(/?S)-l is obtained. Thus, 

(5.3.8) x $(u) = -e-(J-x/fl)a. 
Pa 

5.3.2 An Integral Equation 

Equation (5.3.3) is not easily solved because it involves both the derivative and 
an integral of $(a). It would be more convenient to get rid of the derivative. 
Indeed, integrating (5.3.3) we mive  at the following result. 

Theorem 5.3.2 The win function +(u) satisfies the integral equation 

&b(u) = X ( / , F o ( z ) d z + I u ~ ( u - z ) ~ ~ ( s ) d ~ ) .  U (5.3.9) 

Proof We integrate (5.3.3) over the interval (O,.]. This gives 
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i.e. 
(5.3.10) 

Now, letting u + 00, (5.3.10) implies B(l - q ( 0 ) )  = XS,"Fv(z)dz = Xp. 
This follows from $(u) + 1 and an application of the dominated convergence 
theorem on the right-hand side of (5.3.10). Thus, 

(5.3.11) 

Now, replacing $(a) by 1 - +(u), from (5.3.10) and (5.3.11) we have @+(u) = 
0 p - X J,"(l - +(u - z))Fu(z) dx: which is equivalent to (5.39). 

Note that (5.3.11) shows that the ruin probability +(u) at u = 0 only 
depends on the expected claim size p and not on the specitic form of 
the claim size distribution Fu. We further remark that (5.3.9) is called a 
defective renewal equation with respect to the unknown ruin function $(u). 
In Section 6.1.4 we will analyse such equations in a more general context. 

5.3.3 Laplace Tkansforms, Pollaczek-Khinchin Formula 

In this section we compute the Laplace transforms 

&(s) = +(u)e--gpl du,  &(s) = 1" $(u)e-su du. 

Yote that both integrals make sense for all s > 0. Furthermore, we have 

(5.3.12) 1 W 

&(a) =I ( l - ~ ( ~ ) ) e - ' ~ d u = - - ~ ~ ( s ) .  s 

Theorem 5.3.3 The Laplace transforms &(s) and &(s) are given by  

, s > o  D - XP w = ps  - X(1 - i"(3)) (5.3.13) 

and 
P -  AP s > o .  (5.3.14) 1 L&?) = - - s 0s - X(1 - i U ( 8 ) )  
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Proof Let s > 0. Integrating by parts we find that so v+ (u)e-**du = 
-$(O) + s2,(s). Furthermore, 

w 70)  
- 

In order to complete the proof we multiply ( 5 . 3 . 3 ) ~  e-8u and integrate over 
(0, co). Then, we see that the Laplace transform L7(s) satisfies the equation 
/3(std8) - @O)) = X@s)(l - &y(s)), which is equivalent. to (5.3.13) in view 

U of (5.3.11). Now, (5.3.14) immediately follows from (5.3.12). 

Example In the case of exponentially distributed claims (with p = E l ) ?  
(5.3.13) gives 

P - X/6 - - P - x I 6  = (P - X/S)(S + 3) 

= ps - X ( l  - d/(S + 3)) s(p  - X/(6 + s ) )  S ( P ( 6  + 3) - A) 

and, by (5.3.12), 

1 (p - X/d)(d -k 3) - $(d + 8 )  - - (P - X/d)(d -k 3) - 2d3) = s - S(P(d +s) - A) s(P(8 + 3) - 4 
X 1 x 1 = -  = -  
d p ( b + S ) - x  S p d - X / p + s '  

Hence, by comparison with the Laplace-Stieltjes transform of the exponential 
distribution we realize that @(u) = X(dP)-1e-(6-A//P)U, in accordance with 
(5.3.8). 

Although equation (5.3.9) is simpler than (5.3.3), it is generally difficult to 
solve it in closed form. However, (5.3.9) leads to a formula for +(a) in the form 
of an infinite series of convolutions. In this connection, we need the integrated 
tail distribution F& of Fu. Remember that Fh is given by 

(5.3.15) 

The representation formula for @(u) derived in the next theorem is called the 
Pollaczek-Khinchb formula. 

Theorem 5.3.4 For each u 2 0, 

(5.3.16) 
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Proof Taking Laplace transforms on both the sides of (5.3.9) gives 

Thus, &(s) = A~b-~L%(.s)(l - A@-’k(s))-l ,  i.e. t + ( s )  is the Laplace 
transform of the tail function of a geometric compound with characteristics 
(A,&-’, 5). Again, the one-to-one correspondence between functions and 

D 

Besides the case of exponentially distributed claim s i 7 ~ ,  where (5.3.16) 
has been written in closed form (see (5.3.8)), there are other claim size 
distributions for which (5.3.16) simplifies. One important class of such claim 
size distributions is provided by the p h t y p e  distributions, discussed in 
Chapter 8. 

The infinite series representation given in (5.3.16) is particularly useful for 
theoretical considerations. However, it is also useful for numerical approx- 
imations to the ruin probability +(u) since (5.3.16) shows that 1 - $(u) 
is the distribution function of a geometric compound. After discretization 
of the distribution Pu, Panjer’s algorithm described in Section 4.4.2 will 
yield a numerical approximation to +(u). A completely different method for 
numerical computation of Q f . )  is based on the numerical inversion of the 
Laplace transform. This method will be discussed in Section 5.5. hrther ,  
Sections 5.4.1 and 5.4.2 treat useful bounds and approximations to $(u) 
derived from (5.3.16), provided that the claim size distribution admits an 
adjustment coefficient. Finally, in Section 5.4.3, formula (5.3.16) will be crucial 
in deriving interesting asymptotic expressions of @(u) as u + 00 when the 
claim size distribution is heavy-tailed. 

(i 

their Laplace transforms yields (5.3.16). 

5.3.4 Severity of Ruin 

We now want to analyse further what happens if ruin occurs. Consider the 
ruin probabilities p ( u ! t : y )  = P(T(u)  < oc,X+(u) > s,Y+(u) > y) where 
X+(u) = R ( T ( ~ ) - )  and Y+(u) = -R(T(u)) is the surplus just before and at 
the ruin time ~ ( u )  respectively. Remember that the random variable Y+(u) is 
also called severity of ruin. 

Since in general we were not able to find an explicit formula for +(u) there 
is no hope of achieving this goal for ~ ( u ,  5, g). But it is possible to derive 
integro-differential and integral equations for p(u, 2: g). Moreover, we will be 
able to find cp(z, y) = q(O,s, y) explicitly. 

will proceed as in Section 5.3.1. Condition on the first claim occurrence 
epoch and on the size of that claim to find that cp(u,t,y) satisfies 

p(u, z, y) = e-”+(u + ph: 2, Y) 
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for all h, u, z, y > 0. Thus ~ ( u ,  z, y) is right-continuous and differentiable from 
the right with respect to u. F'urthermore, 

a+ 
B,cp(u, z,$l) 

= X(v(u,a!,d - l U P ( U - V , z , Y ) d F u w  - I (u  L z ) F d u + d ) .  

Analogously, p(u, z, y) is left-continuous and differentiable from the left with 
respect to u1 and satisfies 

- I(41 > z)F,((u + +)) . 

Thus the set of points u where the partial derivative (O/bu)(p(u, 2, y) does not 
exist is countable and therefore cp(u, z, y) is absolutely continuous in u. 

Proceeding as in Section 5.3.2 we obtain the integral equation 

P(cp(U, z, sr) - d o ,  2, at ) )  

We now let + 00. Note that J,"(l - F ~ ( v ) ) d v  = p allows us to 
interchange integration and limit on the right-hand side of (5.3.17). Since 
0 5 p(u, 2, y) 5 pl(u) we find that limu+m (p(u, z, y) = 0 and therefore 

/ l o o  - 
(5.3.18) 

Note that (5.3.18) is a generalization of (5.3.11). Another proof of (5.3.18) 
which is d i d  for more general risk models will be given in Chapter 12. 

In Section 6.3, we will show how (5.3.18) provides another interpretation 
to the integrated tail distribution F; as the ladder height distribution of the 
random walk {Sn} given in (5.3.1). 

Cp(O,z,QI) = ij/r+,Fu(V)dv. 

Bibliographical Notes. The classical compound Poisson risk model was 
introduced by Filip Lundberg (1903) and extensively studied by Harald 
Cram& (1930,1955). It is therefore often called the Crame'r-Lundberg model. 
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In particular, Theorems 5.3.1, 5.3.2 and 5.3.3 go back to these two authors. 
From the mathematical point of view, the ruin function $(u) of the compound 
Poisson model is equivalent to the tail function of the stationary distribution of 
virtual waiting time in an M/GI/l queue. Thus, formula (5.3.16) is equivalent 
to the celebrated Pollaczek-Khinchin formula of queueing theory; see? for 
example, Asmussen (1987), Baccelli and BrCmaud (1994), Franken, Konig, 
Arndt and Schmidt (1982) and Prabhu (1965). It also is a special case of a 
more general result on the distribution of the maximum of a random walk 
with negative drift, see Theorem 6.3.3. Further details on the equivalence 
between characteristics of queueing and risk processes can be found, for 
example, in the books by Asmussen (1987) and Prabhu (1965). In risk theory, 
(5.3.16) is often called Beehan’s formula. The notion of severity of ruin was 
introduced in Gerber, Goovaerts and Kaas (1987). Recursive algorithms for 
the calculation of the joint. and marginal distributions of the surplus just 
before ruin and the severity of ruin can be found in Dickson, dos Reis and 
Waters (1995). For further results on the distribution of the ruin time, the 
surplus just before ruin and the severity of ruin, see Dickson (19921, Dickson 
and Waters (19921, Dufresne and Gerber (1988), h e y  and Schmidt (1996) 
and Gerber and SKU (1997). The duration of negative surplus and the 
maximal deficit during this time have been investigated in Dickson and 
dos Reis (1996,1997), dos Reii (1993) and Picard (1994). The compound 
Poisson risk model has been extended in several directions. Some of them 
will be discussed in later chapters of this book. For some other extensions 
we will refer to the literature. Notice that a compound Poisson process has 
finitely many jumps in bounded time intervals. Examples of claim arrival 
processes with stationary and independent increments and with infinitely 
many jumps in bounded intervals have been studied, for instance, in Dickson 
and Waters (1993), Dufresne and Gerber (1993) and Dufresne, Gerber and 
Shiu (1991). These processes are called gamma processes and belong to the 
larger class of LCvy processes. We return to this later in Chapters 12 and 13. 

5.4 BOUNDS, ASYMPTOTICS AND 
APPROXIMATIONS 

We have seen that it is generally difficult to determine the function $(u) 
explicitly from formula. (5.3.16). Therefore, bounds and approximations to the 
ruin probability +(?A)  are requested. Besides this, knowledge of the asymptotic 
behaviour of $(u) as u + 00 can also be useful in order to get information 
about the nature of the underlying risks. 
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5.4.1 Lundberg Bounds 

Since the claim surplus S( t )  at time t 2 0 has a shifted compound Poisson 
distribution with characteristics (At, Fu) and the shift is on -Pt, the moment 
generating function of S ( t )  is 

r i ~ ( ~ ) ( s )  = EesS(t) = exp(t(X(r%u(s) - 1) - B s ) ) .  

If f iu (s0)  < 00 for some SO > 0, then the function e(s) = A(r%u(s) - 1) - 0s 
is infinitely often differentiable in the interval (-co,80). In particular 

e(2)(s) = M!)(S) = XE (U2es”) > 0 ,  (5.4.1) 

which shows that e(s) is a convex function. For the first derivative O(’)(s) at 
s = 0 we have 

e(l)(o) = A & ,  (1) ( o ) - ~ = ~ p - p < o .  (5.4.2) 

It is easily seen that O(0) = 0. Moreover, there may exist a second root of 

e ( s )  = 0 .  (5.4.3) 

If such a root s # 0 exists, then it is unique and strictly positive. We call this 
solution, if it exists, the adjustment coeficient or the Lundberg exponent and 
denote it by y. 

Lemma 5.4.1 Assume th4t there ezists sOc E Ru (00) such that &u(s) < co 
if s < s, and lim,,,, mu(s) = 00. Then there exists a unique positive 
solution y to the equation (5.4.3). 

Proof By the above considerations it is enough to show that e(s) tends to 
infinity as s t s,. The case sa < co is obvious. Thus assume that s, = 00. 

Choose 5’ > 0 such that. Fu(z’) < 1. Then 

Note that the adjustment coefficient exists in the following situation. 

which t.ends faster to infinity than any linear function. 0 

The existence of the adjustment coefficient is important. because it allows 
uniform upper and lower exponential bounds for the ruin function $(u). Let 

Theorem 5.4.1 Assume that the adjustment coeficient 7 > 0 &ts. Then, 
20 = sup{z : FU(5) < 1). 

a-e-yu 5 $(u) <_ u+e-?‘’ (5.4.4) 

for all u 2 0,  where 
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Proof In view of Theorem 5.3.4, we can apply Theorem 4.5.1 with Fu replaced 
by t;g, and p = p = X0-l~. This gives (5.4.4) because 

rnu(5) - 1 I" e8y dI",(y) = 
W U  

Hence the positive root of p-' = 7jl~;,(~) is the positive root of (5.4.3). 0 

Results as in Theorem 5.4.1 are known in risk theory as two-sided Lundberg 
bounds for the ruin function @(u). Alternatively, an easy application of integral 
equation (5.3.9) leads to (5.4.4). R.loreover, for all u 2 0, 

< a+e-Ta if a+ > $ ( O ) ,  
> a-e-?% ifa- < @ ( O ) .  

This can be shown in the following way. N0t.e that 

(5.4.5) 

and analogously a- 5 $ ( O ) .  Let b 2 a+ such that b > 1cf(O). We prove 
indirectly that q(u) < beATu for all u 2 0. Assume the contrary. Denote 
uo = inf{u 1 0 : $(u) 2 be-Tu}. Since @(u) is continuous we have 
$(ug) = b e - T " O .  Furthermore, since + ( O )  < b we can conclude that 2 ~ g  > 0 
and $(ti0 - z) < be-7("0-") for 0 < z 5 210. Note that by the definition of a+, 
we have [ Fu(y) dy 5 b/OD e-v("o-v)Fu(y) dy . 

Ug 

Considering equation (5.3.9) for u = uo, this gives 

5 X 1" b e - 7 ( U O - Z ) F & )  dz = bAe-?* 

= bXeFTuo lwiv eTX dz dFu(g) = bXe-Yuo 

= b&-'Yu0(AU(7) - 1) = bpe-ruo, 

-(eTdl - 1) dFdY) Im: 
Y 

which leads to a contradiction. Thus the strict upper bound in (5.4.5) is 
proved. The lower bound follows analogously. 
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5.4.2 The Cram&-Lundberg Approximation 

In Section 3.4.1 we have found exponential upper and lower bounds for the 
ruin function @(u). We are now interested in the asymptotic behaviour of 
?,b(u)eTu. The question is whether ?,b(u)eTU converges to a limit or fluctuates 
between two bounds as u --t oa. We will see that the limit limu+oo ?,b(u)eyu 
exists. However, to show this we need the following auxiliary result. 

Lemma 5.4.2 Assume that the function z1 : R+ + ( 0 , ~ )  is increasing and 
let 22 : lR+ + El.+ be decreasing, such that 

rffi 

and 
lim sup{zl(x+g)/zl(z) : z 2 0,O 5 y 5 h} = 1 .  (5.4.7) 
h-tO 

Then, for Z(Z) = zl(z)z2(z) and for each distribution F on R+, the equation 
11 

9(u) = z(u) + 1 9(u - v) W V )  > u L 0 , 

admits a unique locally bounded solution such that 

(5.4.8) 

Note that Lemma. 3.4.2 is a version of the so-called key renewal theorem. 
Furthermore, (5.4.8) is called a renewal equation. A more detailed discussion 
of notions and results from renewal theory is given in Chapter 6. 

Theorem 5.4.2 Assume that the adjustment coeficaent 7 > 0 exists. If 
mu (7) < 00, then (1) 

P - lim @(u)er" = 
U-bM xh;'(r) - p * 

(5.4.10) 

If mu (1) (y) = 00, then limu-tOO $(u)er' = 0. 

Proof Multiplying (5.3.9) by eY' yields 
00 11 x +(u)eTu = (eTu F,(x) dz + Jd $(u - x)e'(u-')Fv(z)eY" dx). 

(3.4.1 1) 
It follows from the definition of y that 

(5.4.12) 
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and therefore (5.4.11) is a renewal equation. The mean value of the integrating 
distribut.ion d.F(x) = XP-1F;,(z)e7z dz is 

if m(l )  (7) < 00, and 00 otherwise. It is easily seen that the function 

z[u) = -eTu x lm F;,(z) dx 
P 

(5.4.13) 

(5.4.14) 

can be factored in the way given in Lemma 5.4.2. We leave it to the reader to 
show t.his as an exercise. Since 

(5.4.15) 

the assertion now follows from Lemma 5.4.2. 0 

The asymptotic result obtained in Theorem 5.4.2 for the ruin probability 
$(u) gives rise to the *called Cram&-Lundberg approximataon 

(5.4.16) 

The following numerical investigation shows that the above approximation 
works quite well even for small values of u. 

Example Let P = X = 1 and Fu(z) = 1 - $(e-. + e-22 + e-3s). In this 
example we use the expected inter-occurrence time as the time unit and the 
premium per unit time as the monetary unit. The mean value of claim sizes 
is P = 0.611111, i.e. the net profit condition (5.3.2) is fulfilled. Furthermore, 
computing the Laplace transform &(s) and inverting it, we get 

@(u) = 0.550790e-0.485131u + 0.0436979e-'-72235u + 0.0166231e-2-79252u. 
(5.4.17) 

On the other hand, (5.4.16) implies that in this case the CramQ-Lundberg 
approximation to $(u) is $a'app(u) = 0.550790e-0~485'31u. By comparison to 
the exact formula given in (5.4.17), the accuracy of this approximation can 
be andysed. Table 5.4.1 shows the ruin function +(ti) ,  its CramBr-Lundberg 
approximation $app(u) and the relative error ($app(~)-tj(u))/$(zc) multiplied 
by 100. Note that the relative error is below 1% for u 2 1.71358 = 2 . 8 ~ .  

Remark In the case of exponentially distributed claim siim, the constant 
on the right-hand side of (5.4.10) is (PS)-lX. Thus the Crambr-Lundberg 
approximation (5.4.10) becomes exact in this case. Vice versa, assume that 
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u 0 0.25 0.5 0.75 1 
1D(4 0.6111 0.5246 0.4547 0.3969 0.3479 
$app(U) 0.5508 0.4879 0.4322 0.3828 0.3391 
Er -9.87 -6.99 -4.97 -3.54 -2.54 
.U. 1.25 1.5 1.75 2 2.25 
1I)(4 0.3059 0.2696 0.2379 0.2102 0.1858 
&pp(U) 0.3003 0.2660 0.2357 0.2087 0.1849 
Er -1.82 -1.32 -0.95 -0.69 -0.50 

Table 5.4.1 Cram&-Lundberg approximation to ruin probabilities 

the Crmkr-Lundberg approximation is exact, i.e. there exists a constant c 2 0 
such that $(u) = m-Tu for all u 2 0. Then from (5.3.13) we have 

1 c  p - x p  _ _  . 
ps- X(l-iu(s)) 3 7 + 3  

- 

A rearrangement of the terms in this equation yields 

Bs(r + s - cs) - s(y + S ) ( B  - Ap) 
A ( 7  + s - cs) 

(pc - Xp)s2 - xpys 
AT + (A - Xc)s 

&Sj = 1 - 

= 1 +  * 

Since lims+m ~ [ J ( s )  = 0, we find that c = Xp(p)-l and y = p - l -  A$-'. Thus 
the claim sizes must be exponentially distributed. 

5.4.3 Subexponential Claim Sizes 

In Section 5.4.2 we found the asymptotic behaviour of the ruin function 
+(u) when the initial risk reserve u tends to infinity. However our result was 
limited to claim sizes for which the tail of the distribution function decreases 
exponentially fast. For many applications such an assumption is unrealistic. 
For instance, data from motor third liability insurance, fire insurance or 
catastrophe insurance (earthquakes, flooding etc.) clearly show heavy tail 
behaviour. In particular, Pareto, lognormal and loggamma distributions are 
popular in actuarial mathematics. 

In Section 2.5, we have shown that several families of heavy-tailed claim 
size distributions belong to the class of subexponential distributions. It 
turns out (see Section 2.5.3) that also their integrated tail distributions are 
subexponential. Note that in such a case the Pollaczek-Khinchin formula 
(5.3.16) implies that the ruin function @(u) decreases more slowly than any 
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exponent.ial function. Indeed, by (2.5.2) and (5.3.16), we have for u + 00 

$(u)esu 2 (1 - ApD-').\p@-'~(er)esU 00 

for all s > 0. This simple result indicates that, in the case of heavy-tailed 
claim sizes, the asymptotic behaviour of $(u) is very different from that in 
Theorem 5.4.2. If the integrated tail distribution F; is subexponential, then 
we have the following result. 

Theorem 5.4.3 Let p = A@' and assume that r;T; E S .  Then 

(5.4.18) 

Proof From (5.3.16) we know that $(u) is the tail function of a geometric 
compound with characteristics (p ,  Ffj). Note that for the probability function 
{ p o , p l , .  . .} with pn = (1 - p)p", there exists some ,c > 0 such that 
Cr=I pn(l + E ) ~  < 00. Thus, (5.4.18) follows from Theorem 2.5.4 since 

The above theorem suggests the approximation 

(5.4.19) P 
$app(u) = -(1 - F;;(u)) . 

1 - P  

Note that the quantity p captures all the information on the claim number 
process one needs to know. 

Examples 1. Assume that the claim sizes are Par(a, c) distributed. In order 
to have a finite mean (which is necessary by the net profit condition (5.3.2)) 
we must have cy > 1. The integrated tail distribution F;? is readily obtained 
as 

By Theorem 2.5.5, F& is subexponential. Thus, Theorem 5.4.3 leads to the 
following approximation to the ruin probability $(u): 

for u > c. Details are left to the reader. 

2. Let 8 = 1, X = 9 and FL.(x) = 1 - (1 + x)-l', where we use the premium 
ag the monetary unit. The integrated tail distribution F& is readily obtained: 
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Fh(z)  = l-(1+z)-lo. Rom Theorem 2.5.5 we conclude that both Frr E Sand 
Fh E S .  Approximation (5.4.19) then reads &pp(zd) = 9(l+zd)-'O. Table 5.4.2 
gives some values of ?+b(u) and of the approximation &pp(u) = 9(1+ u)-l0 a~ 
well as 100 times the relative error. The "exact d u e s "  of +(u) were calculated 
using Panjer's algorithm described in Section 4.4.2. In order to get a discrete 
approximation to the claim size distribution, this distribution was discretized 
with bandwidth h = i.e. q h  = P(k/1000 5 U < (k + 1)/1OOO). Consider 

u 
1 
2 
3 
4 
5 
10 
20 
30 
40 
50 

0.364 
0.150 

6.18 x 
2.55 x 
1.05 x 

1.75 x 
2.50 x 

1.21 x 10-16 

1.24 x 10-4 

1.60 x 10-15 

1.52 x 10-4 

9.22 x 10-7 
1.49 x 10-7 
3.47 x 10-10 
5.40 x 10-13 
1.10 x 10-14 

7.56 x 10-17 

8.58 x 

6.71 x 

Er 
-97.588 
-99.898 
-99.986 
-99.996 
-99.999 
-100 

-99.997 
-99.56 
-58.17 
-37.69 

a b l e  5.4.2 Approximation to ruin probabilities for subexponential claims 

for instance the initial risk reserve u = 20. Then the ruin probability +(u) is 
1.75 x which is so small that it is not interesting for practical purposes. 
However, the approximation error is still almost 100%. Thus, in the case of 
heavy-tailed claim sizes, the approximation (5.4.19) can be poor, even for 
large values of zd. 

Note that (5.3.18) and (5.4.19) imply that for u (very) large the ruin 
probabdity $(a) is (0 - Xp)-'Xp times the probability that the first ladder 
height of the random walk {Sn} considered in (3.3.1) exceeds u. But (B - 
Xp)-lXp is the expected number of ladder epochs of {Sn}. Intuitively this 
means that, for u large, the ruin will occur if one of the ladder heights is 
larger than u. 

5.4.4 Approximation by Moment Fitting 

We now present two further methods for getting approximations to the ruin 
function ?,h(u). The first one is based on replacing the risk reserve process 
{R(t)} by another risk process {R'(t)} such that for some n 2 1 the moments 
up to order n of certain characteristics of { R ( t ) }  and {R'(t)}  coincide. 
Furthermore, {R'(t)} is chosen in such a way that the ruin function tp'(u) 
of {R'(t)}  is easier to determine than $(u). 
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The second approximation method replaces the distribution function 1 - 
@@(u)/(Xp) by a simpler distribution function such that the moments up to 
order n coincide. 

The De Vylder Approximation In the case of exponentially distributed 
claim sizes, the ruin function is available $(ti) explicitly by (5.3.8). The idea 
of the De Vylder approximation is to replace {R( t ) }  by {R’ [ t ) } ,  where {R’( t )}  
has exponentially distributed claim sizes (with parameter 6’) and 

E ((w>k) = E ((w))k) (5.4.20) 

for I% = 1,2,3 and t 2 0. Note that 

E ( R ( t )  - U) = (0 - Ap)t , Var R(t) = Var (U + Pt - R(t ) )  = Apc’t: 

and 

E((R(t) - E (R(t))I3)  = -E( (u  + Pt - R(t )  - E (U + p tR( t ) ) )3 )  = -A&’t. 

This implies that (3.4.20) holds if 

( 3 )  6A’ Apu, t = - 
A’ 2A‘ (8 - A& = (0f - 6.>t , A& = (sl)zt ,  

( 8 9 3  * 

Thus, the parameters (#,A’, p’) are givenby 

and 

(5.4.22) 

Consequently, using (5.3.8), we derive the De Vylder approximation t,o the 
ruin probability +(u): 

(5.4.23) 

Of course, the approximation & , p p ( ~ )  given in (5.4.23) is equd to +(a) in 
the case of exponentially distributed claims. However, the numerical example 
discussed at the end of this section shows that the approximation (5.4.23) is 
quite accurate for nonexponential claim size distributions as well. 

The Beekman-Bowers Approximation Consider the distribution func- 
tion F ( I )  = 1 - p@(z)/(Ap). Then, by (5.3.11) we have that F(0) = 0. Thus 
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F ( z )  is the distribution function of a positive random variable 2. Moreover, 
by Theorems 5.3.1 and 5.3.3, the distribution F of 2 is absolutely continuous 
and has moment generating function 

In the derivation of the last equation, we used integration by parts. Thus, 

P P(0- Ac6) 3 

AP xp ps - A(%,($) - 1) 
riaz(s) = 1 - - + (5.4.24) 

The idea of the Beekman-Bowers approximation is to approximate the 
distribution function F by the distribution function F'(u) of a I'(u', 6')- 
distributed random variable such that the first two moments coincide. This 
means that we have to determine the first two moments of F. Assume that 
p c )  < 00. Then, by (5.4.24) the moment generating function riaz(s) is twice 
differentiable and the first derivative of h z ( s )  is 

Now, using lim,+o s-'(Ps - A(%v(s) - 1)) = B - Ap, we find 

(1) (2) (2) 
S h t " ( S )  - (A,($) - 1) m, (s) +$ria, (8) - 7jZC)(3) - -- p, 

2 '  
lim = lim 
s-to S2 s+o 2s 

and thus 

Differentiating both sides of (5.4.25), we get for the second derivative of riZz(s), 

x (sm$'(s)(ps - A(TiEG'(3) - 1)) 

-2(Smg)(s) - (riz,(s) - 1))(/3 - xriap(s))) . 
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the second moment of Z becomes 

(5.4.27) 

Using (5.4.26) and (5.4.27), we get that the parameters a' and 6' of the 
approximating Gamma distribution I'(u', 6') are given by 

> -  a' ,&Lp _ -  - 
6' 2p(S - Ap) ' 

Thus, for these parmeters u' and a', the Beekman-Bowers approximation to 
the ruin probability @(a) = Ap,P1(1 - F(u)) is 

where F'(a)  is the distribution function of the Gamma distribution l-'(u', 6') .  

Remark Let 2' be I'(u', 6') distributed. If 2a' E {1,2,. . .}, then 26'2' is 
x&,-distributed. Thus, approximating 2u' by a natural number allows the 
computation of F'(u) by using standard statistical tables and software for 
x'distributions. 

Example Let us again consider the example from Section 5.4.2 with 
X = = 1 and &(z) = 1 - '(e-" 3 + e-2x + e-32). The moments of the 
claim size U are p = &' = 0.611111, = 0.907407 and p $ )  = 2.32407. 
The parameters of the De Vylder approximation are 

6' = 1.17131 , A' = 0.622472, 0' = 0.920319 I 
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For the Beekman-Bowers approximation we have to solve the equations 

which yields the parameters a' = 0.895561 and 6' = 0.469104. Thus, 
using the gamma distribution I'(u', 6') we can calculate the Beekman-Bowers 
approximation (5.4.28) to the ruin probability @(u). Alternatively, it is also 
possible to approximate @(u) by x'-distributions although 2u' = 1.79112 
is not near to any natural number. Following the remark above, we can 

11 0 0.25 0.5 0.75 1 
?/J(u) 0.6111 0.5246 0.4547 0.3969 0.3479 
DV 0.5774 0.5102 0.4509 0.3984 0.3520 
Er (in %) -5.51 -2.73 -0.86 0.38 1.18 
BBl 0.6111 0.5227 0.4553 0.3985 0.3498 
Er (in %) 0.00 -0.35 0.12 0.42 0.54 
BB2 0.6111 0.5105 0..4456 0.3914 0.3450 

u 1.25 1.5 1.75 2 2.25 
+(.I 0.3059 0.2696 0.2379 0.2102 0.1858 
DV 0.3110 0.2748 0.2429 0.2146 0.1896 
Er (in %) 1.67 1.95 2.07 2.09 2.03 
BB1 0.3076 0.2709 0.2387 0.2106 0.1859 
Er (in %) 0.54 0.47 0.34 0.19 0.04 
BB2 0.3046 0.2693 0.2383 0.2110 0.1869 
Er (in %) -0.42 -0.11 0.18 0.40 0.59 

Er (in %) 0.00 -2.68 -2.02 -1.38 -0.83 

Table 5.4.3 Approximation by moment fitting 

interpolate between the two distributions xz and xf. This yields 

FlPp(u) = 0.20888x.q(2S'u) + 0.79112~~(26 '~)  . (5.4.29) 
The weights are 2 - 2a' and 20' - 1, respectively, which is motivated by 
2a' = (2-2a') 1+(2u'- 1) 2. In Table 5.4.3 a variety of approximations to Q ! J ( ~ )  

are given for some realistic values u. We observe that these approxjmations 
work quite well: DV denotes the De Vylder approximation, BB1 the Beekman- 
Bowers approximation and BB2 gives the values obtained by interpolation 
(5.4.29). The relative error Er is given in percent. 

Another approximation method, based on moment fitting, relies on a 
diffusion approximation to the ruin function @(u) of the compound Poisson 
model, see also the bibliographical notes to Section 5.6. 
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5.4.5 Ordering of Ruin Functions 

We compare the ruin functions $(u) and Jl'(u) of two compound Poisson 
models with arrival rates A and A', premium rates P and ,!?', and claim size 
distributions FU and Ful, respectively. If we suppose that 

A 5 A'> PrJ 5 PU', P L  P' (5.4.30) 

(5.4.31) 

then we immediately get $(u) 5 $'(a) for all u 2 0. It suffices to recall that the 
right-hand side of (5.3.16) is the tail function of a geometric compound with 
characteristics (p, Pu) and to use Theorem 4.2.3a. It turns out that (5.4.31) 
can be replaced by a slightly weaker condition. 

Theorem 5.4.4 If X 5 A' and P 2 p' and if U < s ~  U', then @(u) 5 Jl'(u) for 
all u 2 0. 

Proof By Theorem 3.2.2 we have that U Isl U' is equivalent to 

for all z 2 0. We also have pu 5 put. This gives 

where 6 = pr~(pu~) - '  5 1. Let 11, I z , .  . . be a sequence of independent and 
identically distributed indicator random variables with P(I  = 0) = 1 - 6 and 
P(I = 1) = 6. Furthermore, let U1,oz ,... and @l,fia ,... be sequences of 
independent and identically distributed random variables with distributions 
Pu and PU, respectively, and independent of {I, ,} .  Finally, assume that 
N', N, No are random variables which are geometrically distributed with 
parameters (A'pu,)/p'.(Xpu)/p, 6(A'pul)/p', respectively, and independent 
of { I , , } , { f i k } , { @ k } .  Recall that $(u) = P ( c L l c r n  > u) and $'(u) = 
P(cz.l UA > u) and notice that we can write (5.4.32) as 

U t  Lst I U .  (5.4.33) 

Then we get cell i$ Lst xrll I k o k  by Theorem 4.2.3a and (5.4.33). It now 
remains to show that 

N 
(5.4.34) 
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N' d Passing to Laplace-Stieltjes transforms we can verify that KkOk = 
C:zl fik and, by Theorem 4.2.3a, we get that Cfzl o k  Zst cfz1 cTk since 

0 Are zst N. This completes the proof. 

Corollary 5.4.1 If FU is NBUE, then for all u 2 0 

(5.4.35) 

Stmilarly, the reversed inequality in (5.4.35) i s  true if Fu is KWUE. 

Proof Suppose that Fu is NBUE and let Fuf = Exp(S), where 6 = pG1. This 
means that E ((1 - z [ U > z) 5 /.hrJ for all z 2 0, which can be rewritt.en as 

Integrating both sides yields 

log Im Fu(y) dy 5 -&,'s + logpu z 2 0. 
X 

Hence, JxwFu(y)dy 5 pue-6x, x 2 0, or equivalently U U'.  Applying 
now Theorem 5.4.4 with X = A' and ,!? = 9' and recalling formula (5.3.8) we 
obtain that $(u) 5 $'(PI) = XpLc;,8-1e-(6-X/fl)u, u 2 0. Similar considerations 
are valid for Fu being NWUE with the reversed inequa1it.y in (5.4.35). 0 

Bibliographical Notes. One-sided bounds of the type +(a) 5 e-TU 
as well as asymptotic relations +(a) - ~ e - 2 ~  for large U-values have 
been studied by Filip Lundberg (1926,1932,1934). The modern approach 
to these estimations is due to Cram& (1955). By means of martingale 
techniques one-sided inequalities were also derived in Gerber (1973) and 
Kingman (1964) in the settings of risk and queueing theories, respectively. 
In Taylor (1976), two-sided bounds of the form (5.4.4) were obtained for 
the ruin function +(PI). The renewal approach to Theorem 5.4.2 is due to 
Feller (1971). Graphical and numerical techniques to estimate the adjustment 
coefficient abound. For an existence argument, see Manimitzsch (1986). 
Recently, statistical techniques have become available as well. A first attempt 
using stochastic approximation can be found in Herkenrath (1986). The 
approach used in Csorgo and Teugels (19%) employs the notion of the 
empirical moment generating function as defined in (4.5.3); see also Pitts, 
Grubel and Embrechts (1996). Other approaches identify the adjustment 
coefficient as the abscissa of convergence of a Laplace transform as done 
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in Deheuvels and Steinebach (1990) or use intermediate order statistics as 
in Csorgo and Steinebach (1991). For a bootstrap version, see Embrechts and 
Mikosch (1991). A Hill-type estimate has been proposed in Richter, Steinebach 
and Taube (1993). Procedures that apply to more general risk models can be 
found in Christ and Steinebach (1995) and in Schmidli (199713). Bounds for 
the adjustment coefficient are given in Gerber (1979). Theorem 5.4.3 goes 
back to Teugels and Veraverbeke (1973) and to Embrechts and Veraverbe- 
ke (1982); see also Asmussen, Schmidli and Schmidt (1999), Cohen (1973), 
Embrechts and Villasefior (1988), Kluppelberg (1989) and Pakes (1975). In the 
special case of Pareto distributed claim sizes, the result of Theorem 5.4.3 was 
obtained by von Bahr (1975), while Thorin and U'ikstad (1977) dealt with the 
lognormal distribution; see also Ramsay and Usabel (1997) and Seal (1980). 
Higher-order asymptotic expansions can be found, for example, in Willekens 
and Teugels (1992). Simulation of ruin probabilities for subexponential claim 
sizes was considered in Asmussen and Binswanger (1997). In Kluppelberg and 
Stadtmuller (1998), the asymptotic behaviour of the ruin function +(u) has 
been investigated for the compound Poisson model with heavy-tailed claim 
size distribution and interest rates. It turns out that, in this case, $(a) 
is asymptotically proportional to the tail function Fu(a) of claim sizes as 
a --+ ao; this is in contrast to the result in Theorem 5.4.3 for the model 
without interest,. More details on risk models with interest are given in 
Section 11.4. Large deviation results for the claim surplus process in the 
compound Poisson model with heavy-tailed claim sizes have been derived in 
Asmussen and Kluppelberg (1996) and Kluppelberg and Mikosch (1997). The 
De Vylder approximation was introduced in De Vylder (1978). The Beekman- 
Bowers approximation can be found in Beekman (1969). Theorem 5.4.4 is 
from Daleg and Rolski (1984). For orderings of risks and results like (5.4.31), 
see Pellerey (1995). Asymptotic ordering of risks and ruin probabilities has 
been studied, for example, in Asmussen, hey, Rolski and Schmidt (1995) and 
Kluppelberg (1993). 

5.6 NUMERICAL EVALUATION OF RUIN FUNCTIONS 

In this section, we discuss an algorithm for the numerical inversion of Laplace 
transforms which makes use of Fourier transforms. Recall that the Fourier 
transform @(3) of a function g : R + R is defined by $(s) = Jym e'""g(2) dx. 
The following lemma shows how to invert the Fourier transform. 

Lemma 5.5.1 Let g : R + IR be a measurable functaon s w h  that 
J1", 1g(t)l dt < 00 and let $(s) be its Fourier transform. 
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(a) If J:m I$(s)l ds < 00, then g(t) is a bounded contine~ous function and 

(5.5.1) 

(b) If g(t) is a continuous function with locally bounded total variation, then 

T 1 
g(t) = 2;; Jim LT e-'"$(s) ds , t E R .  (5.5.2) 

The proof of Lemma 5.5.1 is omitted. For part (a) a proof can be found, for 
example, in Feller (1971), Chapter XV.3, and for (b) in Doetsch (1950). 

Another auxiliary result which we need is the Poisson summation formula. 
Recall that for a continuous periodic function gp(t), having locally bounded 

where q = (h /2n)  J::Fh gp(t)e-i"ht dt, converges to gp(t) and this uniformly 
with respect to the variable t. Actually, for pointwise convergence of the 
Fourier series it sufEces to assume that gp(t) is of locally bounded variation 
and that gp(t) = (1/2)(gp(t+) + gp(t-)). In the following, let 

variation with period 2n/h ,  the corresponding Fourier series CE-, cke ikht , 

Then, assuming that gp(t) is well-defined for all t, the function gp(t) is periodic 
with period 2n/h.  

Lemma 5.5.2 Let $(s) be Me Fourier transform $(s) = Jym eistg(t) dt of 
an absolutely integrable continuow function g : R + R. If the Fourier series 
corresponding to gp(t) convergges pointwise to gp(t), then 

(5.5.3) 
2nk h O0 

m 

g(t + -) = - c @(kh)e-'kht. 
k=-m 

h 2n 
&=-m 

Proof By the assumption we can represent the function gp(t) by the Fourier 
series gp(t) = CE-, ekeikht , where 

h 
2n 

g(t)e-ikht dt = -@(-kh).  

Hence CE-, g ( t  + ankh-') = ( h / 2 n )  CF=-, @(kh)eFikht. 0 
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We now discuss 
transform 

an algorithm for numerical evaluation of the Laplace 

t ( z )  = e-zuc(u) du (5.5.4) 

for some class of functions c : EL+ -+ R+. Note that if ~ ( u )  is a bounded and 
measurable function, then its Laplace transform i ( z )  is well-defined for all 
complex numbers 2 with %z > 0. In this section we will assume that ~ ( u )  is a 
bounded continuous function on R+ with locally bounded variation. 

The numerical method discussed below can be used to compute the ruin 
function $(u) in the case when its Laplace transform is known but does 
not allow analytical inversion. Sometimes the analytical inversion of t.he 
Laplace transform of +(u) is possible, as in the exponential case as shown 
in Section 5.3.3. Inversion is also possible for the hyperexponential claim size 
distribution from Section 5.4.2, and for some further examples discussed at 
the end of the present section. 

We use Lemma 5.5.1 to derive a formula for c(u) in terms of its Laplace 
transform. 

Theorem 5.5.1 For all u 2 0  and x > 0 
T 2euz 

C ( . )  = - JFw 1 cos(uy)%i(z + iy) dy . (5.5.5) 

Proof Let x > 0 be fixed. Consider the function g : R + R defmed by 

(5.5.6) 

with z 2 0 and b = edZtc(t) dt < 00. The corresponding Fourier transform 
is then given by @(s) = i ( z  - is) + i ( z  + is) = 292L(z +is). Since g ( t )  given 
in (5.5.6) is an even function, we have $(s) = a@($). Lemma 5.5.lb yields 

T 2 
71T-m 0 

= - lim 1 cos(ty)!RL(z+iy)dy. 

T That is, c(u) = 2eU27r-l l i m ~ + ~  So cos(uy)!Rt(z + iy) dy for u,x 2 0. 0 

For practical applications of Theorem 5.5.1, it remains to numerically 
compute the integral in (5.5.5). This integral has to be approximated by a 
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suitably chosen sum. For instance, we can use the infinite trapezoidal rule 
with a (possibly small) discretization width h > 0 to derive the following 
approximation to c(u): 

00 

(5.5.7) 
2eU 

capp(u) = ~ k ( @ e ( z )  + xcos(ukh)%e(z + ikh)) . 
k = l  

For reasons that will be explained later, we put h = n/(2u): r = a/(2u) for 
some a > 0. Then 

03 2em 
--h( K $9?i(z) + cos(ukh)&(z + ikh)) 

k = l  
ea/2 uo 

= - ( S z i  ($) + 2 1 cos ( k i )  &(' + 2u ink 
k= 1 

2u 

Now note that 
if k is odd, cos(k-) = { y-1)L/2 ifkiseven, 

2 
and thus we only have to consider even ks. We arrive at the discretization 
error 

.. . 

(5.5.8) 
It turns out that the discretization error can be controlled. 

Theorem 5.5.2 For all u 20, 

k=l 

Proof Consider the function g( t )  defined in (5.5.6), i.e. 

In this case the sum gp(t) = Cz-, g(t  + 2nk/h) converges uniformly in t .  
Thus, gJt)  is well-defined, continuous and of locally bounded total variation. 
The assumptions of Lemma 5.5.2 are therefore satisfied. We denote the Fourier 
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transform of g(t) by $(s). Let 5 = a/(2u) and h = n/u. Then, recalling that 
t is the Laplace transform of ~ ( z ) ,  we have (?, (kt) = e(z - ith), since 

Thus (5.5.3) takes the form 

recalling that e-ika = (- l)&. Since 
oo 

$(s) = eis‘g(t) dt = e(z - is) + i ( z  + is) = 2 a ( 2  + is) 
J-00  

this gives 

ea/2 O0 a + i2kn 
2u 

= -%“(t) + - U X(- l )kRZ(  2u ) 
k = l  

m 

- e-akc( (2k + 1)u) , 
k=l 

which completes the proof. 0 

Comparing (5.5.9) with (5.5.8), we get for the discretization error d(u) in 
(5.5.8): d(u) = xgl e-akc((2k + 1)u). Since 0 5 C(U) 5 1, 

(5.5.10) 

for a > 0. This suggests that a. should be chosen as large as possible. However, 
if a is too large, ot,her numerical problems can occur, e.g. rounding errors 
resulting from multiplication by the factor eaI2. 
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Note that the discretization width h = n/(2u) has been chosen to end up 
with an alternating series (5.5.9), provided that the terms R&((a+i2~k)/(2u)) 
have the same sign for all k 2 1. The Eerier summation method, applied to 
alternating series, can now be used to accelerate convergence. 

Let { a k }  be a decreasing sequence of positive numbers such that u k  + 0 as 
k + 00. With the notation 

Auk = a k  - a k + l  , An+lUk = A(Anak), AoUk = Uk , 

we can represent the n-th partial sum s ,  = C H l ( - l ) k + l ~ t  of the infinite 
series s = (-l)k+'Uk by 

sn = ($ + 5 1 n-l E(- l )k+lAak) + (-l)"+l% 
2 '  k=l 

(5.5.11) 

Thus, s; = a12-l + 2-' C ~ ~ ~ ( - l ) k + l A u k  + s as n + 00. Moreover, if 
the sequence { h k }  is decreasing, the sequence {sk} is also alternating and 
(5.5.11) implies that the remainder cn = s - S n  can be bounded by 

= (-lIn& = (-l)"+'(sn - S )  

Qn an 
2 - 2  

= [(-l)"+'(P:, - s)] + - < - , 

because then the term in the brackets is negative. Thus, using the same 
argument as above, for the remainder ck = s - sk we have idn/ < A ~ n / 4 ,  
provided that the sequences {Auk} and (A2ak} are decreasing. By iteration 
we derive a representation for the alternating series s = C ~ l ( - l ) k + l a k .  
More precisely, for each n E N, we have 

(5.5.12) 

which suggests that the first sum in (5.5.12) is a good approximation to s 
even for moderate values of n. 

The Euler transformation {al,aa,a3,. . .} e {Aoal! A'u1, A2al,. . .} can 
also be used when computing the series s under much weaker conditions. It 
is for example not necessary to assume that the Uk are positive or monotone. 

Lemma 5.5.3 Let {ak} be an arbitrary sequence of real numbers. If the 
series s = C,"=, (-l)'+'ak conwerges, then the Euler-transformed series 
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CEO Aka,/2k+f' converges to the same limit. Under the additional assump- 
tion that, for each n E IN, the sequence (Anak} i s  decrewang an k, 

The proofof Lemma 5.5.3 can be found, for example, in Johnsonbaugh (1979). 
Usually, a good approximation to s = Cgo(-l)kak is obtained when the 

alternating summation a0 - a1 + a2 - . . . is combined with Euler summation. 
So, s = s,-+ (-l)n+l CEO 2'(k+1)Aka,+1 is approximated 

k=O 

An induction argument shows that 

bY 

(5.5.13) 

Hence, an application of the approximation C(rn,n) given in (5.5.13) to the 
series in (5.5.9) results in the approximation to c(u) 

(5.5.14) 

where 

Examples Consider the compound Poisson model specified by the character- 
istics (A, Fu) and let @(ti) be its ruin function. Further, p = (XE U)/& The 
Laplace transform L(s) = S?exp(-su)$~(u)du is known by (5.3.14). The 
proposed method can lead to two types of errors, resulting from discretization 
and from truncation. Choosing a = 18.5, the discretization error is less than 

(computed from (5.5.10)). In Table 5.5.1 we present the results of the 
numerical computations for three cases of claim size distributions. We always 
take p = 0.75 and fi  = 1: 
(a) FV = pExp(a1) + (1 -p)Exp(az) with p = 2/3, a1 = 2 and a2 = 1/2, i.e. U 
is hyperexponentially distributed, 
(b) FU is the gamma distribution l?(1/2,1/2) with the density function 
fu(z) = ( 2 7 r ~ ~ ) ~ / ~ e x p ( - 2 / 2 )  (then p = 1 and o2 = 2), 
(c) F" is the Pareto mixture of exponentials PME(2). 
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Hyper-exponentially distributed claim sizes 
u Exact Numerical u Exact Numerical 

inversion inversion 
0.1 0.73192117 0.73192119 5.0 0.32004923 0.32004975 
0.3 0.69927803 0.69927809 6.0 0.27355552 0.27355607 
0.5 0.67037954 0.67037965 7.0 0.23382313 0.23382369 
1.0 0.60940893 0.60940913 8.0 0.19986313 0.19986366 
2.0 0.51446345 0.51446378 9.0 0.17083569 0.17083620 
3.0 0.43843607 0.43843650 10.0 0.14602416 0.14602464 

I'(1/2,1/2)-distributed claim sizes 
U Exact Numerical u Exact Numerical 

inversion inversion 
0.1 0.733833531 0.733833534 5.0 0.322675414 0.322675411 
0.3 0.705660848 0.705660851 6.0 0.274442541 0.274442538 
0.5 0.680115585 0.680115587 7.0 0.233464461 0.233464459 
1.0 0.622928580 0.622928381 8.0 0.198626710 0.198626707 
2.0 0.526512711 0.526512711 9.0 0.168998278 0.168998276 
3.0 0.446685586 0.446685585 10.0 0.143794910 0.143794907 

Pareto mixture of exponentials PME(2) 
u Il'umerical Asymptotic u Numerical Asymptotic 

1.0 
2.0 
3.0 
5.0 
6.0 
7.0 
8.0 
9.0 

10.0 

inversion 
0.60382220 
0.50796380 
0.43828568 
0.34156802 
0.30629948 
0.27682399 
0.25183704 
0.23040797 
0.21185227 

approximation 
1.5 
0.75 
0.5 
0.3 
0.23 
0.2 1429 
0.1875 
0.16667 
0.15 

20.0 
30.0 
40.0 
50.0 
60.0 
70.0 
80.0 
90.0 

100.0 

inversion 
0.11036 
0.07060 
0.05062 
0.03899 
0.03 15 1 
0.02635 
0.02260 
0.01976 
0.01754 

approximation 
0.075 
0.05 
0.0375 
0.03 
0.025 
0.02 143 
0.01875 
0.01667 
0.015 

Table 5.5.1 Ruin probability $(u) 
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For the numerical computations of @(u) presented in Table 5.5.1 we used 
(5.5.14) with m = 11, n = 15 and a = 18.5. We then have that JC(rn,n f 
1) - C(m, ra)l is of order lo-’. Kote however that for cases (a) and (b) there 
exist explicit solutions. For example, for the case (a) the ruin function +(u) 
is given by 

+(u) = 0.75 (0.935194e-0.’5sg3U + 0.0648059e-’~59307u) . 
We leave it to the reader to show this as an exercise. Furthermore, it is shown 
in Abate and Whitt (1992) that, for case (b), 

q(u) = p(ale-6u + p-’g(fi) - ale-du5(((1 + 8 ~ ) ’ ’ ~  - 1)fi/2) 
-ct2eKus( (( 1 + 8 ~ ) ’ ’ ~  + 1 ) 6 / 2 ) )  , 

where @(z) is the distribution function of the normal distribution, and 

I - P )  1 - 2p 
f J p + 2 p + J G - & ) ’  = Q 1 + - t  P 

1 u = 2p+6-1/2.  (4P - 1) 

Bibliographical Notes. The method to compute the ruin function $(u) 
by numerical inversion of its Laplace transform was presented in Abate and 
Whitt (1992); see also -4bate and Whitt (1995), Choudhury, Lucantoni and 
Whitt (1994), O’Cinneide (1997). Another inversion technique for Laplace 
transforms has been studied in Jagerman (1978, 1982). For numerical 
inversions of characteristic functions, see, for example, Bohman (1975). 

5.6 FINITELHORIZON RUIN PROBABILITIES 

We now show that for two special claim size distributions, the finite-horizon 
ruin probability +(a; L) can be given in a relatively simple form. Furthermore, 
we will express the survivai probability $(u;z) = 1 - $(u;z) in terms of the 
aggregate claim amount distribution and derive Seal’s formulae. 

5.6.1 Deterministic Claim Sizes 

In this section we give a recursive method to calculate the finite-horizon ruin 
probability +(u; z) for the case of deterministic claim sizes. Recall that ~ ( u )  
denotes the time of ruin, and that 1x1 is the integer part of L. 

Theorem 5.6.1 Assume that P(U = p)  = 1 for some p > 0, Le. the claim 
sizes ore deterministic. Let $(u; 2, y) = P(r(u)  > L, R(z) = 0). 



192 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

(a) Then for y > 0, 

and if u/,u, zP/p E {1,2,. . .}, then for y such that g/,u E { 1,2,. . .}, 
d u ;  0, Y) = 6th) > (5.6.1) 

(b) Let z = lu/pJ + 1 - u / p  and asstlme that (u + @ ) / p  E {1,2,. . .}. Then 
for y such that y / p  E {11 2,. . .), 

(c) Let u, x 2 0 be arbitrary and let z = (u + zp) /p  - [(u + zP)/pJ. Then, 
the survival probability $(u; x) can be obtained from 

l (U+ZP)IPI  

P(&p > u) otherwise. 

c 9(u; 2 - w / P ,  k P ) P ( f i ( Z P )  I Pk)  if 9s 2 zp, 

(5.6.4) 

Proof Consider the counting process { f i ( t ) }  where #( t )  = N(p/?-lt) ,  
i.e. ( # ( t ) }  is a Poisson process with rate Ap/P. Using the transformation 

- 
?+h(u;s) = 

it is enough to prove the theorem in the case B = 1.6 = 1 which is assumed in the 
following. Furthermore, it is easy to see that then the multivariate survival 
function $(u;x,y) can be analysed by considering the risk reserve process 
( R ( t ) }  at those times t only where R(t) is an integer. If R(t) = 0, then ruin 
has occurred before t because P ( N ( t )  - N ( t - )  > 0) = 0. We subdivide the 
remaining part of the proof into three steps. 
(a) Formula (5.6.1) is obvious. Let 3: > 0. There are j claims in the time 
interval (0,1] with probability exp(-A) Aj/(j!). The risk reserve at time 1 is 
equal to u + 1 - N(1). Ruin occurs in (0,1] if and only if u + 1 - N(1) 5 0. 
Thus, (5.6.2) follows using the law of total probability and the independence 
properties of the compound Poisson model. 
(b) Note that R(z)  = zl f z - N ( z )  E Z. The first epoch t > 0 where 
R(t) E Z is z. In the time interval (0, z], there are j claims with probability 
exp{ -Az} (Az)j/(j!). The risk reserve at time z is equal to + z - N ( z ) .  Ruin 
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occurs in (O,z] if and only if u + z - N ( z )  5 0. Now (5.6.3) follows by the 
same argument as used in case (a). 
(c) Assume first that z 2 z. If ruin has not. yet occurred, then the risk reserve 
att imez-zisanintegerbetweenlandu+(z-z) = lu+zJ.IfR(z-z) = k  
and ruin has not occurred up to time z - z, then ruin does not occur in the 
interval (z - z,z] if and only if N ( z )  - N ( z  - z )  5 k. This yields (5.6.4). 
If z < z then R(t) 4 IN for all 0 5 t 5 z. Thus, ruin occurs if and only if 
N ( z )  > u. 

Remark Note that in (5.6.2) and (5.6.3) it is possible to sum over 
y E {1,2 ,... }. Thus, formulae (5.6.2) and (5.6.3) remain true if 4(u;z,y) 
is replaced by $(u; 2). However, the use of the multivariate survival function 
(b(u;z,y) is necessary in order to be able to compute the finite-horizon ruin 
probability $(u; z) = 1 -$(?A; x) in the case where R(z) /p  4 2. Indeed, if ruin 
has occurred before the next time f after 2 where R ( f ) / p  E Z but not before 
f - p / &  then we cannot decide whether ruin occurred before or after z. 

5.6.2 Seal’s Formulae 

We now express the survival probability q(u ;z )  in terms of the distribution 
F x ( ~ )  of the aggregate claim amount X ( t )  = El”=’,”’ Ui. If U has density fv 
then the distribution function of X ( t )  can be expressed as 

~ x ( ~ , ( z )  = e-XZ + p x c L , ( l ) d a r ,  3 2 0 ,  

where ]xct,(y) = C~=’=l ( (Xt) f l / . ! )e-XL~~~(y) .  Formulae (5.6.6) and (5.6.7) 
below axe known in actuarial mathematics as Seal’s formulae; see also 
Theorem 10.3.5. 
Theorem 5.6.2 Assume Mat P(U > 0 )  = 1. 
(a) Then, for initial rdsk reserve u = 0,  

(5.6.6) - 1 1 Bz 
?/40; z) = --E (R(z)+) = 1 F X ( s ) ( ? d  dy - 

Pz 
(b) If u > 0 and U has dewity f&) then 

$(u; 2) = F%(,) (. + 82) - a 

+ ( o ; ~ )  = P(n{wt) L 01) = E (P(n{x(t) 5 PO I w))  

$(O, z - Y ) f q r ) ( ”  + PY)  dy - (5-6-7) /D”- - 

Proof Assume first that u = 0. Then 
- 

t<r t l z  
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where we used the following property of the compound Poisson process { X ( t ) } .  
For all x > 0 and y E N, we have 

see also Theorem 10.3.5. Thus, the first part of (5.6.6) is proved. The second 
equality in (5.6.6) follows readily using integration by parts. Let now u > 0. 
We leave it to the reader to show that $(u; x) satisfies the integro-dserential 
equation 

I"- a- a- 
O-+(U; 2) - -+(u; 2 )  + X 
, au ax $(u - 2/; X) dFU(9) - x$(~ ;  X) = 0. (5.6.8) 

Let &(s; 2) = 
Multiplying (5.6.8) by e-m and integrating over (0, m), we obtain 

e-""T(er; z) du denote the Laplace transform of $(u; x). 

8 -  
ax * P(s i , (s ;  2) - $(O; 2)) - -G(s;  z) + x i , ( , ;  X)(iU(S) - 1) = 0, 

as in the proof of Theorem 5.3.3. From the theory of ordinary differential 
equations (see, for example, Hille (1966)) we know that the general solution 
to this differential equation is 

%(s; 2) = (c - i ' $ ( O ;  y)pe-(pa+x(i"(")-'))y d e(flS+x(iV(S)-1))* (5.6.9) 

for some constant c. Putting x = 0 yields 

Note that s-l exp{Xt(CLr(s) - 1)) is the Laplace transform of F x ( ~ ) ( v ) .  Thus 
&3sts-1 exp{Xt(iv(s) - 1)} is the Laplace transform of F-X(~)(V + Pt)  and 
eO*texp{Xt(i~(s) - 1)) is the Laplace transform of f , ~ ( ~ ) ( v  + Pt) .  For the 
second term in (5.6.9), this gives 

$ (0; y)Pe(Oa+x(iU ( S)-l))(z-U) dy 1'- 

which is the Laplace transform of the second term in (5.6.7). 0 
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Note that F'c,,(u + Px) is the probability that R ( x )  3 0. This is, of 
course, necessary for survival. The second term in (5.6.7) must therefore be 
the probability that R(x)  2 0 and ruin has occurred up to time x. If ruin 
occurs up to time 2 but R(x)  2 0, then there must be a last (random) point 
Y before x for which R(Y) = 0. Then: formally we have 

P(Y E dy) = +(dy) = 0, n W) 2 01) 
Y<S<X 

= P(Xb)  E u + d ( P y ) ) W ; z  - Y) 
Bf.(,, (u + P v ) m  z - 9 )  dY 1 

= 

because of the independence properties of the compound Poisson model. Thus 
the second term in (5.6.7) can be interpreted as conditioning on the last time 
;y before x where R(y) = 0. 

5.6.3 Exponential Claim Sizes 

In this subsection we deal with the case of exponentially distributed claim 
sizes, that is Fu = Exp(6) for some 6 > 0. Before embarking on the detailed 
calculations, we introduce an auxiliary function that is intimately connected 
to the modified J3essel function l o (x )  introduced in Section 2.2.1: 

(5.6.10) 

The next lemma collects some useful formulae involving the function J ( z ) .  

Lemma 5.6.1 The following relations are valid: 
(a) x~(~)(x) + J(')(z) - ~ ( x )  = 0. 
(b) For a, b, c 6 R with a # 0, 

1 -  
U 0 

1' e-bwJ(l)(uu) dw = - e "J(ac) - + 1' e-b"'J(aw) dw . 

(c) For u,b,c E R wath b # 0 ,  

1' we-b"'JJ(l)(aw) du = 

(d) For s > 0 and z E R, 

1" e-sw J(zw)  dw = s-'etis. 
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Proof All statements of this lemma are elementary. The equation in (a) is the 
classical differential equation for the (modified) Bessel function. The formula 
in (b) is proved by integration by parts; (c) also follows from differentiation 
and an application of (a). Finally, (d) gives the Laplace transform of J(z).  
Through Fubini's theorem we can write 

The main result of this section is the following formula for the finitehorizon 
ruin probability $(u;z) in the case of exponentially distributed claim sizes. 

Theorem 5.6.3 Assume that Fr,(z) = 1 - e-62 for dl z 2 0. Then 

g(du + cxz, Xz) 1 (5.6.11) -6u-(l+c)Xz $(u;z) = 1 - e 

where c = dp/X and 

g(z,f?) = J(&) + f?J(l)(8z) + e'"'J(f?v) dv - - ec6-wJ(zc-1v) dv. 

(5.6.1 2) 

The proofof Theorem 5.6.3 is subdivided into three steps. We first reformulate 
expression (4.2.8) for the distribution of the aggregate claim amount in terms 
of the function J ( z )  introduced in (5.6.10). Then we derive formula (5.6.11) 
for the special case when the initial risk reserve u = 0. By using Seal's second 
formula (5.6.7) and a rather intricate argument we finally treat the general 
case. 

In Section 4.2.2 we derived a compact formula for the distribution of the 
aggregate claim amount X ( z )  when the claim number process is Poisson 
distributed with parameter X and the claim size distribution is given by 
Fu(y) = 1 - e-6Y. Then by (4.2.8) 

I" : IC6 

However it is easy to show that I l ( z )  = I:')(z) and hence we can rewrite the 
function 11 in terms of .I('). This leads to the expression 

(5.6.13) 
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Using Lemma 5.6.lb we can still give an other expression for F,Y(~)(~): 

Note in particular that this equation can be written in the form 

FX(z)(Y) = 4 k G Y )  (5.6.14) 

where 

4 8 , ~ )  = e-'-*J(Bq) + e-' e-WJ(8w) dw . (5.6.15) 

From (5.6.13) we also have an expression for &(,,(y) = a/& FXcz)(g), 9 > 0 
I* 

(5.6.16) 

We now treat the case u = 0. To do that we apply Seal's formula (5.6.6) when 

the integrand has been obtained before. The calculations go as follows. Start 
from (5.6.13) to write 

calculating the survival probability q(0;  z) = (,LIZ)- 1 so Pz Fx(,)(y) dg, where 

Now use statements (b) and (c) of Lemma 5.6.1 to arrive at the expression 

eXz(l+c) q(0; 2)  

= g(cAz,Xz). 

Thus, 
$(o; z) = e-Xz(l+c) g(cXz, Ax) (5.6.17) 

where c = GO/X and g(z ,  0) is defined by (5.6.12). This proves the statement 
of Theorem 5.6.3 for u = 0. 

Before turning to the general case we derive an alternative expression for 
the quantity g(2 ,B)  introduced in (5.6.12). First note that for c > 0 and a E R 

lc ec-w J(aw) dw = c ec(l-') J(acv) dv I' 
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where we used the abbreviation em(z) = C7=o t S / ( s ! ) .  We use this represent- 
ation formula twice to rewrite g ( z , e )  from (5.6.12) in a series expansion. This 
yields 

or equivalently 

(5.6.18) 

To simplify the notation a little, we introduce the function 

which will be rather useful in the sequel. Using (5.6.18) we can write gc(z)  in a 
power series with respect to z. As the calculations are tiresome but elementary 
we leave them to the reader as an exercise. We arrive at 

(5.6.20) 
r=O 

where 

f c  if r = 0, 
C-n 

Cl-m m-1 

n=O 
- + ( c - l ) C  m!m! n!(2m - n)! 

C-m 

m!(m + l)! 

if T = 2m > 0, 

if r = 2m + 1. 
C-n 

m 

+ (c - l) C n!(2m - n + l)! n=O 

C4C) = 

We now turn to the case of an arbitrary initial reserve u 2 0. Recall Seal's 
second formula (5.6.7) but written in the form 
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On the right hand side we have expressions for both $(O;z - y) and 
fxc,)('u+&j). Now, using (5.6.16) and (5.6.17), after a little algebra we obtain 
the intermediate expression 

FX(& + ?z) - 3b; z) 

- - -  C exz(l+C)-du I'gc(cX(z - Y)) Y J(')(X4/(u + 09)) d9 

xz 
- - exr(lic)-du 1 gc(c(Xz - 9 ) )  v J(l)(u(du + a)) du . 

Hence by (5.6.14), we can write that 
- 
$(u; 5) = u(Xs, S Z L  + CXZ) - q ( X 5 ,  Su) , (5.6.21) 

where 4 6 ,  q)  is given by (5.6.15) and 

It remains to rewrite q(6 ,V)  in such a way that we arrive at formula (5.6.11). 
We prepare this in the next lemma. 

Lemma 5.6.2 For the function gc(t) given in (5.6.19) and (5.6.201, 
respectively, the following identities hold: 
(al) For C E lt'i and X E R 

( a 2 ) F o r l ~ l N  a n d A E R  

(b) For X,w > 0 

lw g,(Xv)J(Xv(v - w)) dv = exW - 1. 

(5.6.23) 

(5.6.24) 

(5.6.25) 

Y gx(Xv)J ((2 - w)(y - Xv)) dv = ex* e-"J(Xv) du.  (5.6.26) I" 
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Proof (al) For C = 0, the proof is trivial. For .f > 0, we introduce the explicit 
expression of the quantities CZr(A). The relation to be proved is then 

The first sum can be rewritten in the form 

Using this outcome above, we still need to prove the identity 

Rearrange the left-hand side into a power series in X to obtain 

Put r = m + j .  Now, it only remains to prove the identity 

l-m (-l)e-j-m(m + e + j ) !  (-l)e+(r + l)!  - = 1 .  
c c (e - r ) ! ( r  - m)!(r + m)! - j=o C (l - m - j)!j!(2m + j ) !  r=m 

Replace e = rn + lc .  Then the expression turns out to be 

which follows from a classical identity for the binomial coefficients, i.e. when 
0 5 k 5 TZ and t E R 

The proof of (a2) is left to the reader as an exercise. To show (b), we apply 
expression (5.6.19) and the series expansion of the function J(o) given in 
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(5.6.10). Then we reduce the remaining integral to a Beta function. More 
explicitly, 

Jdw g,(Xv)J(Xv(v - w)) de, 

To continue, we are forced to split the summation over r into even and odd 
values. We then rewrite both terms by inverting the summations. For the even 
terms we obtain 

(wX)2f+l 
= C (22+1)! ' l = O  

by an appeal to (5.6.23). We leave it to the reader to similarly prove that 

with a reference to formula (5.6.24). This then proves the required expression 
in (b). Next we show statement (c). As both sides of expression (5.6.26) are 
convolutions, the identity will be proved if the Laplace transforms of both 
sides coincide. Let s > A. On the left-hand side we have 

r m  r z  lo e-ez lo g,(Xt)J (fs - z)(y - Xa)) dzdx 
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= l" e-"gA(Xa) 1" e-"J (v(g - Xa)) dw dz 

= h" e--sse(Y-Az)~sgA(~~) da 

where we used statement (d) of Lemma 5.6.1. The calculation of the Laplace 
transform of the right hand side is even easier and leads to s-l (s - X)-'XeY/'. 
Hence we need to prove the equality 

(5.6.27) 

However this equation follows from (5.6.25) by taking Laplace transforms. We 
0 

To finish the proof of Theorem 5.6.3, take partial derivatives with respect 

leave it to the reader to verify this. 

to y in (5.6.26) to obtain 

A 2  1" gA(Xv)(z - w ) J ( l )  ((2 - v)(g - Xv)) dv = -eAZ 1 I e-"vJ(')(tv) dv . x 
Identify this expression with the right-hand side of (5.6.22) to find 

where we used again statement (b) of Lemma 5.6.1. Combining the latter 
expression with formulae (5.6.15) and (5.6.21) the result of Theorem 5.6.3 
follows. 

An alternative representation formula for the finite-horizon ruin probability 
$(u; 2) is given by the following result. 

Theorem 5.6.4 Assume that Frr(z) = 1 - e-62 for all 5 2 0. Then 

where c = SPJA and 
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Proof We only give a sketch of the proof. The crucial link between the two 
expressions for the function +(u; z) is provided by the following integral 

(5.6.30) 

When proving this formula, we use the following expansion: 
cc 

egucmo sin(a8 + ~ q ( p  - a) sin 6 )  = k& sin( (a: - ~ k ) 8  + q p s i n  6 )  , k! 
k=O 

(5.6.31) 
where a, q,6,  p and e are arbitrary red numbers and E = fl .  Formula. (5.6.31) 
is most easily proved by relying on the complex form of the sinus function. 
For it can easily be checked that 

1 
2i 

eqt sin(a6 + ~ q ( p  - sin 6 )  = - (exp(i(a6 + ~ q p  sin e) + q<e+') 

- exp(-i(a6 + Eqpsin8) + q<eico)) . 

and collect the coefficients of ( ~ t ) ~  to arrive at the requested formula (5.6.31). 
In proving (5.6.30) apply (5.6.31) with the choice a = 1 , ~  = -1,q = b,p = t 
and 6 = t + TI to get 

"O (b(t + u) )n  f 1' sinyebtcosv sin((n + 1)y - btsiny) 
n! 7r 0 1 + b2 - 2bcosy dY * J(b ,v ,  t> = c 

K O  

Apply (5.6.31) again but now with the choice a = n + 1 , ~  = l , q  = b,p = 0 
and [ = t. We get now 

O0 O0 (b(t  + v))" 
dY * n! J(b ,  21, t )  = c c 

-0 k=Q 

The remaining integral can be found, for example, via residual calculus: 

2-' bm if rn 2 1, 
if ma = 0, sing sin(rny) dy={ 0 :i 1+b2-2bcosy - 2-1 b-tn if rn 5 -1. 
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After a number of steps we arrive at the expression 

In the first sum we use the obvious identity 

with z = b2(t + w) and y = t. In the second sum we can write 

This proves (5.6.30). The link with the function g ( t , 6 )  from (5.6.12) is very 
easy and reads as follows: 

Substitution of z = 6u + c h  and 8 = Xz leads to the desired formula. 0 

By way of conclusion we like to point out that (5.6.18) provides a 
third expression for the ruin probability $(u; z). Furthermore, using formula 
(5.6.28) for the finite-horizon ruin probability $(u; z) in the compound Poisson 
model with exponentially distributed claim sizes, we also get a De Vylder 
approximation to @(u; 5): 

(5.6.32) 

where P', d', A' are given in (9.4.21) and (5.4.22), and g(y) is given in (5.6.29). 

Bibliographical Notes. Formulae (5.6.1) and (S.6.2) as well as Theo- 
rem 5.6.2 can be found in Seal (1974). Note however that in the context of 
queueing theory, Theorem 5.6.2 goes back to TakAcs (1962). Other recursive 
methods to calculate the finite-horizon ruin probabilities @(u; e) can be found 
in Dickson and Waters (1991) and Stanford and Stroinski (1994). Under the 
assumption that the claim sizes are integer-valued, Picard and Lefevre (1997) 
show that $(u;e) can be expressed in terms of generalized Appell polyno- 
mials. The proof of Theorem 5.6.4 is inspired by Arfwedson (1950), whose 
proof relies on the solution to a partial differential equation; see also Arfwed- 
son (1955). Our method is elementary. A proof of Theorem 5.6.4 which uses 
the queueing-theoretic approach is given in Asmussen (1984). For normal-type 
approximations to @(u; x), see Asmussen (1984), Malinovskii (1994) and von 
Bahr (1974). 



CHAPTER 6 

Renewal Processes and 
Random Walks 

In this chapter, we consider the risk reserve process {R( t ) ,  t 2 0) in continuous 
time as it has been introduced in Section 5.1.4. Unless otherwise stated, 
we assume that the claim counting process { N ( t ) }  is a renewal counting 
process, i.e. { N ( t ) }  is governed by a sequence of independent and identically 
distributed inter-occurrence times {T’} with a common distribution FT. 
Furthermore, the sequence {Un} of claim sizes consists of independent 
and identically distributed random variables with distribution Fu and is 
independent of {Tn}. This model is called the Sparre Andersen model. A 
case of particular interest is the classical compound Poisson model which was 
studied in Chapter 5;  there, { N ( t ) }  was a Poisson process with intensity A. 
We recall that then FT(z) = 1 - e-’17 z 2 0. 

6.1 RENEWAL PROCESSES 

6.1.1 Deffnition and Elementary Properties 

Let Tl7 2’2,. . . be a sequence of nonnegative, independent and identically 
distributed random variables. The sequence {u,;n E IN} with uo = 0 and 
on = TI + . . . + T, for n = 1,2,. . . is called a renewal point process and on is 
the n-th renewal epoch. 

To avoid trivialities we assume that the inter-renewal distances TI, T2, . . . 
are not concentrated at zero, that is P(T = 0) < 1. As in Chapter 5 we may 
think about the T I ,  T2, . . . as inter-occurrence times of claims. Another and 
mathematidly equivalent description of the renewal process {un} is given in 
terms of the renewal counting process { N ( t ) ,  t 2 0 } ,  where 

M - 
N ( t )  = X(un 5 t )  (6.1.1) 

n=l 
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is the number of renewal epochs in the interval (O,t] .  The equivalence of the 
two processes {a,} and { N ( t ) }  follows from the fact that 

N ( t )  = n if and only if {a, 5 t < C T ~ + L ) .  (6.1.2) 

Note that { N ( t ) ,  t 2 0) is a continuous-time process with piecewise constant 
right-continuous trajectories. 

Suppose that the generic inter-renewal distance T has distribution F and 
expectation p .  In some cases, F will be a defective distribution, which for 
the distribution function of the nonnegative random variable T means that 
Iim,,,F(z) < 1. That is, T can be infinite with the positive probability 
1 - F(oc) ,  where the symbol F ( m )  is defined by F(m) = limz+oo F(z) .  The 
resulting renewal process is called terminating. We will indeed see below that 
N(m) = limt+wN(t) is finite with probability 1 and oN(m) is a geometric 
compound. 

Theorem 6.1.1 (a) If F(oo) = 1, then the trajectories of { N ( t ) ,  t 2 0) are 
t n c m a n g  to infinity with probability 1.  Moreover, with probability 1 

(6.1.3) 

(b) For a terminatang renewal process, N(m) is finite with probability 1. 
Morwuer, U N ( ~ )  as a geometric compound with characteristics ( F ( m ) ,  F ) ,  
w h m  P(z) = F(z ) /F(oo) .  

Proof We first show part (a). The limit lim+,w N ( t )  exists in (0,ooJ because 
the trajectories of the process { N ( t ) }  are increasing. Since P(a, < oc) = 1 
for every m E IhT, we get from (6.1.2) that limt-tw N ( t )  = 00 with probability 
1. F'rom the strong law of large numbers we get that lii,-.,m n-la, = p > 0 
with probability 1. Consequently, limt+, N(t)-'ON(t) = p with probability 
1. Rom (6.1.2) we have ahrr(t) 5 t < C N ( t ) + l .  Thus, dividing by N ( t )  we have 

- ON(t) t o N ( t ) + l  N ( t )  + 1 
N ( t )  N(t) N ( t )  + 1 N ( t )  

and (6.1.3) follows. To prove part (b), note that N ( o o )  = limt+,M(t) = 
N ( m )  = min{n : T, = CQ} - 1, i.e. N(cQ) has a geometric distribution with 
P(N(oo) = 0) = 1 - F(co). By the law of total probability we now easily get 
that the random variable C T , V ( ~ )  is a geometric compound with characteristics 
(F(oo)> 0. 0 

In Chapter 4 we discussed methods to det.ermine the distribution of the 
aggregate claim amount Cz:' Ui. In connection with this it is important to 
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know the distribution of the claim number N ( t ) .  Unfortunately, in many cases 
it is impossible to determine this distribution explicitly. The following central 
limit theorem gives a possible approximation to the claim number distribution, 
provided that t is large enough. 

Theorem 6.1.2 If0 < VarT < 00, then for each x E R 

(6.1.4) 

where c = P - ~ V ~ ~ T  and @(x) as the standard normal distribution function. 

Proof By the usual central limit theorem for sums of independent and 
identically distributed random variables we have 

lim P ( ~ -  <z - ) -*(x), - 
n-too nVar T 

(6.1.5) 

uniformly in x E R. Furthermore, using (6.1.2) we can write 

where n(t) = Ix&+tp-'J. Since limt-too m(t) = 00, it suffices to show that 

= -2, t - W ( t )  
2% JGqqiGT 

bearing in mind that 1 - @(-x) = 9(x) and that the convergence in (6.1.5) is 
uniform in x E R. Note that m ( t )  = x&+tp-' + ~ ( t ) ,  where 0 4 l ~ ( t ) l  < 1. 

The following law of small numbers approximates the distribution of the 
number of claims reported to a reinsurer in the interval (0, t] under the stop 
loss contract with retention level a. As in Theorem 6.1.2 the result gives an 
asymptotic approximation which works well if a and t are large enough. 

Theorem 6.1.3 Assume that p < 00. For each a > 0, consider the claim 
counting process { N a ( t ) , t  2 0) with Nu( t )  = Cz:' I(Vi > b ) .  Let a(t)  be a 
function such that pd-'P{,(a(t))t -+ X as t + 00, for some X > 0. Then the 
random variable Na(t)  ( t )  is  asgmptoticallg Poi(X)-distribzbted, i e .  for each 

Xk - A  1iIn P ( N u ( t ) ( t )  = k) = - e 
t+m k! , k E IN. (6.1.6) 
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Proof We use Theorem 6.1.la and the compound Poisson approximation 
considered in Section 4.6. Yote that 

00 n 

P(N,(&) = k) = CP(C I(Ui > a(t)) = k)P(N(t) = PE) 

Thus, putting 8i = F ~ ( u ( t ) )  and G = dl, Theorem 4.6.2 gives 

Analogously, we get 

Now, using (6.1.3), the dominated convergence theorem gives (6.1.6). n 

6.1.2 The Renewal Function; Delayed Renewal Processes 

Equation (6.1.3) motivates the term intensity of the renewal process for 
the quantity p-'. The mean number of renewals H ( t )  = E N ( t )  as a 
function of t is called the (zero-deleted) renewal function of {N(t)}. Since 
N ( t )  = C,"==, I(o, 5 t) we have 

Sometimes we need to include the renewal epoch at 0. Consider the random 
memure N given by N ( B )  = CrdI(un E B) ,  B E D(R+), where N ( B )  
counts the number of renewal epochs (including zero) in the set B. The renewal 
mecrsure H is then defined by 

00 

H(B) = E N ( B )  = F n ( B ) ,  B E D(R+) . (6.1.8) 
n=O 
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We will write No(t)  = N([O: t ] )  and Ho(t) = H([O, t ] )  instead of N ( t )  = 
N ( ( 0 ,  t]) and H ( t )  = H ( ( 0 ,  t]). From Theorem 6.1.4 we get that H ( B )  is finite 
for bounded B E B(R+). For some distributions, (6.1.7) can be used to derive 
the renewal function H ( t )  explicitly. 

Examples 1. If the inter-renewal times TI, Tz, . . . are constant and equal to 
A-', then (6.1.7) yields H ( t )  = LAtJ 5 At. 
2. If the inter-renewal times T I ,  Tz, . . . are exponentially distributed with 
parameter A, then the corresponding renewal counting process {N(t), t 2 0) 
is a Poisson process. Note that in this case the random variables N ( t )  are 
Poisson distributed with parameter At. Hence H ( t )  = At  for all t 2 0 as 
shown in Section 5.2. 
3. For another example where the renewal function can be determined 
explicitly, take T1 , T2, . . . Bernoulli distributed with generic variable T such 
that P(T = 1) = p = 1 - P(T = 0). In this case it is convenient to have zero 
counted. Indeed, at each time t E lN we can have multiple renewal epochs 
forming batches YO, Y1, . . . that are independent and follow a zero truncated 
geometrical distribution with P(Y = k) = p(l - p)'-' for k = 1,2, .  . .. Thus 
N((0 ,  t]) = xj20 yi and 

(6.1.9) 

Theorem 6.1.4 (a) zfF(00) = 1, then H ( t )  = &(t) - 1 < oc, for ail t < 00. 

Moreover, H ( t )  i s  increasing and limt,, H ( t )  = 03. 

(b) For a terminating renewal process, H(oo) = l b ~ - , ~  H ( t )  < 00. 

Proof Let F(a i )  = 1. Without esential loss of generality suppose that 
F(1) > 0 and define the Bernoulli distributed random variables Tp by 

{ 1 i fT i> l .  
0 i f T i 5 1 ,  T:er = 

Since T y  5 Ti, we have for the corresponding renewal counting process 
{Nber([O,t]), t 2 0) that N([O, t ] )  5 Nber([O, t]) for each t 1 0. Hence, from 
(6.1.9) wx! get. Ho(t )  5 H p ( t )  < 00 for all t < 00. Part (b) follows from 

0 

Fkom Theorem 6.1.4 we get that H ( B )  is finite for bounded sets B E B(&). 
Since the probability measures F'" are concentrated on [0, cm), the measure 
H is also concentrated on [0, 00). 

Witah the exception of a few special cases, the renewal function H ( t )  
cannot be given in simple form. However the LaplaceStieltjes transform 
~ H ( s )  = Jr e-sz dH(z) of H can always be expressed in terms of the Laplace- 
Stieltjes transform of F. 

Theorem 6.1.1 using the monotone convergence theorem. 
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Theorem 6.1.5 For all s > 0, 

Proof F'rom (6.1.7) we get 

(6.1 .lo) 

where the geometric series converges because ~ F ( s )  < 1 for s > 0. 

For IN-valued random variables TI , T2,. . . we can also study the renewal 
sequence {lan}, defined as the mean number of renewals at n, i.e. 

k=1 k=l 

where { p i k , .  E IN) is the probability function of the k-fold convolution of 
{pn}. If P(T = 0) = 0, then h, 5 1 since we can have at most one renewal 
epoch at n. If however p = P(T = 0) > 0, then the conditional distribution of 
the number of renewal epochs at n is modified geometric under the condition 
that there is at least one renewal epoch at n. Hence, in both cases the renewal 
sequence is bounded. 

In view of Theorem 6.1.la we can conjecture that the renewal function 
H ( t )  = E N ( t )  will show an asymptotic h e a r  behaviour, similar to (6.1.3). 
To show that this conjecture is correct, we use the following auxiliary result 
which is called Wuld's identitg for renewal processes. A more general version 
of this identity will be proved in Chapter 9 using martingale techniques; see 
Corollary 9.1.1. 

Lemma 6.1.1 Let g : R+ + be a measurable function. Then for all t 2 0 

N ( t ) + l  

E ( g(Ti)) = Eg(T)(ElV(t) + 1). (6.1.11) 
i=l 

Proof In order to prove (6.1.11) we define the auxiliary random variables 

k'i= 0 
i f i > N ( t ) + l ,  { 1 if a' 5 N(t)  + 1. 

Then by the monotone convergence theorem 
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The remaining expectation can be further evaluated by the fact that g(Ti) 
and Yi are independent. This is true since the Bernoulli varia.ble Yj will be 
independent of Ti if and only if the event {Y, = 1) is independent of Ti. 
However, {x = 1) = {N(t) + 1 2 i} = { ~ i - ~  5 t }  and this last event is 
independent of Ti. Hence we find 

= E g ( T )  C P ( N ( t )  + 1 2 i) = E g ( T ) ( E N ( t )  + 1 ) .  
0 i= 1 

We are now in a position to prove the elementary renewal theorem. 

Theorem 6.1.6 Assume that F ( m )  = 1. Then, 

(6.1.12) 

Proof Suppose first p < 00. Using Theorem 6.1.la, we get by Fatou's lemma 

p-' = E lirninft-lN(t) 5 liminft-'EN(t) = liminf t-'H(t). 
t-+m t-hw t400 

However, we also have 

p-' 2 lim sup t-lH(t) . 
t400 

(6.1.13) 

In order to show this we consider the truncated inter-occurrence time TA = 
T, A b for some b > 0 such that ET' > 0. Let { N ' ( t ) ,  t 2 0) denote the 
corresponding counting process with 

00 n 
N'(t)  = l(uL 5 t) , ni  = T i ,  (6.1.14) 

n=l i=l 

and H'( t )  = EN'(t). Then, N'( t )  2 N ( t )  and consequently H'(t) 2 H(t) for 
each t 2 0. This and Lemma 6.1.1 give 

5 limsupt-'(t + b)(ET')-' = (ET')-' . 
t*XJ 
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Thus, (6.1.13) follows since lima-tscET' = ET. If p = 00, then we get 
0 

We now consider the following slight generalization of the renewal model in- 
troduced in Section 6.1.1. Assume that T l 1  T2,. . . is a sequence of independent 
nonnegative random variables and that Tz,  T3,. . . are identically distributed 
with distribution F. Note that TI can have an arbitrary distribution F1, which 
need not be equal to F .  Then {o,,n 2 1) with (T, = TI + . . . + Tn is called 
a delayed renewal p i n t  process. Defining N ( t )  as in (6.1.1)1 { N ( t ) , t  2 0) is 
called a delayed renewal counting process. The case when F1 is equal to the 
integrated tail distribution P of F is of particular interest. 

Theorem 6.1.7 Assume that p < 00 and that 

limsup,,, H ( t ) / t  = 0 in the same way as (6.1.13). 

1 "  
P o  

&(z)  = P ( z )  = - / ff(y) dy 

for all 2 2 0.  Then, the renewal function H ( t )  = E N ( t )  i s  given by 

H ( t )  = p - 9 .  

Proof Analogously to (6.1.7) we have 

(6.1.15) 

(6.1.16) 

(6.1.17) 
n= 1 

Taking Laplace-Stieltjes transforms of this equation we get 

as in the proof of Theorem 6.1.5. Use the fact that ip(.s) = (1 - i ~ ( s ) ) ( s p ) - l  
to see that i ~ ( s )  = (sp)-l = p-l e-'" dv. This yields (6.1.16) because of 
the one-to-one correspondence between renewal functions and their Laplace- 
Stieltjes transforms. 0 

For a delayed renewal process which satisfies (6.1.15), an even stronger 
statement than the one in Theorem 6.1.7 is valid. To formulate it properly, 
we introduce the ezcccess T ( t )  = a N ( t ) + l  - t at time t 2 0. 

Theorem 6.1.8 Under the assumptaons of Theorem 6.1.7, the delayed renewal 
counting process {IV(t): t 2 0) has stationary increments. 

Proof Since the random variables Tl,Tz, ... are independent, the joint 
distribution of the increments 
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does not depend on t if the distribution of the excess T ( t )  has this property. 
Thus, in view of Definition 5.2.lb, it amply suffices to show that P(T( t )  5 
z) = P ( z )  for z 2 0, independently oft. We have 

00 

P(T( t )  5 r )  = c P(fY,-l 5 t < on 5 t + z) 
n= 1 

a t  
= FS(t + 2)  - Fs((t) + 1 ( F ( t  + z - y) - F( t  - y ) )  d(FS*F*("-') )(Y) 

n=l 0 

= P ( t  + 5) - P(t) + c1-l ( F ( t  + z - 9) - F( t  - 9 ) )  dy = F ( z ) ,  I' 
where we used (6.1.16) in the third equality. n 

6.1.3 Renewal Equations and Lorden's Inequality 

We continue our discussion of (nondelayed) renewal processes with a number 
of results that turn out to be useful in connection with actuarial problems. In 
many applications we meet the renewal equation 

4 2 )  = 4 x 1  + 1" 9(2 - v) W(v)  ? (6.1.18) 

where z : R + nt, is a locally bounded function vanishing on (-oo,O) and F 
is a distribution on El+. If F is a defective distribution, then we call (6.1.18) 
a defective renewal equation. First we show that, whether F is defective or 
not, the (locally bounded) solution to the renewal equation is unique. Let 
Ho(z) = C;=, F*"(s) be the renewal function corresponding to F. 

Lemma 6.1.2 The only solution g(z) to (6.1.18) which is vanishing for x < 0 
and bounded on finite intervals is giwen by 

Z(Z - p t )  dHo(v), x 2 0 .  
= 10 

(6.1.19) 

Proof Xote that the series Ego st Iz(s - v)I dF*k(v) converges to a finite 
limit for each z 2 0 because 
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and Ho(s) < 02 by Theorem 6.1.4. Thus the function g(s) given in (6.1.19) is 
well-defined and locally bounded. It is easily seen that the function g(s) solves 
the equation (6.1.18). Assume now that g'(s) is another solution to (6.1.18) 
vanishing for u < 0 and bounded on finite intervals. Then usiug (6.1.18) we 
have 

9b )  - g ' (4  = ~ 7 d s  - v) - g'(z - v)) dF(v) 3 

Inserting (6.1.18) repeatedly into the right-hand side of this expression, we 
can prove by induction on n that 

for all n = 1 ,2 , . .  . and z 2 0. Thus g(s) = g'(z) because Theorem 6.1.4 
0 implies that F*"(z) + 0 as n + oc. 

Examples We illustrate the general solution (6.1.19) to the renewal equation 
(6.1.18) by a number of different choices of the function ~(z). 
1. Take z(s)  = 1 for all z 2 0. Then the equation g(s) = 1 + so2 g(s  - u) dF(v) 
has the unique solution g(s) = Ho(z). 
2. Consider the expected number Ho(s) - Ho(z - y) of renewal epochs in 
the interval (z - y r 4 ,  where a, 2 0 is kept fixed. Then using the result 
of Lemma 6.1.2, we obtain a renewal equation for the function g(z) = 
&(z) - Ho(z - y), i.e. 

9(2) = (do(z) - do(s - Y)) + g(2 - v) dF(v) . (6.1.20) 

3. Take z(5)  = F ( z ) .  Then the unique solution (6.1.19) to (6.1.18) has the 
form g(z) = Cz=I F*"(z) = H(o) .  
4. As another example assume that F is nondefective and has a finite 
mean p. Now take z(u) equal to the integrated tail distribution FS of F, 
i.e. z(z) = p-' f;(1 - F(v))dv. Using (6.1.17) and (6.1.19), Theorem 6.1.7 
then gives g(s) = z /p .  

I" 

We next show that the renewal function HO is subadditive. 

Lemma 6.1.3 For all t, s 2 0 

(6.1.21) 
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Proof Consider the excess T ( t )  = (TN(t)+l  - t at time t. Note that 

No(t + v) = N o ( t )  + No(t + v) - No(t) = No(t) + "(v) , 
where {N'(v),v 2 0) is a delayed renewal counting process with F, (2) = 
P(T(t)  5 5) and with inter-renewal distance distribution F. Since 60 Sst Fl, 

0 

We close this section on elementary properties of the renewal functions 
H ( t )  and Ho( t )  by proving Lorden's inequality. This inequality yields 
estimates for the speed of convergence in the elementary renewal theorem; 
see Theorem 6.1.6. 
Theorem 6.1.9 If the second moment ,d2) of F is finite, then 

we have " ( t i )  set No(v). Thus, (6.1.21) is proved. 

(6.1.22) 

Proof Using (6.1.11), the subadditivity property (6.1.21) of H o ( t )  can be 
easily employed to prove that also the expected excess E T ( t )  = pHo(t)  - t is 
subadditive, i.e. E T ( t + v )  5 E T ( t ) + E T ( v )  for all t ,v 2 0. Fromagraphical 
representation of this excess over the interval [0, t ]  (see Figure 6.1.1) we obtain 

Figure 6.1.1 The excess T(u) at time w 

the following equality: 
N(t)+1 

~ T ( v )  dv = Ti' - !jT2(t). 
i= 1 

Take expectations of these expressions, apply Fubini's theorem on the left and 
(6.1.11) on the right to obtain the intermediate formula I" ET(v) dv = $ p(2)HO(t) - $ET2(t). (6.1.23) 
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On the left hand side we apply the subadditivity of ET(t) to get 

t / 2  t 
J d ' E T ( v ) d w = l  (ET(v)+ET(t -v ) )dv  2 5 E T ( t ) .  

Thus, using E T 2 ( t )  2 (ET(t))*, (6.1.23) gives 

p w  
t ET( t )  5 -(ET(t) + t )  - (ET( t ) ) ' .  

P 
The resulting quadratic inequality for ET(1;) can easily be put into the form 
(ET( t )  + t)(ET(t) - p( ' ) /p)  5 0, from which (6.1.22) follows by using 

0 ET( t )  = pHo( t )  - t once more. 

6.1.4 Key Renewal Theorem 

Besides the asymptotic linearity property stated in Theorem 6.1.6, a much 
stronger result can be shown for the asymptotic behaviour of the renewal 
function H ( t )  as t + 00. The following limit theorem, called Blackwell's 
renewal theorem, says roughly that the renewal measure defined in (6.1.8) 
asymptotically behaves like the Lehesgue measure. 

Theorem 6.1.10 Assume F is nodattice with p < 00. Then, for each y 2 0 

lim (H&) - Ho(s - y)) = p-'y . (6.1.24) 

The proofof Theorem 6.1.10 goes beyond the scope of this book. We therefore 
omit it and refer, for example, to the books by Daley and Vere-Jones (1988) 
and Resnick (1992), where a probabilistic proof of this theorem is given. The 
proof there uses a coupling method by comparing the renewal function Ho(t) 
with the renewal function of a delayed renewal process which satisfies (6.1.15). 

In Section 6.1.3, (6.1.20), we mentioned that the difference g(z) = Ho(s) - 
HO(Z - y) can be seen as solution to the renewal equation (6.1.18) with 
z(z) = do(.) - 60(z - y). Thus, (6.1.24) can be written in the form 

2 +ca 

(6.1 -25) 

We next study the asymptotic behaviour of the solution g(z) to (6.1.18) 
as z + 00, when z(t) is nonnegative and satisfies some integrability 
property. More specifically, for each h > 0, define the upper integral sum 
Z(h) = h sup{z(z) : (n - l j h  5 s 5 nh} and the lower integral sum 
z(h) = hC:=, inf{z(z) : (n - 1)h <_ z 5 nh). The function z(z) is called 
directly Riemann integrable if Z(h) < 00 for all h > 0 and if 

lim ( ~ ( h )  - ~ ( h ) )  = 0. 
h+O 

(6.1.26) 
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The following lemma gives a sufficient but useful condition for direct 
Ftiemam integrability. 

Lemma 6.1.4 Let z1 : R+ + ( 0 , ~ )  be increasing while z2 : R+ -+ lR+ as 
decreusdng, such that 

f" 

and 

(6.1.27) 

(6.1.28) 

Then, the product z(z )  = z1(2)z2(2) is directly Riemann integrable. 

Proof With the notation c(h)  = sup{z~(x + g ) / z ~ ( z )  : x 2 0,O 5 y 5 h }  for 
h > 0, we have 

sup(z(2) : (n - 1)h 5 x 5 nh} 5 .1(nh)zz((n - 1)h) 
- < c(2h)z1((n - 2)h)z2((n - 1)h) 

for n = 2,3,. . .. Since z t ( (n  - 2)h)z2((n - 1)h) 5 z1(2)z2(x) for n = 2,3,. . . 
and (n - 2)h 5 z 5 (n - l)h, this gives 

~ ( h )  5 ~ s u ~ { z ( x )  : 0 5 2 5 h}  + 42h) z1(2)t2(x)dx. I" 
Similarly, we obtain ~ ( h )  2 (c(2h))-' sr zl(z)z~(x) dx. Thus (6.1.27) and 
(6.1.28) imply (6.1.26). 0 

Remark Each directly Riemann integrable function is also Riemann inte- 
grable in the usual sense. However, the converse statement is not true, as can 
be seen from the following example. For each n = 1,2,. . ., we consider the 
function zn : R + R+ with 

Figure 6.1.2 The function zn(z) 
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where 2-' > a1 > a2 > . . . > 0 and liin-,w a, = O,lim,+, E~ = 00 

and Em Enan < 00. Then, for z(z) = C;=, z,(z), we have z(t) Ctz, = A= 2-' enan < w, but z(h) 2 hEr=p=l cn = 00 for all h > 0. 
To formulate the next result: assume that F is a nonlattice distribution, 

that is F ( t )  does not increase on a lattice only. We also suppose that F is 
proper (nondefective). The following theorem is known in the literature as the 
key renewal theorern. 

Theorem 6.1.11 Let z ( x )  be directly Riemann integrable. Then for the 
solution g(x) = z(t - w) CUro(v) to the renewal equation (6.1.18) 

PF-'s; z(v) dw if p < 00, 

i f / .4=0O.  
lim g(t) = 

x+w 
(6.1.29) 

P m f  Take h > 0 arbitrary but fixed and approximate z(z) from below and 
from above by the step functions 

n=l n= 1 

where we used the abbreviations rnn = inf{z(s) : (n - 1) 5 th-' 5 n} and 
En = sup{z(z) : (n - 1) 5 zh-l 5 ra} for n 2 1. Obviously for all x 2 0, 
z,(z) 5 z(z) 5 z"(z). By the monotonicity of the renewal function H,-,(z) and 
the positivity of z(z) we also have 

1' z*(z - v )  dHo(w) 5 

Take the quantity on the right of the above inequalities. Then by the additivity 
of the integral we find that 

z(z - v) dH,-,(v) 5 z*(z - t ~ )  dHo(w). I' I" 

n=l 

where we put Ho(t) = 0 for t < 0. Note that by the result of Theorem 6.1.10, 
the differences Ho(z - (n - 1)h) - Ho(z - nh) are uniformly bounded for 
all t 2 0 and n E IN. Furthermore, Cr=, mn < 00 by the direct Riemann 
integrability of z(z).  Hence by an application of the dominated convergence 
theorem, Theorem 6.1.10 gives 

h m  
limsup z(z - w)dHo(w) 5 limsup z*(t -w)dHo(w) = - Sn. 
2-03 6" 2-03 ' n=l 
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In a similar fashion we find that 

h m  liminf 1' z(a: - v) d H ~ ( v )  2 ' z*(z - v) dHo(u) = - mn I ' n=l 
2-M 

If we now let h J- O? then (6.1.29) follows by condition (6.1.26) because 

oc 00 

0 
l i m h x  mn = l i m h x  an = 
h'O n=l h'o n=l 

6.1.5 

We consider anew the aggregate claim amount X ( t )  = CZl' Ui introduced 
in Section 5.1.4. Here, {U,,} is the sequence of independent claim sizes with 
common distribution U .  Further, { N ( t ) ,  t 2 0) is the claim counting process 
given by N ( t )  = xEl I(oi <_ t); = C:'l Ti and where the sequence 
{on,n E IN} is an (undelayed) renewal point process with inter-occurrence 
times T, following a distribution F. In this section we do not assume that U 
is nonnegative. 

In order to keep a renewal structure: we have to assume that the sequence 
{ (Tn, Un)} consists of independent and identically distributed random vectors. 
But, we do not exclude that Un may eventually depend on Tn. For example, 
in health insurance the amount to be paid out can depend on the time since 
the last payment. We assume, however, that E [IUl; T = 01 = 0. This excludes 
the possibility that one has to pay a bill even when no time has elapsed since 
the last payment. 

Note that { X ( t ) ,  t 2 0) is also called a renewul reward process. We cannot 
expect that we can get very precise asymptotics for X ( t )  as t + 03, especially 
when we do not specifj the dependence structure between U and T. However, 
we have the following general results. 

Theorem 6.1.12 Assume that F(0 )  = 0,  'F = E T  < 03 and ElUl < 00. 

Then, with probability 1 

Another Look at the Aggregate Claim Amount 

lim t - 'X( t )  = lim t - ' E S ( t )  = pFIEU; 
t+w t+m 

(6.1.30) 

if F is nonlattice, then 

Iim E(X(t + h) - X ( t ) )  = pF'hEU,  h 2 0. (6.1.31) 

Proof We start with the first equality in (6.1.30). Observe that, as in the proof 
of Theorem 6.1.1, the strong law of large numbers for sums of independent 

t 4 0 3  
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random variables yields limt,, (N(t))-’Cz:) Ui = E U  since N ( t )  + 00 as 
t + 00. This and (6.1.3) imply that 

lim t - l ~ ( t )  = p ~ l p v .  (6.1.32) 
t+W 

To derive the second equality in (6.1.30), decompose X ( t )  into two parts: 

i= 1 i=l 

Considering the sums on the right-hand side separately, we can proceed as in 
the proof of Theorem 6.1.6 to obtain the second equality in (6.1.30). The 
details are left to the reader. We are now going to prove (6.1.31). Using 
analogous arguments as in the proof of Wald’s identity (6.1.11), we find that 
E(C*=, fr(t)+l Ui) = EC7Ho(t). Hence EX(t) = EUHo(t) - EUpqt)+l. To 
evaluate the remaining expectation, we condition on the number of renewal 
epochs 0% that have occurred up to time t. More specifically, 

where z ( t )  = E [U; T > t ] .  This gives EUN(~)+,  = s,” z( t  - v) d H o ( v )  for all 
t > 00. Noticing that z(0) = E U  we find that 

EX(t)  = (~(0) - z( t  - v)) dHo(v) = - Ho(t  - V) dZ(V) I’ I’ 
Now, 

t 

E ( X ( t  + h) - X ( t ) )  = - 1 (Ho(t + h - ti> - Ho(t  - v ) )  dz(v) 

t f h  
- 1 Ho(t + h - V) dt(v). 

Using Theorem 6.1.10 we can apply the dominated convergence theorem to the 
first integral to obtain the expression hE Up;* for the limit of this integral as 
t + 00. Using the monotonicity of Ho(t), the second term can be dominated 
by Ho(h> Iz(t) - z( t  + h)l, which tends to 0 as t + 00. 

Bibliographical Notes. The results presented in this section and further 
details on renewal processes can be found, for example, in Asmussen (1987), 
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Daley and Vere-Jones (1988), Feller (1971) and Resnick (1992). A 
comprehensive survey on the coupling method which is a useful tool for 
proving Theorem 6.1.10 is given in Lindvall (1992). For discrete-time renewal 
theory we refer to Feller (1968) and Kingman (1972). The notion of direct 
Remann integrability was introduced in Feller (1971). An earlier version of 
the key renewal theorem is due to W. Smith and therefore sometimes we meet 
the notion of Smith's theorem for Theorem 6.1.11. Note also that many results 
of the present section hold true under weaker mathematical assumptions. 
For example, in the proof of Theorem 6.1.3 we did not explicitly use the 
assumption that the inter-occurrence times are independent. We only used the 
compound Poisson approximation considered in Section 4.6 and the statement 
of Theorem 6.1.la, a special case of a more general ergodic theorem. See also 
Chapter 12, where we discuss results for more general point processes with not. 
necessarily independent inter-occurrence times. Further details of the general 
theory of point processes on the real line can be found, for example, in Bwcelli 
and Brbmaud (1994), Daley and Vere-Jones (1988), Kiinig and Schmidt (1992) 
and Last and Brandt (1995). 

6.2 EXTENSIONS AND ACTUARIAL APPLICATIONS 

In this section we derive some extensions to the basic results from renewal 
theory presented in Section 6.1. They will prove to be useful in the 
investigation of actuarial problems. 

6.2.1 Weighted Renewal h c t i o n s  

We study a generalization of Theorem 6.1.6 for the weighted renewal function 

M 

.4(z) = c araF**(z),  (6.2.1) 
n=O 

where F is a nondefective distribution on nt, with mean p and {un, n E IN} 
is a sequence of nonnegative numbers. By the weak law of large numbers 

0 if y < p, 
1 ifgbrp. l i i  F*"(ny) -+ { 

n+w 
(6.2.2) 

Intuitively, the individual summands in (6.2.1) will contribute a value near to 
1 if x > pzp or if n < Lx/pj,  and a value near to 0 otherwise. This suggests 
an estimate for (6.2.1) of the form CbL:' un. We will prove this conjecture 
under some appropriate requirements on the sequence {a,,, n E IN}. 
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Theorem 6.2.1 Assume that 

and 

n=O 

I f O < p < w ,  t h e n a s x - + w  

(6.2.3) 

(6.2.4) 

(6.2.5) 
n = O  

Pmof It is pretty obvious that (6.2.5) holds if x:=,an < 00. Indeed, both 
sides of (6.2.5) converge to the same constant by the monotone convergence 
theorem. So, assume  an = 00. Let E E (0 ,p)  be fixed and define 
m, = Lz/pJ for any x > 0. With this definition of m, we can write 

n=O 
m. m, m 

n=O n=O n=m,+l 

and hence we see that we need to show that 

where 

We prove t.hat each one of these four sums is O ( C ~ ~ ~ U , )  as x + 00 or 
equivalently as m, -+ M .  Note that by the definitions of m,,m-(z) and 
m+(z) we have a number of inequalities that will be used a couple of times: 

m,/l I x < ( m s  + 1 ) P ,  (6.2.6) 
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m-(s)( l  + p-%) 5 m, < (m-(z) + 1)(1+ p - % ) ,  (6.2.7) 

(6.2.8) 

We consider first II(z). Since n I m-(z) in this summation, we can write 
z 2 m,p > m-(z)(l + ~ / p ) p  2 ( p  + €)a. Hence 

(m+(z)  + 1)(1- p - ' ~ )  5 m2 + 1 c (m-(z) + 2)(1 - p - ' ~ ) .  

m- (2) 

11(s) I C anp(n-'on - P > €1 9 

n=O 

which is of the form ~~~~) anbn with bn = P(on/n - p > E). By the weak 
law of large numbers bk + 0 as k + 00; see (6.2.2). Hence for the given E > 0, 
choose m' large enough to have bk < B as soon as k > m'. Then 

Dividing by Crzo an, which tends to OG with x ,  we see that 

Ilb) < E .  limsup m, 
z+oo Cn=Oan 

Next consider I ~ ( x ) .  The values of a n  might be too close to z, and hence we do 
not expect help from the probabilities involved. Instead we need a condition 
on the sequence {an}. By inequality (6.2.7) on m, we can write 

p- (ZI+l)Q+(S/P)) 
I 2 ( 5 )  ~ n=m-Ir)+l 

Hence condition (6.2.3) on the sequence {a,&} can be applied with r = m-(z) 
and 6 = ~ / p .  We therefore deduce that 

lim lim sup M X )  = 0. 
€10 z+m ~ ~ ~ o a n  

We now turn to Jl(z). From the definition of m+(z) we can write 

with 6' = ( ~ E ) / ( , u  - €1. Again apply (6.2.3) with T = rn, and 6 = 6'. Hence, 
Jl(z) = o(CTGo an), Finally we consider &(z). In this summation we have 
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n 2 m+(z) + 2, and s < (m, + 1)p 5 (m+(z) + 2)(p - E )  by (6.2.6) and by 
the definition of n+(s). Hence 

M 00 

J2(2) = c unP(un 5 2) 5 c anP(an/n - p < -€). 
n=m+(2)+2 n=m+(2)+2 

Since the inter-occurrence time T is nonnegat.ive, we can apply Theorem 2.3.2 
to the random variable n p  - cn to see that there exists a constant c < 1 such 
that P(on/n - p < - E )  < cn for all sufficiently large n E IN. Thus, the s u m  
Cz+(2)+2 uncn is convergent by condition (6.2.4). Since ~~~o an + 00 also 

0 J~(x) = ~(Czzo an) a~ 2 + 00- 

Examples Let us illustrate Theorem 6.2.1 by a series of examples, where 
A ( z )  = C z o  u ~ F * ~ ( z )  and p is the expectation of F. 
1. In order to obtain the elementary renewal theorem derived in Section 6.1.2, 
we take an = 1 for all n 2 0. Then A(z) = &(z) and by Theorem 6.2.1 we 
have &(x) N sp-' provided that p < 00. Recall that in Theorem 6.1.6 we 
proved this result by relying on Wald's identity. Furthermore, considering 
the truncated inter-occurrence times TI: = Tn A b for some b > 0 which 
leads to the shadow renewal process {N' ( t ) , t  2 0) defined in (6.1.14), we 
showed in Theorem 6.1.6 that the condition p < 00 is not necessary, that is 
limz+m Ho(s)/s = 0 if p = 00. 

2. Another example of a weighted renewal function is obtained by the choice 
a0 = 0, an = n-' for n 2 1. In this case we check that assumptions (6.2.3) 
and (6.2.4) are fulfilled using CI=l l / k  - logn as n + m . Then we get the 
asymptotic behaviour of the harmonic renewal function, 

3. We now study the weighted renewal function with a power-like sequence 
{a,,}, where an - cn-* for some c > 0 and 0 <_ d < 1. In this case we also 
assume p < 00. Using C;, n-d N rn'-d/(l-d), we can check that conditions 
(6.2.3) and (6.2.4) hold. Moreover as 2 + 00 

(6.2.9) 
n=l 

We leave it to the reader to show (6.2.9). Note that for the case d = 0 and 
c = 1 we find the elementary renewal theorem again. On the other end of 
the scale, d = 1 and c = 1 do not yield the harmonic renewal case unless we 
interpret (zY - l ) / y  as logz when y = 0. 
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6.2.2 A Blackwell-Type Renewal Theorem 

In this section we prove a theorem that could be called of Blackwell type. More 
precisely, we will show that we can derive a Blackwell-type renewal theorem for 
the weighted renewal function A(z) = C:=, u,F*"(x) if we already have an 
elementary renewal theorem for the allied function B(z)  = C:=, b,Fmn(z). 
Here the two sequences (u,} and (b ,}  are linked by the relation 

bn = (n + l)U,+l - nu,, n 2 0 ,  (6.2.10) 

or equivalently by the CesCim averages a, = n - l ~ ~ ~ ~  b j ,  pz. 1 1. In this 
section we aSsume that C,"==, ans" is convergent at least for Is[ < 1. 

Theorem 6.2.2 Let F be a nonlattice distribution on R+ such that 0 c 
p~ < 00. Assume that the sequence {b,}  is nonnegative. If for all g E R, 
B f z + y ) - B ( t )  QSZ+OO,  thenfordZglER 

A ( z  + y) - :4(z) - yB(z)/z, z + 00. (6.2.11) 

In the proof of Theorem 6.2.2 we use an auxiliary result. To simylii the 
notation, for a function of bounded variation G on lR+ we put 

r t  

Note that in t.erms of Laplace-Stieltjes transforms this means that 

(6.2.12) 

(6.2.13) 

We first derive a link between the function A(%) and the zero-deleted renewal 
function Ho(x) generated by the distribution F. 

Lemma 6.2.1 For the weighted renewal functions .4(z), B(z)  with {a,} and 
(b - }  ianked by (6.2.10), 

A'(z) = B * F' * Ho(x), 3 2 0. (6.2.14) 

Proof It suffices to prove that the Laplace-Stieltjes transforms of both sides 
of (6.2.14) coincide. By (6.2.13) we have ~ A ) ( s )  = -s-lC)(s), where in turn 

and a(r )  = Cr=o u,z. Hence ~ A I  ( a )  = - s " ~ " ( s ) ~ ( ~ ) ( ( ~ F ( s ) ) .  However, using 
(6.2.10) we find the relationship (1 - z)u('r(z) = b(z)  for 1.1 < I, where 
b(z) = Cr=o b,zn. But then i,v(s) = b ( i ~ ( s ) ) (  - I ,  71) (9)) (s(1 - ~ F ( S ) ) ) - '  and, 
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using Theorem 6.1.5: we see that this is the Laplace-Stieltjes transform of the 
0 

Let A'(z) and F'(z)  be the functions which 
ace induced by A ( z )  and F ( z ) ,  respectively, according to the abbreviation 
(6.2.12). The monotonicity of A ( z )  then implies for 0 < z < x + y 

right-hand side of (6.2.14), since as before ~ B ( S )  = b ( i ~ ( s ) ) .  

Proof of Theorem 6.2.2 

1 1 
- (A'(z + y) - A'(%)) 5 A(.  + y) - A ( x )  5 - (A'(x + 9) - A'(%)) . x+gr X 

Since limx+oo B(z + y)/B(z) = 1 for all y 2 0, the dominated convergence 
theorem shows that 

B * F'(z)  P F B ( z )  (6.2.15) 

as x + 00. Thus, it suffices to prove that for each y > 0 

Y (A'(z + y) - A'(z ) )  = - . 1 
lim 

2-503 B * F'(s) PF 
(6.2.16) 

To show this we will use the result of Lemma 6.2.1. Put R(z) = B * F'(z) for 
convenience, so that A'(z) = R * Ho(z). Thus, for each xo E [0, X] 

A'(z + 9) - A'(z) = lz+' &(a: + gr - z )  dR(z) 

(Ho(z + - Z )  - HO(Z - 2)) dR(z) +Lo 
2-20 

+ (Ho(z + y - z )  - Ho(z - 2)) dR(z) . 

Denote the three integrals on the right by 11 (z), &(x) and 1 3 ( 2 ) ,  respectively. 
We first estimate 11 (z). By the monotonicity of R(x)  we find 

F'urther, for 13(z), take any E > 0 and choose xo so large that by 
Theorem 6.1.10, pF1y - E 5 HO(V + y) - Ho(v) 5 pi ly + E for all v > 20. 

Finally, for Iz(z)  and the same zo we apply the subadditivity of Ho(z) proved 
in Lemma 6.1.3 to find that lI2(z)/R(z)l Ho(y)(l- R(x - zo)/R(z)). Now 
let z + 00. Then the contributions 12(z) and I ~ ( x )  disappear since by (6.2.15) 
we have R(z+y)/R(z) N B(z+y)/B(z) + 1 for each y 2 0 fixed and z + 00. 

0 Thus, by letting E J. 0, we get (6.2.16). 
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6.2.3 

As an application of weighted renewal functions to actuarial problems we 
deal with estimates for the aggregate claim amount, that is we consider again 
the compound distribution FX = C E o p k F ; k ,  where Fx is the distribution 
of the aggregate claim amount accumulated by a claim size distribution 
Fu. Recall fram the discussion of the Lundberg bounds in Section 4.5 how 
exponential estimates for the tail function PX (5)  heavily depended on the 
existence of a solution y > 0 to an equation related to the moment generating 
function t j l ~ ~ ( s ) .  Ftecal1 the notation s $ ~  = sup{s 2 0 : r j Z ~ ~ ( s )  < 00) 

introduced in Section 2.3. If a. compound geometric distribution is considered, 
i.e. Pk = (1 -p )pk  for some p E (0, l ) ,  and if ~ F ~ ( S $ ~ !  = 00, as is usually the 
case, then the existence of a unique solution to (4.5.5) is guaranteed, whatever 
the value of p. 

In this section we will show that a similar procedure can be used to derive 
asymptotic expressions of Fx (2) for large x .  Starting out with a distribution 
Fu that has an exponentially bounded tail, we use (PLr,t,t E ( S & , S $ ~ ) } ,  

the family of distributions associated with FLr which has been defined in 
Section 2.3, to get an alternative expression for the tail of the compound 
distribution F.y . 

Approximation to the Aggregate Claim Amount 

Consider the weighted renewal function 
03 

hfs(v) = X P k  (mFu(s)Ik P$s(Y) (6.2.17) 

for s E (s;,,,~:~). Recall that ro = (limsup,,,@n)l/n)-l is the radius 
of convergence of C2=op,,sn. Then we have the following representation 
formula. 

Lemma 6.2.2 Assume that the genemting function B(z) = C E o p k z k  of the 
claam number distribution { P k }  has radius of convergence rot which as larger 
than 1. Take r E (1 , ro) and assume that thew d t s  a positive value y for 
which &F, (7) = r. Then the cornpound distribution Fx is given by 

k=l  

roo 

1 - Fx(2)  = 7e-7E]o e-7'f(M,(z + w) - M7(s)) dw. 

Proof By our assumptions we have s:~, > 0. Thus, for any s 
can write 

co 

1 - FX(2)  = C P k ( 1  - F i Y k ( 4 )  
k=l 
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with Ms(;y) as defined in (6.2.17). Now, changing variables in the last integral 
yields the formula 

e'"(1- Fx(z)) = 1 e-"MS(z + dv) . 
0 

(6.2.19) 

We rewrite this expression by performing an integration by parts. Let w be 
any large but finite positive number. Then 

We next show that, due to the fact that y > 0, the first summand disappears 
as w + 00. Let 6 E (0,y) be arbitrary but fixed. Then 

+k ( -6)  2 J"'" e-6~dj% u,&> > - e-6(z+w)jW u,& + w ) .  
FU,, 0 

Using this inequality we get the following estimate: 

k = l  
M 

On the other hand, by the definition of the associated distribution Fv,' (see 
also (2.3.7)), we have 9jl~,,(y)&p~,J--S) = 7jz~~(y - 6). Since y > 6 > 0 
we see that p j l ~ ~ ( y  - 6) < r and hence the remaining sum is bounded by a 
constant c, independently of w. We therefore have e-7w (M, (z+w)-M7(z)) 5 

0 

We now formulate a general result that shows under what conditions 
the asymptotic behaviour of Fx(z) is basically exponential. One of these 
conditions is that the generating function of the claim number distribution has 
a finite radius of convergence. Note that unfortunately the Poisson distribution 
and a couple of other traditional claim number distributions escape the 
specific approach with associated distributions since their moment generating 
functions are entire. 

ce-(7--6)w+62, where the bound tends to zero as w + 00. 
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Theorem 6.2.3 Consider the compound distribution Fx(x) = p k F G k ( X )  

(a) the generating function $(z)  = C z o p k z k  has a finite mdiw of conver- 
gence ro > 1, 
(b) there m i s t s  a d u e  7 E (0, s&,) for  which % F ~ ,  (y) = rot 
(c) b k  N ck' as k + 00, for some e > -1 and c > 0. 
Then, with the notation tc = ljl!: (-,>/rot 

and define a k  = p k ~ S U  (7) and b k  = (k 4- l)ak+l - k a k .  N O W  assume that 

(6.2.20) 

Proof As shown in Example 3 of Section 6.2.1, we can apply Theorem 6.2.1 
to the weighted renewal function B(x)  = b&:(z) to get 

(6.2.21) 

In particular, for all 9 E R, B(z + y> N B(s )  as s + 00. Furthermore, 
b k  2 0 for all k sufficiently large. By Theorem 6.2.2 we can then derive a 
Blackwell-type renewal theorem for the weighted renewal function A ( x )  = 
CEO a k p G % ( X ) .  Using the notation introduced in (6.2.17), this means that 
for all v E R 

h / i , ( X  + v) - M&) - v B ( z ) / x ,  2 + 00. (6.2.22) 

Note that M,(s + v )  - M?(s) 5 ZE1 a k  = $ ( l j l ~ ~ ( y ) ) ,  which is finite by 

for all E > 0 and it follows that there is a constant c > 0 such that 
z / ~ ( s )  5 c e-(#$u -'--E)Z . Thus we ca.n apply the dominated convergence 
theorem to obtain from (6.2.22) that 

assumptions (a) and (b). Since s+ = s$" -7 we have B(z)e(S:u-3-E)2 + O  
FU,, 

Thus, (6.2.18) and (6.2.21) give 

which leads to (6.2.20) since h$L, , (O) = l j l F : ( 7 ) / % ~ ~ ( ~ )  = IE by (2.3.7). 0 

Examples 
examples of claim number distributions. 

We illustrate the result of Theorem 6.2.3 by a few concrete 
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1. Recall from Section 4.3.1 that the negative binomial distribution NB(a, p )  
is a popular claim number distribution. Thus, let us apply Theorem 6.2.3 to 

Since the generating function p(z)  = C g o p k z k  is then given by the 
expression p(z )  = ((1 - p ) / (  1 - p t ) ) *  we see that its radius of convergence is 
ro = p-'. Hence define the quantity y E (0, s Z u )  by the equation %F,, (7 )  = TO 

provided that such a solution exists. Then we can identify the current situation 
with that of Theorem 6.2.3, where ak = (1 - p)a (*+ t - ' ) .  Note that in 
this case bk = aak, as the reader can show by a simple calculation. Hence 
bk - (1 - p)*(I'(cx))-lko-l. A straightforward application of Theorem 6.2.3 
yields the estimate 

(6.2.23) 

where as before y is the solution to r j E ~ ~  (7) = p-'. We draw attention to 
the form of the right-hand side where we recognize the tail behaviour of a 
gamma distribution. .4s such (6.2.23) should be compared to (5.4.28) that has 
been obtained from the Beekman-Bowers approximation. Also note that the 
asymptotic expansion in (6.2.23) is of a different nature than approximations 
that are obtained from refined versions of the central limit theorem. 
2. The logarithmic distribution Log(p) can be treated in the same spirit but 
the approach is technically simpler. Here pk = (- log(1 -p))-'  pk/k for k > 0 
where 0 < p < 1. Since the radius of convergence of g(z )  equals TO = p-' we 
look for a value y that satisfies the equality h~,, (y) = p-'. Once this value has 
been chosen, we identify the quantity ak in Theorem 6.2.3 by ak = c /k  with 
c = (-log(1 -p))-'. This implies that bk = cdk((0)) and hence B(s )  = c. 
The relation in (6.2.22) immediately yields hil'((z+v) - k&(z) N m/z.  Hence, 
without recourse to Theorem 6.2.3, the relation in (6.2.18) immediately applies 
to give 1 - f 'x(z)  - (- log(1- p)y)-'z-l e-7t. 

3. The Engen distribution Eng(6, a) can be found as a solution to the recursive 
system (4.3.1) starting at k = 2. Then the probabilities pk are given by 

where 0 < 0 < 1 and 0 < a < 1. The generating function g(z )  has radius 
of convergence equal to a-l. Again, take 7 such that h p V ( y )  = a-l .  Then 
ak = cr(k - e ) / k !  - c ke, where c = 6((l - (1 - a ) @ ) r ( l  - O ) ) - l .  Further, 
bk = (1 - 8)a.k as follows from a simple calculation. Putting IE = ahFL7 (7) we 
ultimately find the estimate 1 - FX (z) - q-'tce-l e - 7 = r e .  

(1) 
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6.2.4 Lundberg-Type Bounds 

The exponential estimates presented in Section 6.2.3 supplement the Lundberg 
bounds as derived in Section 4.5. We now show that similar upper bounds for 
the tail of the compound distribution Fx(s) = Cka3,0p#~k(t) are possible 
whenever associated distributions of F L ~  are applicable. In connection with 
this we use. the following Berry-Esseen bound for concentration functions. 

Lemma 6.2.3 Let XI, X p ,  . . . be independent and identically distributed 
random variables with E X2 < 00. Then, for  all v 2 0, n = 1? 2 , .  . ., 

sup P ( t  < XI + xp + . . . + x, 5 2 + u) 5 cpm-”2, 
Z E R  

(6.2.24) 

where c is a positive constant independent of n and v. 

The proof is omitted. It can be found, for example, in Section 3.2 of 
Petrov (1975). 

Theorem 6.2.4 Assume that s& > 0. Then, for all s E (0, s&.) 

(6.2.25) 

Proof As in the proof of Lemma 6.2.2, formula (6.2.19) yields the equality 

e-“ (Ms(t + u) - hil,(z)) dv, (6.2.26) 
10 

1 - FX (z) = s e-’= 

where in turn .&f8(y) = cgl a&$(y) and Uk = prc(fij~~~(s))~. The k-fold 
convolution can be interpreted as the distribution of a sum s k  of k 
independent copies of a random variable with distribution F,-J,#. Thus, using 
the result of Lemma 6.2.3, the difference &Fs(s+t.*) - &:s(z) can be bounded 

0 

The summation in (6.2.25) ma.y be hard to handle. On the other hand one 
can still minimize the right-hand side of (6.2.25) over s satisfying 0 < s < s : ~ .  

by C V ~ - ~ / ~ .  Introducing this in formula (6.2.26) yields (6.2.25). 

Bibliographical Notes. The estimate in (6.2.11) has been found in 
Embrechts, Maejima and Omey (1984). The more specific form (6.2.23) can 
be found in Embrechts, Maejima and Teugels (1985). For the other cases and 
applications to stop-loss calculations, see Teugels and Willmot (1987). The 
proof of Lemma 6.2.2 has been inspired by Steinebach (1997). 



232 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

6.3 RANDOM WALKS 

We turn to the discussion of some basic properties of random walks on the real 
line R. These processes are useful when computing ruin probabilities in the 
case where premiums are random or when extending bounds and asymptotic 
results as in Section 5.4 to the case of general inter-occurrence times. 

Let Yl , Y2, . . . be a sequence of independent and ident.icaUy distributed (not 
necessarily integer-valued) random variables with distribution F which can 
take both positive and negative values. The sequence {S,, n E IN} with 
So = 0 and S, = YI, + . . . + Y, for n = 1,2, .  . . is called a random walk. We 
assume that the first moment EY exists and that Y is not concentrated at 0, 
i.e. P(Y = 0) < 1. 

6.3.1 Ladder Epochs 
Look at the first entrance time of the random walk {Sn} into the positive 
hdf-line (0,m) 

v+ = min{n > O : Sn > 0}, (6.3.1) 
setting v+ = 00 if Sn 5 0 for all n E N, and call v+ the (first strong) 
ascending ladder epoch of {S,}. Similarly we introduce the first entrance time 
to the nonpositive half-line (-00,0] by 

v-=min{n>O: S,SO}, (6.3.2) 

setting v- = 00 if S, > 0 for all n = 1,2, .  . . , and call v- the (first) descending 
ladder epoch of {Sn}. As we will see later, we need to know whether E Y  is 
strictly positive, zero or strictly negative, as otherwise we cannot say whether 
v+ or v- are proper. In Figures 6.3.1 and 6.3.2 we depict the first ladder 
epochs v+ and v- .  For each k = 1,2,. . ., the events 

{v+ = k} = {Sl 5 o,s, 5 0 ,..., S k - 1  5 0,Sk > 0) (6.3.3) 

and 
{v- = k} = (4 > 0, s2 > 0,. . . , Sk-1 > 0, Sk 5 0) (6.3.4) 

are determined by the first k d u e s  of ISn}. Note that this is a special case 
of the following, somewhat more general, property. Consider the o-algebras 
30 = {&Q} and 3 k  = { { w  : (Sl(w), . . . ,S~(GI ) )  E B } ,  B E f?(Rk)}. Then, in 
view of (6.3.3) and (6.3.4), we have {v+ = k} E Fk and {v- = k} E Fk for 
k E N. This means that the ladder epochs Y+ and v- are so-called stopping 
times with respect to the filtration {F,} generated by {S,}; see Chapter 9 
for further details. Rom Corollary 9.1.1 proved there we have that, for each 
stopping time r with respect to {Fn}, 

ES, = E r E Y  (6.3.5) 
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provided that E T < 00 and E lYl < 00, which is known as Weld's identity 
for stopping times. 

Actually, we can recursively define further ladder epochs. Define the 
sequence { u;, n E IN} by 

U;+I = min{j > v,' : Sj > Synf}, (6.3.6) 

where v$ = 0 and u: = u+and call v: the n-th (strong ascending) ladder 
epoch. A priori, we cannot exclude the case that, from some random index on, 
all the ladder epochs are equal to 00. 

In a similar way, we recursively define the sequence {u;,n E IN} of 
consecutive descending ladder epochs by V; = 0, u; = u- and 

v,.,+~ = min{j > uz,Sj 5 Sv,-},  n = 1,2,. . .. (6.3.7) 

Another interesting characteristic is the step v at which the random walk 
{S,} has a local minimum for the last. time before u-, i.e. 

- 

as depicted on Figure 6.3.1. 

b 

Figure 6.3.1 Last minimum before "ruin" 

6.3.2 

Depending on whether E Y is positive, zero or negative, we have three different 
kinds of evolution for the random walk {Sn}. 

Theorem 6.3.1 (a) If E Y > 0,  then limn-+m S, = co. 
(b) If E Y < 0, then S, = -m. 
(c) I fEY = 0, then limsup,,, Sn = 00 end liminf,,,S, = -00. 

Random Walks with and without Drift 
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Proof From the strong law of large numbers we have Sn/n + E Y  with 
probability 1. This gives Sn + 00 with probability 1 if E Y > 0, and Sn + -CC 

with probability 1 if E Y  < 0. Thus, the statements (a) and (b) are proved. 
To prove (c) assume E Y  = 0 and define N = min{n : Sn = maxjlo Sj}. We 
put = 00 in case maxj2o Sj = 00. Then, 

m 

1 3 P ( N < m ) = C P ( N = n )  
n=O 

n=O 
00 

= C P ( { c ~ = ~ + ~  Y& > o for all j = 0, I , .  . . , n - 1) 
n=O 

n { ~ ~ , , + ,  Y& 5 o for all j > n}) 
M 

= C P(C~==,.+, Y& > o for all j = 0,1,. . . , n  - 1) 
n=O 

x P ( c J ~ = ~ + ~  Y& 5 o for all j > n) 
M 

n=O 

x P(Sj 5 0 for d j 2 0) 
00 

= C P ( K  >O,Y,+Yz>O ,.’., C;==,Y&>o) P ( v + = o o ) ,  
n=O 

d where for the last equality we used the fact that (Y,, . . . ,&) = (1’1,. . . ,Y,,); 
see Lemma 5.1.1. Thus, 

(6.3.8) 
n=O 

Assume for the moment that P(v+ = 00) > 0. Then it follows from (6.3.8) 
that Ev- = x:=o P(v- > n) < 00. Thus, using Wald’s identity (6.3.5), 
we have ES,- = Ev-EY = 0. Since S,- 5 0 by definition, we would 
get that S,- = 0 with probability 1. This leads to a contradiction because 
P(S,- < 0) 2 P(K < 0) > 0 if EK = 0. Thus, P(v+ < 00) = 1, i.e. the 
random variable S,+ is well-defined, and S,+ > 0 by definition. Now consider 
the whole sequence {v:, n E IN} of ladder epochs. Using the same argument 
as above we get that P(v: < 00) = 1 for all n E IN and that 

(6.3.9) 
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is a sequence of independent and identically distributed random variables 
which are strictly positive by definition. We leave the proof of this fact to the 
reader. In particular, E S,+ > 0. By the strong law of large numbers, we have 

for n + 00. Thus, limn-ta,S,,~ = 00, i.e. limsup,,,S, = 00. The proof 
that lim inf,,, S, = -00 is analogous because we can consider the reflected 

Theorem 6.3.1 motivates the use of the following terminology. We say that 

random walk { -Sn} with E ( - Y )  = 0. 

t.he random walk {So} 

has a positive drift provided that E Y  > 0, 
has a negative drift provided that E Y < 0,  
is without drijl or oscillating provided that EY = 0. 

As already noticed in Section 5.1.2, the ladder epochs and, in particular, 
the maximum A4 = max(O,Sl, S2,. . .} of a random walk play an important 
role in the computation of ruin probabilities. Note that Theorem 6.3.1 implies 
that hi is finite with probability 1 for a random walk with negative drift, and 
infinite otherwise. 

6.3.3 Ladder Heights; Negative Drift 

In this subsection we assume that the random walk {Sn} has a negative drift, 
i.e. E Y  < 0. A basic characteristic of {Sn} is then the first ascending ladder 
epoch v+. As one can expect, and we confirm this in Theorem 6.3.2, the 
distribution of the random variable v+ is defective under the assumption of a 
negative drift. The overshoot Y+ above the zero level is defined by 

if u+ < 00, 
otherwise 

and is called the (first strong) ascending ladder height. .4 typical trajectory of 
the random walk {Sn} which reflects this situation is presented in Figure 6.3.2. 

More precisely, we have a result for G+(z) = P(Y+ 5 z), the distribution 
function of Y+ and G + ( ~ o )  = lim2+30 G+(z). 

Theorem 6.3.2 The foilowing statements are equivalent: 
(a) E Y  < 0, 
(b) &I i s  finite with pmobabilaty 1, 
(c) G+(o~)  < 1. 
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Figure 6.3.2 Ascending ladder height 

The proof of this theorem is easy and is left to the reader. 
Suppose that v+ < 00. We can then repeat the same argument as above, 

but now from the point (&,IT+), because of our assumption that the 
increments Yl,  Y2, . . . of the random walk {S,} are independent and ident idy  
distributed. This means in particular, as illustrated in Figure 6.3.2, that we 
can define a new random walk Sv++l - Sv+, Sv++2 - S,+ , . . . which can be 
proved to be an identically distributed copy of the original random walk 
{S,} and independent of SI, Sz, . . . , S,+. We leave it to the reader to show 
this. Iterating this procedure, we can recursively define the sequence {v;} of 
consecutive ladder epochs in the same way its this was done in (6.3.6). The 
random variable 

Su,+ - Suz-, if v,+ < 00, 

0O otherwise 

is called the n-th ascending ladder height of {S,,}. It is not difficult to show 
that the sequence {Y: + . . . + Y z ,  n = 0 ,1 , .  . .} forms a terminating renewal 
process. Moreover, for the maximum 111 = max{O,Sl, S2, . . .} of {Sn} we have 
(see also Figure 6.3.2) 

N 
(6.3.10) 

t= 1 

where N = max{n : v$ < m} is the number of finite ladder epochs. 
Thus, with the notation Go(z) = G+(z)/G+(oo), where G&j is a proper 
(i.e. nandefective) distribution function, we arrive at the following result, 
saying that M has a compound geometric distribution. 

Theorem 6.3.3 If E Y < 0, then for all 2 2 0 and for p = G+(~o) 

k=O k=O 
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Proof Recall that {I\+ + . . . + Y$,n = 0,1, .  . .} is a. terminating renewal 
process and the distribution of N = max{n. : v,' < m) is geometric with 
parameter p = G+(m): i.e. P ( N  = k) = (1 - p)pk  for k = 0,1, .... Thus, 
using (6.3.10) and Theorem 6.1.1b1 we have 

This completes the proof. 0 

Theorem 6.3.3 implies the following result for the ruin function $(u) = 
P(M > u) considered in Section 5.1. 

Corollary 6.3.1 For any u 2 0, $(u) = C'p=I(l -p )pk@(u) .  

Note that for the special case of integer-valued increments concentrated on 
the set { - l , O ,  1 , .  . .}, the statement of Theorem 6.3.3 has already been proved 
in Theorem 5.1.1 where the distribution function Go(z) has been determined 
explicitly. In the general case, the calculation of Go(z) is more complicated. 
We will discuss this problem in Sections 6.4.2 and 6.4.3. 

However, before doing so, we introduce the dual notions of descending 
ladder heights. Consider the descending ladder epoch u-. The undershoot 
Y -  below the zero level is defined by Y- = S,- and called the (first) 
descending ladder height. The la-th descending ladder height is defined by 
Y; = S,, - S,:-,. Since Y; ,..., Y; are independent and identically 
distributed copies of Y - ,  it is clear that the sequence {- Z:=, y-, n E IN} 
is a nonterminating renewal process (in the case of the negative drift). Indeed, 
under our assumption on the negative drift it follows from Theorem 6.3.1 that 
all descending ladder epochs and heights are proper random variables. 

Bibliographical Notes. The basic references for Section 6.3 are Feller (1971) 
and Chung (1974). The proof of Theorem 6.3.1 is from Resnick (1992). 

6.4 THE WIENER-HOPF FACTORIZATION 

8.4.1 General Representation Formulae 

D e h e  the ladder height distribution G- , concentrated on R- , by 

G-(z) = P(Y- 5 z),  x E R .  (6.4.1) 

Thus G- dualizes the ladder height distribution G+ which is concentrated on 
(0,m) and is given by 

G+(x)  = P(Y+ 5 X )  , x E R .  (6.4.2) 
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Let H; be the measure on R- given by 
03 

H l ( B )  = C ( G - ) " ( B )  , B E B(R-). (6.4.3) 
k=O 

We also introduce as a dual measure H$ on R+ 
co 

H$(B)  = x ( G f ) * ' ( B )  , B E B ( R , ) .  (6.4.4) 

Note that the definition (6.4.3) of H; is similar to that of the renewal measure 
Ho considered in Section 6.1. Moreover, from (6.4.3) it follows that 

H ; * G - = H < - & .  (6.4.5) 

It turns out that H; is equal to the so-called pre-occupation measure 7- given 
by ?-(B) = E (C::;' I(& E B)) for B E B(R), where obviously r-(B) = 0 
for B c (0,m). 

Lemma 6.4.1 For. each B E B(R) and H;(B) = Hg(B n E L )  we have 
H i ( B )  = -y-(B). 

Pmof R'ote that (G-)*O(B) = I(0 E B )  = P(S0 E B) and (G-)'n(B) = 
P(Y;+ ...+ Y; E B ) = P ( S , , ~  E B ) f o r a l l n = 1 , 2 ,  .... Thus 

k=O 

m 00 

H ; ( B )  = C ( G - ) * " ( B )  = I(0 E B)  + cP(S,,;  E B )  

03 

= I(0 E B) + E (c I(S,,, E B)) 
n=l 

00 50 

= I(0 E B) + CE (c l(vk = k,S,,; E B)). 
k=l n=l 

On the other hand, 

k k 

= P(Yl 5 0,. . . , 5 0,CK E B), 
i=l i=l 
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where the last equality follows from Lemma 5.1.1. This gives 

00 

H,-(B) = I(0 E B)  + c P(Si 5 0, i = 0,. , . , k, Sk € B )  
k=l 

00 

= E (c I(v+ 2 k + 1, Sk E B ) )  . 
k=O 

Thus, the proof is complete since 

Next we show that the distribution F of the increments Y1, Y2,. . . of the 
random walk {Sn} can be expressed in terms of the ladder height distributions 
G+ and G-. This is the so-called Wiener-Hopf factorization of F, which is 
sometimes useful when computing the distribution of the maximum M of the 
random walk {Sn}. 

Theorem 6.4.1 The following relationshap holds: 

F = G+ +G- -G- *G+. (6.4.6) 

Proof We first show that 

Let B E B(R) be an arbitrary Bore1 set. Then, 

u+-1 V+-1 

C I(S, E B)  + I(Su+ E B)  = I(0 € B) + C I(Sn+1 E B)  . 
n=O n=O 

(6.4.8) 

Now E ( ~ ~ ~ ~ '  I(Sn+i E B ) )  = E (C:=o X(v+ > n, S,+l E B)) and, since 
the event {v+ > n )  is independent of Yn+l, the above equals 

Taking the expected d u e  of both sides of (6.4.8): we get (6.4.7). Convoluting 
both sides of (6.4.7) with G- we obtain 

G- + G -  *?- * F = G- * 7- +G- *G+. 
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On the other hand, by (6.4.5) and Lemma 6.4.1, we have y- * G- = 7- - 60. 
Thus, G- + (7- - SO) * F = y- - 60 + G- * G+ and, equivalently, F = 
G- - G- * G+ + y- * F - y- + SO. Using (6.4.7) again, this gives (6.4.6). 0 

If we want to compute ruin probabilities, we need to determine the ladder 
height distribution G+ that appears in Theorem 6.3.3. The Wiener-Hopf 
factorization (6.4.6) yields the following representation formula for G+. 

Corollary 6.4.1 For B 6 B((0, w)), 

0 

G+(B)  = F * H;(B) = [ F ( B  - y) dH;(y), (6.4.9) 
J -m 

while for B E B(R-) 

G-(B) = F * H$(B) = / F(B - y) dHO+(y). (6.4.10) 
J o  

Proof Convoluting both sides of the Wiener-Hopf factorization (6.4.6) by 
G-,  we obtain F * G- = G+ * G- + G- * G- - G+ * (G-)*2. Iterating this 
procedure we get F * (G-)*k = G+ * (G-)*k + (G-)*(k+l) - G+ * (G- j*(C+l) 
for each k = 1,2,. . .. Summing over k from 0 to 00 we obtain 

for B E B((0,m)). This completes the proof, because limn-+X(G-)*"(B) = 0 
for all B E B((0, m)) and hence limn+m G+ * (G-)*("+')(B) = 0. The proof 
of (6.4.10) is similar. 0 

6.4.2 An Analytical Factorization; Examples 

U'e give two cases for which we can compute the distribution of the maximum 
M = max{O,&, Sz,, . .} of the random walk {Sn), using the Wiener-Hopf 
factorization (6.4.6). Recall that M is finite with probability 1 if and only if 
{Sn} has a negative drift; see Theorem 6.3.2. Thus, throughout this section we 
suppose that EY < 0. Fkom Theorem 6.3.3 we can easily draw the following 
general result. 

Corollary 6.4.2 (a) For s 5 0, 

(6.4.11) 
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(b) If Y as integer-valued, then M is a nonnegative integer-valued random 
variable with generating function 

(6.4.12) 

The proof is obvious because (6.4.11) and (6.4.12) directly follow from (6.3.11) 
0 

Recall that the moment generating functions of the distributions G+, G- 
and F can be defined as functions of a complex variable z E C. Since G+ 
is concentrated on (0,oo): the moment generating function r j l ~ + ( z )  is well- 
defined on the half-plane R(z) 5 0. Analogously, since G- is concentrated 
on R-, its moment generating function m ~ -  ( z )  is well-defined on the half- 
plane %(a) > 0. The moment generating function & ~ ( z )  is well-defined at 
least on the imaginary axis X(z) = 0 because each point on R(z) = 0 can 
be represented as z = it for some real t and then r i t ~ ( z )  = Jym eittdF(z), 
which is the characteristic function of F. An immediate consequence of the 
Wiener-Hopf factorization (6.4.6) is the following analytacd factorization of 
the corresponding moment generating functions. For the generating function, 
see Corollary 6.4.4. 

Corollary 6.4.3 If for some z E Q: all the moment generating fvnctiow 
& F ( z ) ,  mG+ (z) ,  rhG- ( z )  ezist, in particvlar if R(z) = 0,  them 

and from the product formulae (2.1.9) and (2.1.10). 

1 - k p ( t )  = (1 - $hG+(z))(1 - &c- (%)) a (6.4.13) 

If Y is an integer-valued random variable with probability function {pk}, 
i.e. Pk = P(Y = l e ) ,  then both the ladder-height distributions G+ and G- 
are discrete: G+ is concentrated on {1,2,. . .} and G- is concentrated on 
(0, -1, -2,. . .}. Let { p i }  and (p,} denote the probability function of G+ and 
G-, respectively. Let us consider the generating functions j ~ +  (z) ,  j ~ -  ( z )  and 
j ~ ( z ) .  Note that t j ~ + ( z )  is well-defined in It1 5 1, g ~ - ( z )  is well-defined in 
1.1 2 1, and gp(z )  is well-defined at least on lzl = 1. In this case, from Euler’s 
formula we have z = eit for some 0 , 
which is the characteristic function of Y at t .  Then (6.4.6) takes the form 

eitk t < 27r, and g p ( z )  = C Z - , p k  

02 

(6.4.14) 
j=-m 

Analogous to the analytical factorization given in Corollary 6.4.3, we have the 
immediate consequence of (6.4.6). 

Corollary 6.4.4 For 1.1 = 1, 

1 - j F ( Z )  = (1 - &G+(z))(1 - 8G- (2)) * (6.4.15) 
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Proof Multiplying both sides of (6.4.14) by zk (121 = 1) and summing over k 
from -00 to +oo we arrive at 

00 00 00 

k=-m 

However 
00 m W 00 c ( c p:-3p;)zk = C PI%'( C P ~ - ~ z ~ - J )  = GG-(~)JG+(z)- 

k = - w  3=-m k = - w  3=-00 

This gives (6.4.15). 0 

In the remaining part of this section we derive the explicit factorization for 
the special case when Y is lattice and bounded either from above or from 
below. Subsequently, we will find JG+(z) .  

Suppose that Y is integer-valued and bounded from above, i.e. 

p b > o ,  and p b + 3 = 0 1  j = 1 , 2 , . . .  (6.4.16) 

for some integer b > 0. In this case G+ is discrete and assumes values from 
the set {1,2, .  . . b}. Thus, the generating function JG+ ( z )  is a polynomial 
of degree b and is well-defined in the whole complex plane C. Using the 
fundamental theorem of algebra we can write 

b 

1 - ~ G + ( . z )  = const n ( z 3  - z )  , 

where z3 (j = 1 ,2 , .  . . , b) are the roots of equation 1 = &+(z). Note that 
~G+(O) = 0 by setting z = 0 in (6.4.17). Hence 

(6.4.17) 
g=1 

(6.4.18) 

The left-hand side of (6.4.18) is equal to 1 for z = 0, i.e. zj # 0 for 
j =  1 ,2 , .  . . ,b. Moreover, G- is discrete and concentra.ted on the set 
(0, -1, -2,. . .} and G-(0) < 1. Thus 1 - 4 ~ -  (z> is well-defined on Iz] 2 1 
and hence 1 - g ~ ( z )  is well-defined on 1.1 2 1. Consequently, (6.4.15) holds 
on 1x1 2 1 too. 

It is obvious that, if for a complex-valued function g, 1g(z)1 < 1 for some 
z E C, then t is not a root of the equation g(z )  = 1. But then, 1 = ~ G + ( z )  
has no root in Iz( 5 1, since G + ( o ~ )  < 1 by the fact that {Sn} has negative 
drift. More explicitly, l jG+ (211 5 z,S=, p j  + I z l j  < - Cs=lpz = G+(oo) < 1. 
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Lemma 6.4.2 The equations 1 = & t ( Z )  and 1 = g ~ ( z )  have emctly the 
same roots in I z I  > 1. 

Proof Assume for the moment that there is a complex number zo such that 
1 = ~ F ( Z O )  and lzol > 1, but 1 # &J+(zo). Then from the equation 

(1 - k + ( z ) ) ( 1  - gG- (2)) = 1 - a F ( Z ) ,  1.1 2 1, (6.4.19) 

we would have that 1 = 8 ~ -  (zo). However, since > 1 we have I&- ( t o ) !  < xy=-m p; = 1 which means that zo cannot be a root of 1 = JG- (zo): i.e. each 
root of 1 = & ( z )  with 1.1 > 1 is a root of 1 = t j~+ (z ) .  On the other hand, by 

0 (6.4.19) each root of 1 = g ~ + ( z )  with 1.1 > 1 is a root of 1 = &(z) .  

fiom the above considerations, we get the following result. 

Theorem 6.4.2 Let % I , .  . . , Zb be the roots of 1 = ~ F ( z )  in Izl > 1. Then 
b 

gGt (2) = 1 - n( 1 - Z / z j )  (6.4.20) 
j=1 

and for It( 5 1 

(6.4.21) 

Proof Equation (6.4.20) follows from (6.4.18) and Lemma 6.4.2. Equation 
cl (6.4.21) follows from (6.4.12) because G+(w) = &-~+(1). 

Corollary 6.4.5 If the roots z1, z2,. . . , 2b of the equation 1 = g&) in IzI > 1 
are diflerent, then by partial fiaction decomposition we get 

b 
g M ( 2 )  = (1 - g G + ( 1 ) )  C cj- Z j  > I4 51 (6.4.22) 

zj - I 
j = 1  

where cj = &+j((tk - zj)-’z&). 

Proof Since 21,. . . , Zb are different, we can write 

(6.4.23) 

Let k E (1, , . . , b}  be fixed. In order to determine c j ,  it suffices to multiply 
both sides of (6.4.23) by ( Z k  - z )  to get 
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Then for z = zk this gives Ck = njzk Z j / ( Z j  - Zk). 0 

Kotice that for each j = 1,. . . , b, the function 

2 .  1 
I- - 1.4 5 11 zj - z 1 - (+j) ' 

is the generating function of the sequence {zrk},k E IN. Thus, the re- 
presentation of $ M ( z )  by the linear combination of the moment generating 
functions given in (6.4.22) makes it possible to express the survival probability 
1 - $(n) = P(M 5 n) directly in terms of the roots 21, ZZ,  . . . , Z b  of 1 = $ F ( z )  
in lzl > 1. From (6.4.20) and (6.4.22), it follows that 

b b 

P(A4 = n) = (n (1 - q 1 ) )  C"iz;", n E IN, 
k=l j=1 

and so 

We now suppose that Y is integer-valued and bounded from below, that is 
for some integer b < 0 we have pb > 0 and p j  = 0 for dl j < b - 1. In this 
case G- is discrete and concentrated on { b ,  b + 1,. . . , O } .  The Iadder height 
Y -  takes value b if SI = Y i  = b. Therefore 

00 

pc = P(Y1 = b) -k p(s1 > 0, * .  .>  sn-1 > 0, sn = b)  = pb, 
n=2 

because P(S1 > 0,. . . , Sn-1 > 0, S,, = b) = 0 for all n 2 2. The generating 
function gG- is well-defined for z # 0 and the function db1&c-(t) is a 
polynomial of degree Jbl defined on the whole complex plane C. Therefore 
1 = $G- ( z )  has exactly Ibl roots. Since for I z I  > 1 

j = b  j = b  

all the roots are in 0 < IzI 5 1. On the other hand, G+ is discrete and 
concentrated on { 1,2, .  . .} and 1 - $a+ (z) is well-defined in Izl 5 1. Similarly, 
1 - $ F ( z )  is well-defined for 0 < lzl 5 1. Therefore, equation (6.4.15) can be 
considered on 0 < 1.1 5 1. 

Lemma 6.4.3 The equations 1 = &(z)  and 1 = g ~ ( z )  hawe e.xactZv M e  
same lbl roots in 0 < IzI 5 1. 
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Proof Since l g ~ + ( z ) I  5 g ~ + ( 1 )  < 1 for IzI 5 1, we immediately get from 

(1 - 4c+ (z))(l - 4c- (.>> = 1 - 4Fb)  (6.4.24) 

that the roots of 1 = ~ G - ( z )  in IzI 5 1 are roots of 1 = i j ~ ( z ) .  Conversely, 
suppose that z is a root of 1 = j ~ ( z ) ,  but 1 # gc-(z) .  Then from (6.4.24) 
we would get that 1 = g ~ + ( z ) ,  which is not possible because Igc+ (.)I < 1 for 

There is a single root z = 1 and it is the only root for which Izl = 1. The 
position of the other roots on 6: is discussed in the remark below. Readers 
who are not interested in the refined analytical details can pass immediately 
to Theorem 6.4.3. They however should accept the assumption that there 
exists a continuous function h(z) in 0 < 1.1 5 1 for which 

1.1 51. 0 

Ibl 

1 - Q F ( Z )  = h(%) n(% - Zj) . (6.4.25) 
j=1 

Remark Let ~ 1 ~ 2 2 , .  . . , Zlbl be the roots of 1 = G F ( z )  in 1.1 5 1. To make 
a factorization like (6.4.25) the roots lying inside 0 < 1t.l 5 1 cause no 
problem since 1 - g ~ ( z )  is analytic there. So, let us first look at roota on 
the boundary IzI = 1. It is immediate that one root is 1. Let z1 = 1. Since 
1 - z" = (1 - z )  z:!; zk we can write 

provided that E z o ( C z = a p m )  < 00. The latter condition is satisfied if the 
first moment of Y is finite. Therefore, there exists an analytic function hl ( z )  
on 0 < lzl 5 1 such that 1 - i j ~ ( z )  = (1 - z )h l ( z ) .  Kote that z1 = 1 is a single 
root because otherwise hl( l )  = 0. However, hl( l )  = E Y  < 0, and hence the 
root z1 = 1 is single. To continue the analysis, we make one more assumption 
in that a! is the minimal lattice on which F is concentrated, that is there is 
no k = 2,3,. . . such that F y  is concentrated on {kn, n E 2). In this case, 
using Lemma 15.1.4 from Feller (1971), there are no other roots on 1.1 = 1. 
Now since hl(z) is analytic on 0 < IzI < 1 and hl (z )  has roots 2 2 , .  ..,%pi, we 
get formula (6.4.25). 

We are now ready to state the following representation formula for i ~ + ( z ) .  
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Theorem 6.4.3 For0 < [rl 5 1, 

(6.4.26) 

Proof The fundamental theorem of algebra yields 

Ibi 

%yg@ ( z )  - 1) = c n(2 - Zj) . 
j=1 

Letting z = 0 we see that c = ( - l ) ~ 6 ~ ( ~ ~ ! l  zj)-Ip; and hence, because 
Pb = Pb, 

Now, (6.4.26) follows from (6.4.24) and (6.4.25). 0 

We conclude this section with a few comments on another form of the 
Wiener- Hopf factorization (6.4.6). Suppose that for some E > 0 the function 
g ~ ( z )  is well-defined in 1 - E 5 IzI 5 1 + E. Define the functions 

1 E[zSn;Sn > 01 
~ l - ( z >  = exp(- 2 n 

n=l 

and 

(6.4.27) 

(6.4.28) 
n=l 

It can be shown (see, for example, Prabhu (1980)) that, in 1.1 < 1 + ~ ,  d+(z) is 
analytic, bounded and bounded away from zero and that d-(z) has the same 
properties in 1 . ~ 1  > 1 - E.  Moreover, d-(z)  + 1 for z + 0. We leave it to the 
reader to show that 

1 - B F ( Z )  = d+(z)d-(z) ,  1 - E 5 121 5 1 + E .  (6.4.29) 

Hence, 

(6.4.30) 1 1 - ~ G + ( z )  = exp 
n= 1 

and 

(6.4.31) 
1 2  

l - g G - ( z )  = e x p ( - C  O0 E [zSn; Sn 5 01 
n 

n=l 

since the factorization given in (6.4.29) is unique within the class of functions 
satisfying the same conditions as mentioned above for & ( z )  and d-(z).  
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6.4.3 Ladder Height Distributions 

In Theorem 6.3.3 we showed that the probability of ruin $(u) = P(T(u) < 00) 

is closely related to the ladder height distribution G+ of the random walk {S,} 
with S,, = C:=,(Lrj -@Ti). In Sections 5.1.2 and 6.4.2 we determined G+ for 
some cases when the increments Yn = U,, - PT,, were integer-valued. We now 
compute G+, p = G+(oo) and Go(u) = G+(u)/G+(w) for two further cases, 
i.e. the compound Poisson model with general claim size distribution, and the 
Sparre Andersen model with exponentially distributed claim sizes. We again 
assume that the drift of the random walk {S,} is negative, or equivalently 
that EU - PET < 0.  

We start with the compound Poisson model. We first prove a lemma of 
independent interest, which gives a simple expression for the preoccupation 
measure 7- = H i  introduced in Section 6.4.1. 

Lemma 6.4.4 For the compound Poisson model, 

H,-((-t ,O])= 1+xp-12, z > o ,  (6.4.32) 

or, alternatively, dHi(z) = d60(z) + A@-' dx. 

Proof From the definition (6.4.1) of the ladder height distribution G-, we 
have 

k=l 

where A k  = { s k - 1  > 0 , .  . . , S1 > 0). Apply Lemma 2.4.1 with X = p T k ,  
W = iYk  + s k - 1  and .A = A& to get that 

m 

G-(-x) = CP(@Tk > z)P(v- = k) 
k=l  
co 

- - c e-xP-lsp(y- = 6 )  = e-Af- '2  1 

k= 1 

because P(Y-  < m) = 1. The lack-of-memory property (2.4.7) implies that 

(6.4.33) 

From the definition (6.4.3) of H; we get that H;((-z,O)) is the renewal 
function of a Poisson process with intensity A@-'. We &ally use the first 
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formula in (5.2.8) with some care as the direction of the renewal process has 
U 

Next, we derive an expression for the tail function F(s) = G+(m)-G+(z). 
It turns out that, in the compound Poisson model, the conditiond ladder 
height distribution Go coincides with the integrated tail distribution Ff, of 
claim sizes. The following result wits already obtained as (5.3.11) and (5.3.18). 
But, for methodological reasons, we give a separate proof here. 

Theorem 6.4.4 For the compound Poisson model, 

to be changed, and remember to add 1 for (G-)*O. 

- 
G+(s) = A/?-' J," Fu(v) dw , z 2 0. (6.4.34) 

Hence 
P' X P U P  

and 

(6.4.35) 

(6.4.36) 

Proof We have h ~ ( s )  = &u(s)X/(X + /?s) and, from (6.4.33), &-(s) = 
X/(X + Ds). Thus (6.4.13) implies 

1 - h U ( S ) X / ( X  + 0s) 
1 - X/(X + Ps) 

1 - 7jlG+(S) = 

for -A/@ < s 5 0. This is equivalent to (6.4.34). 0 

We turn to the Sparre Andersen model with general inter-occurrence time 
distribution but with exponentially distributed claim sizes. In particular, we 
derive the ladder height distribution G+ and the probability p that the first 
ascending ladder epoch Y+ is finite. 

Theorem 6.4.5 If the claim size distribution Fu is exponential with 
parameter 6 > 0,  then Go is exponential with the same parameter 6 and S( 1-p) 
is the unique positave root of 

(6.4.37) 

Proof As in the proof of Lemma 6.4.4, the ladder height distribution G+ 
introduced in Section 6.3.3 is given by 

00 - 
G+(z) = C P(Sk > z I S'k > 0, Sk-1 5 0,. . . ,S1 5 O)P(V+ = k) . 

&=l 
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Apply Lemma 2.4.1 to 

6 
6 - 2  

(1  - rny(2))  = (1 - pitc-(z)) (1 - P-) 

for 0 5 9Ez < 6. If l i ty(z)  = 1 for some z > 0 then 7 j z ~ -  ( z )  < 1 and therefore 
z = S ( l  - p ) .  We still have to show that (6.4.37) has a positive root. Note that 
pity(0) = 1 and +!'(O) = E [ Y ]  < 0. Moreover, l i t y (z )  + 00 as z j' 6 and 

0 

The following result is an obvious consequence of Theorems 6.4.4 and 6.4.5. 

Corollary 6.4.6 Consider the compound Poisson model with interasity X and 
exponential claim size distribution Fu = Ekp(6). Then GO = Exp(S) and 

rhy(z)  is continuous. Thus (6.4.37) has a positive solution. 

p = X(SL3)-1. 

Bibliographical Notes. Factorization theorems for random walks appear 
in many books and articles and in different forms. We refer, for example, 
to Chung (1974), Feller (1971), Prabhu (1980), and to Resnick (1992), 
Section 7.2. A probabilistic proof of the Wiener-Hopf factorization (6.4.6) 
has been given in Kennedy (1994). The exposition of Section 6.4.2 follows 
Asmussen (1987), Chapter 9.2. Theorems 6.4.4 and 6.4.5 are standard in the 
theory of random walks and can be found, for example, in Billingsley (1995), 
Feller (1968) and Resnick (1992). 

6.5 RUIN PROBABILITIES: SPARRE ANDERSEN 
MODEL 

6.5.1 Formulae of Pollaczek-Khinchin Type 

Sometimes it is more convenient to consider the claim surplus process { S ( t ) }  
with S ( t )  = Cz:'Ui - ,8t for t 2 0 instead of the risk reserve process 
{ R ( t ) } .  The ruin function $(u) is then given by +(u) = P(.(u) < oo), 
where ~ ( u )  = min{t : S(t)  > u} is the time of ruin for the initial risk 
reserve u. As already stated in Chapter 5, a fundamental question of risk 
theory is how to derive pleasing formulae for $J(u). However, most often 
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this is impossible, as formulae turn out to be too complicated. As a result, 
various approximations are considered. From random walk theory, applied to 
the independent increments Yn = U, - PT,, we already know that there is 
only one case that is interesting, namely when the coefficient p = (XE U ) / @  is 
less than 1, as otherwise @(u) 1 (see Theorem 6.3.1). If p < 1, then the drift 
E U - PET of the random walk {S,,}  with Sn = Yl+  . . . + Y, is negative. In 
risk theory it is customary to express this condition in terms of the relative 
safety loading q, which is defined as 

PET-EU-1 - - -  1 ,  
'= E U  P 

(6.5.1) 

Obviously, q > 0 if and only if p < 1. The concept of relative safety loading 
comes from the following considerations. Consider a risk reserve process in 
the compound Poisson model, 

N ( t )  
R(t )  = u + XEUt - C V , ,  t 2 0 ,  

n=l 

where the premium rate P = XE U is computed by the net premium principle. 
F'rom random walk theory, we already know that the risk reserve process 
without drift will have unbounded large fluctuations as time goes on, and so 
ruin happens with probability 1. If we add a safety loading eXEU for some 
E > 0, then ruin in the risk reserve process { R ( t ) }  with 

will no longer occur with probability 1. Solving equation (6.5.1) for P = 
(1 + e)XE L;, we have the relative safety loading q = e. 

In the sequel to this chapter, we always assume that 0 < E T  < 00, 

0 < EU < 00 and that the relative safety loading q is positive so that 
EU - PET < 0. We know from Section 6.3.3 that the survival probability 
1 - $(u) is given by the following formula of Pollaczek-Khinchin type. 

Theorem 6.5.1 For all u 2 0, 

where G+ is the (defective) distribution of the ladder height of the random 
d k  (Sn}; Sn = C&(Vi -@Ti),  p = G+(o~)  and Go(u) = G+(u)/G+(00o). 
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Note that (6.5.2) implies 
n 

(6.5.3) 

After some simple algebraic manipulations, this reads 
M 

$(u) = p"+" 1' GO (u - v) dGGk (v) , u 2 0 . (6.5.4) 
k=O 

In the case of a compound Poisson model we know from Theorem 6.4.4 that 
Go is equal to the integrated tail distribution Po of claim sizes. We rediscover 
the classical Pollaczek-Khinchin formula for the ruin probability $(u) from 
Theorem 5.3.4. 

Corollary 6.5.1 The ruin function in the compound Poisson model is 

k=l  

which is the same as 
OD 

$(u) = pk+' / ' z ( u  - v) d ( G ) * k ( v )  . 
0 k=O 

(6.5.5) 

(6.5.6) 

The proof is immediate as it suffices to insert (6.4.35) and (6.4.36) into (6.5.3). 
In the same way (6.5.6) follows from (6.5.4). 

Corollary 6.5.2 In the S p a m  Andersen model with ezponential claim size 
distribution Exp( S ) ,  

$(u) = (1 - y/d) e-7" (6.5.7) 
for all u 2 0, where y b the unique positive root of (6.4.37). 

Proof Theorem 6.4.5 and the representation formula (6.5.2) yield that l-$(u) 
is the distribution function of a geometric compound with characteristics 
(p ,  Exp(d)). It is not difficult to see that the zero-truncation of this compound 
distribution is the exponential distribution with parameter S(1 - p ) .  Thus, 

@(U)/+(O) = e-'(l-P)' (6.5.8) 

for all u 2 0. From (6.5.2) we have that $ ( O )  = p .  Moreover, Theorem 6.4.5 
implies that p = 1 - 7rF1, where y is the unique root of (6.4.37). This and 

Corollaries 6.5.1 and 6.5.2 yield the following result, which coincides 
with (5.3.8). 

(6.5.8) imply (6.5.7). 0 
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Corollary 6.5.3 In the compound Poisson model with exponential claim size 
distribution Exp(S), 

$(u) = -e A -(d--X/P)” , u > o .  (6.5.9) 

Again the proof is immediate as (6.3.8) and (6.4.35) imply (6.5.9), having in 
mind that $(O) = p. 

We now determine the joint distribution of (X’(u), Y+(u)), where X+(u)  
is the surplus just before ruin time T ( U )  and Y+(u) is the severity of ruin 
as defined in Section 5.1.4. More generally, we consider the multivariate ruin 
function 

(6.5.10) 

where u,z,y 2 0. We derive a representation formula for $(u,z,y), 
which generalizes the representation formula (6.5.2) for the (univariate) ruin 
function $(u) and expresses +(u, 2, y) in terms of p, Go and $(O, Z, y). Here, 
@(O, 2, y) is obtained from the distribution of (X+(O), Y+(O)). Recall the pre- 
occupation measure y- = H$ = CP=o(G+)*k = CEopfkGo*k introduced in 
Section 6.4.1. 

Theorem 6.5.2 The multivariate w i n  function $(u, x, y) satisfies the integral 
equation 

PS 

fS(% 2, Y) = P(.(.) < 00, X + ( U )  I 5 ,  Y + ( 4  > 9 )  7 

$(u,z,Y) = $ ( O , z - u , y + u ) + p  $ ( u - v , ~ , ~ ) d G o ( v )  (6.5.11) I“ 
for all u, 5 ,  y 2 0; its solution is 

p//(u.,z, y) = /d” $(O,z - ‘ 1 ~  + v ,  y + zc - v )  dH$(v). (6.5.12) 

Proof First consider the event { ~ ( u )  < 00, X+(u.) 5 2, Y+(u) > y, Y+(O) > 
u + g}, and denote A = {Y+(O) > u + y}. Then, A = A n  { ~ ( u )  = r(0)) and, 
consequently, 

{T(u) < 00) n A = ( ~ ( 0 )  < 00) n A ,  
{Y+(u) > y} n A 
{x+(u) 5 Z} n A = {x+(o) 5 x - ,u} n A .  

= {Y+(O) > u + y} , 

Using the law of total probability, we get from definition (6.5.10) of $(u,, 2, y) 

$(U,  5, y) = P ( T ( U )  < 00, x + ( U )  5 5, Y + ( U )  > y, Y+(o) > U + y) 

+ P(.(u> < 0 0 , X + ( U )  5 2 , Y + ( U )  > y,Y+(O) 5 21) 

= P(T(0) < CO, x+(o) 5 Z - U, l’+(o) > y -k U )  

+ Jd” P(T(u - v )  < 00, X + ( u  - v )  5 2, Y+(u - v )  > y) dG’(v) 
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+ - - -  

Figure 6.5.1 Y+(O) = Y+(u) + u > u + I 

which proves (6.5.11). Note that, for z,y 2 0 fixed, (6.5.11) is a defective 
renewal equation with respect to g(u) = $(u,z,y). This gives (6.5.12) by 
applying Lemma 6.1.2 with z(u) = cp(z - u,y + u) and F(v )  = SO(V) = 
G+(v). 0 

Corollary 6.5.4 For all cs, y 2 0, 

Proof Since $(O, 00, y) = &(y), we obtain (6.5.13) from (6.5.12). 0 

Note that formulae (6.5.12) and (6.5.13) are extensions of (6.5.4), since 
d(u) = $(u, o0,O). Furthermore, recall that in the case of the compound 
Poisson model, the characteristics p ,  Go and 

can be easily expressed in terms of A,@ and Fu as shown in Sections 5.3.4 
and 6.4.3. In particular, we have the representation formula (5.3.18): 

00 

d o ,  5, Y) = XP-' /,tu(l- Fu(v)) dv , 5: Y 2 0 .  (6.5.15) 

Clearly, then $(01 z, y) = cp(O,O, y) - ;p(O,z, y) can also be expressed by A, i3 
and Fu. Using (6.5.15)? from (6.5.12) we immediately obtain the following 
formula for d(u, x, y). 
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Theorem 6.5.3 In the compound Poisson model, 

Il(% 5, Y) 

(6.5.16) 

for ail u, x, y 2 0,  where p = W 1 p ~  and H$ (v) = CFd p b F p * k  t, (w). 
Kote that the marginal ruin function @(u,00~y) can be obtained directly 

from Corollary 6.5.4 and Theorem 6.4.4. 
Corollary 6.5.5 The probability $(u, 00, y >  that, in the compound Poisson 
model, the overshoot Y+(u)  at ruin time T(U) exceeds y is given by  

$(a, 00, y) = 2 pk++' sy G ( y  + u - v) d(F&)"k(zt) . (6.5.17) 
k=O 0 

The marginal ruin function $(u:00,y) can also be obtained in the Sparre 
Andersen model with exponentially distributed claim sizes if one uses 
Corollary 6.5.4 and Theorem 6.4.5. 

Corollary 6.5.6 In the S p a m  Andersen model with eqonential claim size 
distribution Exp(6) 

+(u, 00, y )  = $(u) e-6Y = (1 - y/6) e-(Yu+'Y) (6.5.18) 

for all u ,y  2 0,  where 7 is the unique positive root of (6.4.37). 
Proof The formula (6.5.18) follows from (6.5.13) and (6.3.7): bearing in mind 

0 

In order to determine the probability that, besides the overshoot Yf(u), 
the total maximal deficit Z+(u) after time ~ ( u )  exceeds level z we define for 
u:x,y,2 20:  

that Go is exponential with parameter 6. 

$(u,c,y, 2) = P ( 7 ( u )  < 00, X + ( U )  5 5: Y + ( U . )  > y, Z + ( U )  > 2 ) .  

Clearly, for y 2 t we have +(u, c, y, z )  = $(u, 2, y, y) = $(u, z, y). Using the 
same argument as in the proof of Theorem 6.5.2 we get the following defective 
renewal equation for @(u, 2, y, z ) .  For all u, S, yt z 2 0, we have 

The proof of (6.5.19) is left to the reader as an exercise. Hence, by Lemma 6.1.2 
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for all u , q y , z  1 0: where here and below H;(v) = CEopkG$(o).  
Moreover since 

(6.5.20) yields the following extension to (6.5.13). For all u, y, z 2 0 

max{y,r)+u-v 
.Jt(t + u - w - v') dGo(d) 

x co(max{y, z }  + u - 21) dH;(w). 

dJ(u,CQ,y,z) = 

6.5.2 Lundberg Bounds 

Formula (6.5.2) for $(u) is of theoretical importance, as it can hardly be used 
for direct numerical computation. For the compound Poisson model, however, 
Theorem 5.4.1 gave useful two-sided bounds for @(u) that were obtained by 
applying Theorem 4.5.1 to the compound geometric distribution in (6.5.3). 
Unfortunately, in general neither GO nor p is known. 

In Theorem 6.5.4 below, we extend the result of Theorem 5.4.1 and derive a 
two-sided Lundberg bound for the ruin function @(u) in the Sparre Andersen 
model with general distributions of inter-occurrence times and claim sizes. For 
the Sparre Andersen model, we have the geometric compound representation 
(6.5.3) for the ruin function .Jt(u). We can therefore try to prove a two- 
sided Lundberg bound by relying on Theorem 4.5.1 with G = Go, in the 
same way as was done in Section 5.4.1 for the compound Poisson model. 
Unfortunately, the prefadors a- and a+ would then be expressed in terms of 
the unknown distribution Go. To avoid this complication, we take a slightly 
different approach. 

Consider the equation 

.riay(s) = hU(S)iT(p3) = 1. (6.5.21) 

Clearly, &y(O) = 1. This equation may have a second root. If such a root 
s # 0 exists, then it is unique and strictly positive. The solution to (6.5.21), 
if it exists, is called the adjustment coeficient and is denoted by 7. For the 
compound Poisson model, the solutions to (5.4.3) and (6.5.21) coincide. As we 
will see in the next Section 6.5.3, the adjustment coefficient y in Theorem 6.5.4 
satisfies Jr etr dG'o(2) = p - l .  This means that also in this more general case, 
y coincides with the adjustment coefficient considered in Theorem 4.5.1. Let 

Theorem 6.5.4 Suppose that there exists a positive solution 7 to (6.5.21). 
Then 

6- e-'% 5 $(u) 5 6+ e-7u (6.5.22) 

z o  = sup{s : Fy(5) < 1). 
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for all u 2 0, where 

Proof The proof is similar to that of Theorem 4.5.1. Suppose that Fo(x) = 
b+ e-T2 for all x 2 0 and F&c) = 1 otherwise. For n E IN define the sequence 
{Fn(x)} of distribution functions by 

(6.5.24) 

Then, in view of (6.5.21), we have 

From (6.5.24) we get Fl(z) = Fy(z )  + b+ e-7* J:, e79 dFy(g) for all x 2 0 
and F l ( x )  = 1 otherwise, and thus Fo(x) 2 Fl(x). Use (6.5.24) recursively 
to obtain Fn(z) 2 Fn+l(z) for all x E R and n E IN. For the upper bound 
in (6.5.22) it remains to show that 

lim F,(u) = Ilt(u). 
n-too 

(6.5.25) 

For this we consider a sequence LO, L1,. . . of nonnegative random variables, 
not necessarily integer-valued, W i n g  Ln+1 = (L.n +Yn+1)+ for n = 1,2,. . ., 
where LO is independent of the sequence {Y,} and distributed according to Fo. 
Then, Fn is the distribution of L, and, in a similar manner as in Section 5.1.3, 
we can prove that 

Ln = 
d 

m a { @  Yn,Yn-t + Yn,. . . :Y2 + - .  . + Yn, LO + Y1 +. 1 + Yn} 

= max{O,Yl , f i+& ,..., Y I +  ...+ Y, -1, LO+Yl+ ...+ Y,)'. 

Thus, repeating the proof of Theorem 5.1.2, we obtain (6.5.25) since, by the 
law of large numbers, LO + YI + . . . + Y, + -00 as n + 00. The lower bound 

0 

A somewhat weaker though probably more useful bound is obtained if we 
express the prefactors in the two-sided Lundberg inequality (6.5.22) via the 
claim size distribution Fu. Thus we define further constants bI., b; by 

in (6.5.22) can be derived similarly. 
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where y is the solution to (6.5.21) and zb = sup{z : Fu(z)  < 1). Note that 

and that (b+)-' and (b$)-' can be expressed in a similar way. 

Theorem 6.5.5 The constants b*_, b-,b+,b; defined in (6.5.23) and (6.3.26), 
respectively, satisfg, 0 5 b? 5 b- 5 b+ < b; 5 1. 

Proof By the law of total probability and our assumption that the random 
variables T and C; are independent, (6.5.27) implies that 

(b-)-' = supE (e7(u--(PT+x)) I U > /?T + z) 
z 

sooo E (ey("-(Pt+z))I(U > /?t + 5)) dFT(t) 

ST E (,y(u-(Pt+z)) I u > /?t + x)P(U > /?t + x) dFT(t) 

 SUP,^^ E (e7("-') I u > s)P(U > fit + 2) dFT(t) 

2 P(U > P T + Z )  
= sup 

z P(U > PT + z) = sup 

Z P ( U > P T + Z )  5 SUP 

Thus, b' < b- .  The proof of b+ 5 b> is similar and 0 5 C, b; 5 1 directly 
0 

It is easily seen that (5.4.3) and (6.5.21) coincide for the compound Poisson 
model. For the Sparre Andersen model with general inter-occurrence time 
distribution FT and exponentially distributed claim sizes with parameter 6, 
the adjustment coefficient 7 is the solution to ( ~ - s ) - ~ & ( B s )  = 1. Moreover: 
b'_ = b: = (6 - 7)d-l and we immediately obtain the expression (6.5.7) for 
+(u) given in Corollary 6.5.2. 

It is clear that the lower bound in (6.5.22) is only useful when the prefactor 
b- is positive. A sufficient condition for this is given in the following result. 

Theorem 6.5.6 Suppose there ezists a distribution F such that 7jt~(7) < 00 

and 
FUJ Sst F (6.5.28) 

for all x 2 0,  where F U , ~ ( ~ )  = P(V - x < y 1 U > x) is the distributaon 
function of the remaining claim size seen from level x and where y > 0 is the 
solution to (6.5.21). Then 0 < b'_ 5 6- . 

follows horn the definitions of b?, b; given in (6.5.26). 
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Proof We show that ( l t ) - l  < 00. From (6.5.27) we have 

43 

5 sup 1 eT1 d F b )  = +F('Y) 

where in the last inequality we used (6.5.28) and the fact that the function 
g(g) = e79 is increasing. Taking into account the result of Theorem 6.5.5, this 

0 completes the proof since A F ( ~ )  < 00. 

Corollary 6.5.7 Suppose that (6.5.21) has a positive solution and Fu is MR. 
Then 0 < b'_ 5 b - .  

Proof From Theorem 2.4.2 we get that (6.5.28) is fulfilled for F = Fu. Thus, 
the assertion follows from Theorem 6.5.6. 0 

6.5.3 The Cram&-Lundberg Approximation 

In this section we aasume that the distribution F of Y is nonlattice and 
EY < 0. The reader should prove that then the ladder height distribution 
G+ corresponding to F is nonlattice too. Furthermore, we assume that (6.5.21) 
has a positive solution y. The following theorem deals with the asymptotic 
behaviour of V(u) as u becomes unbounded large. It extends Theorem 5.4.2 
of Section 5.4.2 from the compound Poisson model to the Sparre Andersen 
model. 

Theorem 6.5.7 For the Sparre Andersen model, 

lim e'"$(u) = c 

where the constant c 2 0 i s  finite and given by 
U+oO 

1 - G+(o~)  
C =  

7 veTS dG+ (v) . 

(6.5.29) 

(6.5.30) 

Proof Recall that AF(s)  < 00 for 0 5 s 5 y. Then, it is easily seen that 
+G+(s) < 00 for 0 5 s 5 7. By Corollary 6.4.3, 

l - T f i F ( s ) = ( l - - G + ( s ) ) ( l - A G - ( s ) ) ,  058 5 7  (6.5.31) 

because &G- (s) is finite for all s 2 0. Furthermore, m ~ -  (y) < 1. Thus, 
T ? z F ( ~ )  = 1 and (6.5.31) give 

AG+(r) = 1 eT' dG+(z) = 1. 
w 

(6.5.32) 
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But then q(u)  satisfies the defective renewal equation 

r U  

$(u) = G+(m) - G+(u) + $J(u - V) dG+(v). 
10 

Multiplying both sides of (6.5.33) by eTu, we have 

(6.5.33) 

for all u 2 0, where &u) = e7"$J(u) and dG+(z) = eY"dG+(x). The 
distribution G+ is nonlattice and in view of (6.6.32) nondefective, and 
therefore we can apply Theorem 6.1.11 to the renewal equat.ion (6.5.34). For 
this we still have to show that the function Z(U) = eT"(G+(m) - G+(u)) is 
directly Riemann integrable. By F'ubini's theorem we have 

e'"(G+(m) - G+(w)) dv = l " e T w l "  f(u > v) dG+(u) du 

1 
Y 

= Jdml" er"X(u > v )  dvdG+(u) = - (1-  G+(oo)) < 00. 

Now, from Lemma 6.1.4 we derive that Z(U) = e'"(Gf(m) - Gf(u)) is 
directly Riemann integrable. Indeed, Z(U) is the product of the increasing 
function z1 (u) = elu and the decreasing function z~(u) = G+(w) -G+(u) and 
condition (6.1.28) is obviously satisfied. By Theorem 6.1.11, (6.5.29) follows 
with 

1 - G+(oo) 
< w .  - - JT e7"(G+(oo) - G+(v)) dv OSc= 

veru dG+ ( v )  y J; veTv dG+ (v )  

Note that if c > 0 the asymptotic result obtained in Theorem 6.5.7 gives rise 
to the Cmmdr-Lundberg approximation QapP(u) = ce-9" to the ruin function 
e(u) when u is large. 

Remark The constant c in Theorem 6.5.7 is positive if JOm ve7" dG+(v) < 00. 

This condition holds if, for example, fhfz~(s) < w for s < + E for some e > 0. 
Then l f i ~ ( s )  is continuously differentiable in the interval 0 < s < y + E and 
hence from the Wiener-Hopf identity (6.5.31) the same property holds for 

Feller (1971) gives a different proof of (6.5.32) which is based on a 
construction which is similar to the change-of-measure technique considered 
in Section 9.2. The idea is to introduce an assocaated random w d k  (3,) with s,, = CZ1 c, where the distribution F of the increments fi of (3,) is given 

l f i ~ +  (3). Consequently, lfi,+ (1) (y) = wer" dG+(v) < oc. 
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by dfi(z) = eYxdF(z). Indeed, defined in this way is a (nondefective) 
distribution because y solves (6.5.211, that is f", erx dF(5) = 1. To show 
the validity of (6.5.32) it is enough to prove that the random walk {Sn) has 
a positive drift. This can be seen as follows. Since rh.~(y)  < 00, the moment 
generating function &.F(s) exists in the interval (0,yl. Moreover, h ~ ( s )  is 
differentiable in ( 0 , ~ )  and 

(6.5.35) 

Since & ~ ( 0 )  = kjl~(7) = 1 and the function h ~ ( s )  is strictly convex, we 
have (d/ds)&F(s)(s=7-0 > 0. In view of this, the drift of {Sn} is positive and 
as a consequence we get that the ladder height distribution G+ of {Sn) is 
nondefective. hrthermore, G+ can be represented by 

dG+(z) = erx dG+(z), r 2 0 .  (6.5.36) 

Namely, we have 1 - G+(r) = C:., P($ 5 0,. . .,.!%-I 5 0, S n  > 5) and 
1 - G+(z) = Cz=lP(S1  5 0,. . . ,Sn-l 5 O,S,, > X) for all z 2 0. It is 
therefore sufficient to show that 

P(S1 5 0, ~. . I  sn-l 5 0, S,, > .) 
= 6" e7yP(Sl 6 0,. . . 5 O,Sn E dy) , 

for all n = 1,2, .  . . and 3: 2 0. Putting TI,, = gr1 + . . . + gn, we have 

P(S1 5 0 ,..., S,-l 5 o,s, > 5) 

- /" J -u l  . . . 
l - v n - 2  J m  

- p(R;1 E dun) 
-a2 -m -m 2-un-1 

x P(pn-1 E dyn-1). . aP(P2 E d~2)P(F1 E dy1) 

- /" J - W  . . . 
/%-2 J m  - e'"" P(Yn E dgn) 

-03 --bo -03 2-un-1 

x P(lk-1 E dyn-1) - .  . P(& E dy2>P(Yl E dy1) 

= /,xeYyP(S1 5 0,. . . 5 O,Sn E dgr) . 

Hence we get (6.5.32) since the associated random walk {Sn) has positive 
drift. 

6.5.4 

In the compound Poisson model studied in Chapter 5 as well as in earlier 
sections of the present chapter, ruin could occur anytime whenever the risk 

Compound Poisson Model with Aggregate Claims 
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reserve became negative. What happens if we are only able to inspect the value 
of the risk reserve at countably many, equally spaced time epochs t = h, 2h,. . . 
for some h > O? To specify the problem, we consider the risk reserve process 
{ R ( t ) }  given by R( t )  = u + /?t - EL(;’,”’ Ui = u + j3t - X ( t ) ,  where { X ( t ) }  
is the compound Poisson process with the increments X ( t  + h) - X ( h )  = 

xi=N(h)+l N(t+h) Ui. We now say that ruin occurs if R(Ish) < 0 for some k = 1,2,. . .. 
In terms of the claim surplus process { S ( t ) }  with S ( t )  = X ( t )  - Bt, this 
can be written as S(kh) > u for some Is = 1,2,. . .. Since the compound 
Poisson process { X ( t ) }  has independent and stationary increments, the 
random variables Yk(h) = X(kh)  - X ( ( k  - 1)h) - ph, k = 1,2,.,., are 
independent and identically distributed. Hence, ruin occurs if the random 
walk {S(nh) ,  n = 0,l.. .} with S(nh) = c%, Yk(h) crosses the level u. We 
call this model the compound Poisson model with aggregate c laim as it is 
closely related to the risk model with discrete time considered in Section 5.1. 
However, now the aggregate claims do not necessarily take values in IN. 

Another interpretation of a compound Poisson model with aggregate claims 
is that of a Sparre Andersen model with constant inter-occurrence times 
Tn = h, premium rate B > 0 and (individual) claim sizes Un(h) = X(nh)  - 
X ( ( n  - 1)h) having a compound Poisson distribution with characteristics 
(Xh,Fu). For the initial reserve u, the ruin probability is then given by 
$bh(U) = B(max,loS(nh) > u), and ?bh(U), as a function of u, is called the 
ruin function of the compound Poisson model with aggregate claims. Below 
we derive a Lundberg bound and a Cram&-Lundberg approximation for this 
model. Note that in these results the adjustment coefficient 7 is the same as 
for the ordinary compound Poisson model considered in Chapter 5. 

Theorem 6.5.8 In the compound Poisson model with aggregate claims there 
exist constants 0 5 b-(h) 5 b+(h) 5 1 such that 

b-(h)e-?” 5 $bh(U) 5 b+(h)e-Y”, (6.5.37) 

for all u 2 0,  where the adjustment coeficient y is the positive solution to 
(5.4.3) which is assumed to exist. 

Proof The inequalities (6.5.37) follow from Theorem 6.5.4 applied to the 
Sparre Andersen model with generic claim size U ( h )  = ~ ~ ( ~ ’ U , ,  inter- 
occurrence time T ( h )  = h and premium rate j3. Indeed, the generic 
incremental random variable of the underlying random walk is Y(h)  = 
Cff;’l̂ ’ Ui - /?h. Applying (5.2.7), equation (6.5.21) for y is then &y(h)(s) = 
eXh(hU(s)-l)-flhs = 1, a d  so A(Av(s) - 1) - ps  = 0, which coincides with 
(5.4.3). Thus, from (6.5.22) we obtain (6.5.37), where 
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Assume now that the distribution of U is nonlattice and (5.4.3) has 
a positive solution y. We next derive a version of the Cramer-Lundberg 
approximation (6.5.29) for the compound Poisson model with aggregate 
claims. 

Theorem 8.5.9 There en'sts a positive and finite eonstant c(h) such that 

lim eYU$h(u) = c(h) . (6.5.38) 
u+m 

Proof We again consider the Sparre Andersen model with generic claim size 
U(h)  = Cfz'Un, inter-occurrence time T(h)  = h and premium rate a. 
Applying Theorem 6.5.7 to this model and proceeding as in the proof of 

0 

In general it is difficult to compare the constant c(h)  with the constant 
c that appears in the original CramCr-Lundberg approximation (5.4.10) for 
the compound Poisson model with permanent (time-continuous) inspection. 
Nevertheless, the following asymptotic result holds. 

Theorem 6.5.10 If rhc;(y + E )  < 03 for some E > 0, then 

Theorem 6.5.8 we get (6.5.38). 

(6.5.39) 

where 77 = 0(Xp.~i)-' - 1 i s  the relative safety loading of the wmpound 
Poissson model with permanent (time-continuous) inspection of *k reserve 
and c = ((1 - p)P) / (Xh ( l ) ( y )  - P)  0s the constant appearing in the original 
Cmmdr-Lundberg approxamation (5.4.10). 

Proof The ascending and descending ladder heights of the random walk with 
generic increment Y ( h )  are denoted by Y + ( h )  with distribution G'L and by 
Y - ( h )  with distribution Gh, respectively. The distribution of Y(h)  is denoted 
by Gh. Fkom &u(y + E )  < 03 we have A G ~  (r + E )  < 03. Furthermore, this 
implies that IjlG-+(7 + E )  < 00, as can be shown by the reader. Clearly, since 
Y - ( h )  5 0 we also have tiaG- (y + e )  < 03. Now, from Corollary 6.4.3: we 
can derive that 1 - r i a ~ ~ ( s )  = (1 - fhG-+(s))(l - mGh (s)) for 0 5 s 5 -/ + E .  

Differentiating this factorization identity at s = 3, one finds that 

- 1" ue'v d ~ ~ ( v )  = - 4" veyv dGl(v) - 4 we7" dG, (v) 
o= 

m 

+ AG-+(~)J ue'"dG;(u) 
0 

+ rh& (y) 1" we'" dG,f ( u )  . 
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Use h,+(~) = 1 (see (6.5.32)) to obtain 

1" veyv dGh (v )  = 

Hence, from (6.5.30) we obtain 

00 

(1 - 7iaGh (7)) 1 veYU dGi(v).  

263 

We now c0mput.e the derivative 7jEgl(y) of mah (s) = exp(s x:':' Ui - Ph). 
By the result of Corollary 5.2.1 we have r j b ~ ~  (s) = exp(h(X(rhu(s) - 1) - Ps)). 
As the definition of adjustment coefficient 7 gives &u(y) - 1 = (@?)/A, we 
get h,?! (7) = h.(Xrizc)(y) - 3). Since in the original Poisson compound model 
c = ((1 -p)o)/(Xrizg)(-y) -a) ,  this implies %,?i(y) = hc-'(l - p)P. Therefore 
by (6.5.40) 

hC-'y( 1 - p)PC(  h) = (1 * G: (00))  (1 - h ~ i  (7)). 

It remains t#o show that limh,, G i ( w )  = 0 and h h + m  m,- (r)  = 0. By 
the strong law of large numbers we have limb,, h-'Y(h) = Xmu - ,O < 0. 
The formal proof is given in Theorem 10.3.4; see also Theorem 6.1.1. Hence 

lirn (1 - G;(oo)) = lim P(S(h) < O,S(2h) < 0,. . .) = 1 .  

We also have Y - ( h )  5 Y(h).  But then lim~++,P(Y-(h) > x) = 0 yields 
0 

h+m h+w 

Iimh,, mG, (7) = 0. 

6.5.5 Subexponential Claim Sires 

The Cram&-Lundberg approximation studied in Section 6.5.3 to the probabil- 
ity of ruin is valid for claim sizes having exponentially bounded or light-tailed 
distribution. To be more precise, the assumption that (6.5.21) has a positive 
solution 7 means that the moment generating function & F ~ , ( s )  is finite in a 
right neighbourhood of s = 0. hrthermore, for all s > 0 with 7 i t ~ ~ ( s )  < 00, 

the moment generating function 7 i t ~ ;  (s) of the integrated tail distribution Pu 
is 

Consequently, h ~ ; ; ( s )  is finite in the same right neighbourhood of s = 0. 
When modelling large claims: one often uses claim size distributions Fv 
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like the Pareto or the lognormal distribution and that do not have this 
property. In the present section, we consider the Sparre Andersen model where 
the integrated tail distribution Fb of claim sizes belongs to the class S of 
subexponential distributions introduced in Section 2.5. We will show that the 
ruin function @(u) has then the same asymptotic behaviour as the tail function 
Pu(z). See Section 2.5.3 for sufficient conditions to have Ftr E S ,  in terms of 
the hazard rate function of Fu. 

For heavy-tailed claim size distributions, the following result is an analogue 
to the Cram&-Lundberg approximation from Theorem 6.5.7. It extends The 
orem 5.4.3 and shows that, for E U fixed, the asymptotics of the ruin function 
$(u) depends on the claim size distribution Fu(z) only through its behaviour 
for large values of x. -4nother interesting fact is that, in the case of a heavy- 
tailed claim size distribution, the asymptotic behaviour of $(u) does not 
depend on the form of the inter-occurrence time distribution but only on 
its mean ET. 

- 

Theorem 6.5.11 If Pu E S, then 

(6.5.41) 

The proof of Theorem 6.5.11 will be partitioned into several steps. First we 
show the following auxiliary result for the integrated tail distribution F++ of 
the generic increment Y+ = (U - @T)+. Recall that Y+ = max(0, U - PT} 
and note that Y+ is not the generic ladder height of a random walk, which we 
denote by Y+.  

Lemma 6.5.1 If Pu E S ,  then Py+ E S and 

Thus, by Fubini's theorem, 

(6.5.42) 
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Using now that q(;c + Pt) /V(x)  5 1 and that by Lemma 2.5.1, 

for all t 2 0, the dominated convergence theorem gives (6.5.42). The proof is 
I3 

We are now in a position to prove that subexponentiality of the integrated 
tail distribution Fb of claim sizes implies subexponentiality of the conditional 
ladder height distribution Go, where Go(z) = p-lG+(z) and p = Gf(oo). 

Lemma 6.5.2 If F;+ E S, then Go E S and 

completed because, by Lemma 2.5.4, FS E S implies PY+ E S. 

(6.5.43) 

Proof Note that 
0 0 0 lw F Y t t )  dt I /, P(U - PT 5 t) dt 5 P(-$T 5 t) dt L" 

P(T 2 t / P )  dt S BET < 00 ,  
= I" 

and, by (6.4.6), FY (t) = G-(t) - 
t 5 0. Thus, 

G-(t - y) dG+(y) 2 G-(t)(l - p) for 

(6.3.44) 
0 0 [, It1 dG-(t) = /_,G-(t)dt < 00. 

Also, by (6.4.6), we have for all t 2 0 
0 - 

J ' Y + ( ~ )  = /__(G+(t - Y) - G+(t)) dG-(v). 

Integration of both sides of this equation from x > 0 to a > x gives 

where on the right-hand side the order of integration has been changed. Since 

(G+(t - y> - G+(t)) dt = l a b  - G+(t)) dt + (G+(t - Y) - p )  dt I" I" 
= l2-'(p - G+(t)) dt + lD8@ - G+(t)) dt + 

= (p-G+(t))dt-  la-'@ - G+(t)) dt , 
=-8 
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we get for all y 5 0 

-y(G+(a) - G+(z - v)) 5 (G+(t - Y) - G+(t)) dt 5 -y(p - G+(z)). la 
Substituting this into (6.5.45) and letting a + 00, we obtain, for 2: > 0, 

where, in view of (6.5.44), the bounded convergence theorem is used for the 
lower bound. The upper bound in (6.5.46) gives, replacing z by 2: + t ,  

On the other hand, the lower bound in (6.5.46) yields 

Thus. 

Since, by Lemma 2.5.1, l i m z + m q ( z ) / q ( z  + t) = 1, letting z + XI and 
then t -+ 00 we get (6.5.43). Now, in view of Lemma 2.5.4, Go E S follows. 0 

Proof of Theorem 6.5.11 Assume that FP, E S. Then we have GO E S by 
Lemmas 6.5.1 and 6.5.2. On the other hand we have by (6.5.3), 

Use Theorem 2.5.4 to get limU_,,(?%(u))-l$J(u) = (1 - p )  cE1 kpk = 
p(1 - p ) - ' .  Thus, by (6.5.42) and (6.5.43), 
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However, (is)-'(l-%F,,(is)) = (l-r?zG+(is))(is)-'(l-r?zG-(is)) follows from 
rewriting (6.4.13). But then PET - E U  = (1 - p ) J ! ,  It(dG-(t) as s + 0. 
Hence, 

0 
E U  lim ( ~ ( u ) ) - '  +(u) = 

'U-t, B E T - E U '  

Examples 1. We showed in Section 2.5.3 that the Weibull distribution 
F = W(r,c)  with 0 < r < 1,c  > 0 belongs to S'. Furthermore, using 
Theorems 6.5.11 and 2.5.6 we have (for Fu = W(T,  1)) 

Note that the integral in (6.5.47) is the tail of an incomplete gamma function. 
2. Let Fu E S be the Pareto distribution with density 

with a > 1, c > 0. We leave it to the reader to show that then pu = ac/(a-  l ) ,  
Fsu E S and @(u) - c(PET(a - 1) - a c ) - l ( c / ~ ) ~ - '  as u + 00, where it 
suffices to prove that the condition of Corollary 2.5.1 is fulfilled and to use 
Theorem 6.5.11. 
3. Let Fu E S be the lognormal distribution LN(u,b) with -00 < u < 00, 

b > 0. If we show first that 

and then that the right-hand side belongs to S ,  then we can conclude that 
Fb E S. Now it is not difficult to show that 

exp (- (logu - , 26 4 00 , U - (log u - a)2 2bz 

where c = b3(&(13ET - exp(a + b2/2)))-'. 

Bibliographical Notes. The surplus just before ruin and the severity of 
ruin were studied by many authors, mostly for the compound Poisson model; 
see the bibliographical notes to Section 5.3. Note however that results l i e  
formula (6.5.15) remain true even for much more general arrival processes 
with stationary increments. Using techniques of the theory of random point 
processes, such extensions to (6.5.15) have been derived, for example, in 
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Asmussen and Schmidt (1993,1995) and Miyazawa and Schmidt (1993). Some 
of them will be discussed in Chapter 12. Theorem 6.5.4 was proved in the 
queueing setting in Kingman (1970) using monotonicity properties of the 
recursion defined in (6.5.24) and in Ross (1974) by martingale techniques; 
the proof presented in Section 6.5.2 is due to Kingman (1970); see also 
Stoyan (1983). The original proof of Theorem 6.5.7 given by H. Cram& is 
analytical, using Wiener-Hopf techniques and expansions of the resulting 
solutions. The approach via ladder heights, as presented in Section 6.5.3, is 
due to W. Feller. Theorem 6.5.10 is from Cram& (1955)) p. 75. The exposition 
of Section 6.5.5 follows Embrechts and Veraverbeke (1982). Properties of 
subexponential distributions like those used in the proof of Theorem 6.5.11 
can be found, for example, in Athreya and Ney (1972), Pakes (1975), 
Teugels (1975) and Veraverbeke (1977); see also Section 2.5. An extension of 
Theorem 6.5.11 to more general claim arrival processes is given in Chapter 12. 



CHAPTER 7 

Markov Chains 

Throughout this book, a Markov chain is understood to be a stochastic process 
in discrete time possessing a certain conditional independence property. The 
state space may be finite, countably infinite or even more general. We begin 
with the simplest case of finitely many states. Note however that all definitions 
and statements presented in Section 7.1 remain valid for a countably infinite 
state space. Among the applications, we will pay special attention to the use 
of Markov chains to model bonus-malus systems in automobile insurance. 

7.1 DEFINITION AND BASIC PROPERTIES 

7.1.1 

Consider an evolution (of prices, premiums, exchange rates etc.) in discrete 
time on the finite state space E = {I, 2,. . . , l } .  Let cti E [0,1] and interpret 
ai as the probability that the evolution starts in state i E E at time 0. 
Furthermore, let pij E [0,1] be interpreted as the probability that, in one step, 
the evolution moves from state i to state j .  Since in each step we ultimately 
move somewhere we assume that 

Initial Distribution and Transition Probabilities 

t 
Pij 1 0, zpij = 1 .  (7.1.1) 

Each matrix P = (pij)i,j=l,...,l fulfilling (7.1.1) is called a stochastic 
matrix. The future development of an evolution is often independent of its 
development in the past, provided that the present state of the evolution is 
given. We can formally define this conditional independence by introducing 
the following notion of a homogeneous Markov chain. 

Definition 7.1.1 A sequence X,, XI,. . . of E-valued random variables 
is called a homogeneous Markov chain if there ezist a stochastic matrix 
P = (pi,)i,jE~, called the (one step) transition matrix of {Xn}, and a 
probability jbnction Q = (al, .. . ,at) on E ,  called the initial distribution (or 

j=1 
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the initial probability function) of {X,}, such that for each n = 0.1 , .  . . and 
i o , i i , .  . . , in E E ,  

P(X0 = i0,XI = i l , .  . . ,X, = i n )  = aiophll  . . .pi,,-li,,. (7.1.2) 

Since throughout this chapter only the homogeneous w e  will be considered, 
we briefly speak of Markov chains omitting the term homogeneous. What is 
often most important is not the precise state of the hlarkov chain {X , }  itself, 
but rather its distribution. In view of (7.1.2), the latter is uniquely determined 
by the probability function a and the stochastic matrix P .  

Theorem 7.1.1 Let {Xn} be a sequence of E-valued random variables. { X , }  
U a Markov chain if and only af there exists a stochutic matrix P = (Pii) 
such that, for all n = 1,2 , .  . . and io,i1, . . . ,in E E ,  

P(Xn = i, I X,-1 = in-l,.  . . , Xo = io) = P,, ,-~, , ,  , (7.1.3) 

whenever P(Xn-l = i , - l , ,  . . , S o  = i o )  > 0. 

Proof If {X,} is a Markov chain, then (7.1.3) immediately follows from (7.1.2). 
Assume now that {Xn} satisfies (7.1.3) for some stochastic matrix P = (pij). 
Putting cri = P(X0 = i) for all a' E E ,  we ha.ve 

i.e. (7.1.2) is proved for n = 1. Suppose that (7.1.2) holds for some n = k - 1. 
In this case we have P(X0 = io, X 1  = il, . . . , Xr, = ik) = 0 if P(X0 = io, XI = 
i l , .  . . ,Xk-1 = ik-1) = 0, and 

if P(X0 = i0,X1 = i l ,  ..., Xk-1 = dk-1)  > 0. Thus, (7.1.2) holds for every 
O n E IN which completes the proof. 

Corollary 7.1.1 If {Xn} is Q Markoti chain, then 

P(Xn = i n  I X,-l = i , - l ,  ... ,Xo = io) = P(X, = in 1 X,-l = i n - l ) ,  
(7.1.4) 

whenever P(X,-l = in-l,.  . . ,XO = io) > 0. 
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Proof It suffices to notice that P(Xfl-, = & - I , .  . . , XO = io) > 0 implies 
P(Xn-1 = in-1) > 0. NOW, (7.1.2) yields 

P(Xn = in,Xn-l = in-1) 
P(Xn-1 = in-,) 

Using (7.1.3) this gives (7.1.4). 

- Ci, ,..., in - 2 E E  QioPioil . - . ~i , -ni . - I  pi,- li, 

Xio ,..., i ,-2EE aiopioil . . *Pi . . -~ im- l  
- 
- - Pin-la". 

0 

The conditional independence property stated in Corollary 7.1.1 is called 
the Markov property of { X f l } .  For n 2 1 and i, j E E fixed, the product 
piilpiliz . . . ~ i , - ~ j  can be seen as the probability of the path i + il + . . . -+ 
i,-l + j. Analogously, the sum 

= C p i i , ~ i I i z  - . .pin-lj  (7.1.5) 

is interpreted as the probability of the transition from state i to state j in 
n steps. In part.icular, if {X,} is a Markov chain with P(X0 = i) > 0, then 
p$) is the n-step transition probability pi;) = P(X, = j I XO = i) of {X,l}. 
In accordance with this, the matrix P(n) = b:;))i.j=1,..,$[ is called the R- 
step transation matrix corresponding to P .  We also set P(O) = I ,  where I 
is the identity matriz whose entries are equal to 1 on the main diagonal, 
and 0 otherwise. From the following lemma we easily conclude that P(n) is a 
stochastic matrix. 

Lemma 7.1.1 For all n,m = 0,1,. . ., 

ix ..... i , -IEE 

p (4  = p" (7.1.6) 

(7.1.7) 

Proof ECquation (7.1.6) is an immediate consequence of (7.1.5) and of the 
definition of matrix multiplication. 0 

The ma.trix identity (7.1.7) is usually called the Chapman-Kolmogorou 
equation. As an immediate consequence, we have the following useful result. 

Corollary 7.1.2 We hove 

(7.1.8) 

and 
(7.1.9) 
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Using Lemma 7.1.1, we get the following representation for the distribution 
of the state variable X,. For convenience, we put P(Xn = j I XO = i )  = 0 if 

Theorem 7.1.2 If {X,} is a Markov chain with trawition matrix P and 
initial probability function a, then the distribvtion an of X ,  i s  given by 

a, = a P .  (7.1.10) 

Proof We have P(Xn = j )  = CiEE P(X, = j I XO = i)a, = CiEE sip$). It 
now su6ces to use Lemma 7.1.1. 0 

Qi = P(X0 = ij = 0. 

Example Consider a random walk {Sn, ~t = O l l : .  . .} from Chapter 5,  where 
SO = 0, S, = YI + . . . + Yn for n 2 1 and Y1 , Y2, . . . is a sequence of independent 
and identically distributed integer-valued random variables. Note that the 
S1, Sz, . . . can be defined recursively by 

Sn = Sn-1 + Yn . (7.1.11 j 

By inspection it can be seen that the random walk {S,, n = 0,1 , .  . .} has the 
Markov property: 

P(Sn = in I S,-1 = &-I , .  . , )SO = io) = P(Sn = in I Sn-1 = in-l), 

for io = 0, i l l . .  .,in E E and for all n 2 1 provided that P(Sn-l = 
in-1,. . . , S1 = i l)  > 0. In Section 7.1.3 we show that a Markov chain with 
state space Z is a natural extension of a random walk; instead of adding 
successive terms, a more general recursive scheme is considered which is useful 
for the simulation of a Markov chain with a given distribution. 

7.1.2 

From (7.1.10) it is seen that the computation of the probability function a, of 
the st,ate variable Xn is closely related to the computation of the n-th power 
of the transition matrix P. In this section we discuss an algebraic method for 
computing Pn which makes use of the concept of eigenvalues and eigenvectors. 

Assume that A is an arbitrary (not necessarily stochastic) l x t matrix, 
that 4 is an l-dimensional vector with at least one component different from 
zero, and that 13 is a real or complex number. A matrix of any dimension all of 
whose entries are 0 is denoted by 0.  The transposition of any matrix A = (aij) 

is denoted by AT, i.e. AT = (ap). If 

A c $ ~  = 8qjT, (7.1.12) 

then 8 is said to be an eigenvdue of A and 4 is said to be a right eigenvectw 
corresponding to 8. Writing (7.1.12) as (A - OI)4T = 0 ,  from the theory of 

Computation of the n-Step Transition Matrix 
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linear algebraic equations we get that the eigenvalues are exactly the solutions 
to the characteristic equation 

det(A - 81)  = 0. (7.1.13) 

A nonzero vector 11, which is a solution to 

+A = ell, (7.1.14) 

is called a left eagenwector corresponding to 8. It is easy to see that for each 
eigenvalue 8 ,  a solution 11, to (7.1.14) always exists because (7.1.13) implies 
that det((A - 81)') = 0, i.e. there exists a nonzero (column) vector qT such 
that (A - 81)T+T = 0 ,  which is equivalent to (7.1.14). 

Note that (7.1.13) is an algebraic equation of order t ,  i.e. there are .l 
eigenvalues 81, . . . , Or, which can be complex and some of them can coincide. 
We always asume that the eigenvalues el, . . . ,8& are numbered such that 

1011 1 1621 1 * * 1 l&lf 
Let + = (@:,.. . , (6;) be an .l x l matrix consisting of right (column) 
eigenvectors, 

an .! x .! matrix consisting of left eigenvectors rtl, . . . ,I)!, and 0 = (el,.  . . , O r )  
the vector of eigenvalues. There results the equation 

A* = 'Pdiag(8), (7.1.15) 

where diag(0) denotes the diagonal matrix with diagonal elements 61,. . . ,8c 
and all other elements equal to zero. We make a number of observations. 
0 If all eigenvectors & . . . , are linearly independent, and this is assumed 

to the end of the present section, then CP-' exists. In this case, we can put 

0 A direct consequence of (7.1.15) is A = +diag(B)*-' = +diag(O)\k and, 

(7.1.16) 

\k = cp-'. 

consequently, 

An = +(diag(B))"+-' = +(diag(0))"\k. 

0 F'rom (7.1.16) we get 

A" = ($T, - .  . , &)(diag(o))" ( ? )  
3 r  
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which yields the spectml representation of A", i.e. 

t 

(7.1.17) 

Applying this procedure to the transition matrix P, the spectral represen- 
tation (7.1.17) gives us a basis for computing the a-step transition matrix 
P". There of course remains the difficulty of computing the eigenvalues 
and the eigenvectors of P. However, in many cases this can be done by 
means of standard software like MATLAB, MATHEMATICA or MAPLE. 
An important advantage of the method of spectral representation, however, 
is that the complexity of the numerical computations does not grow with n 
because, once the eigenvalues and eigenvectors of P are computed, it is easy 
to compute P" by (7.1.17). 

The crucial assumption for the validity of (7.1.17) is that the eigenvectors 
&, . . . , & are linearly independent. The following lemma gives a simple 
sufficient condition. 

Lemma 7.1.2 If the eigenvalues 01, . . . , Bt are distinct, then 4, , . . . , QW 
linearly independent. Moreover, if the left eigenvectors el , . . . , +2 are defined 
via @ = +-', then 

1 i f i  = j ,  
+i4; = { 0 i f i # j .  (7.1.18) 

Proof U'e show the asserted independence property by induction. Because the 
eigenvector has at least one component different from 0, the only solution 
to U I @  = 0 is al = 0. Assume now that 61, . . . ,6t are all distinct and that 
4, , . . . , q5)k-l are linearly independent for some k 5 l. In order to prove that 
also the eigenvectors +l ? .  . . , (pk are linearly independent, we have to show 
that 

k 

c a j 4 ;  = 0 (7.1.19) 
j=1 

implies a1 = . . . = a& = 0. If (7.1.19) holds, then 

k k 
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Hence a1 = a2 = . . . = ak-1  = 0, because Sk  # Sj for 1 5 j 6 k - 1 . 
This implies uk = 0 by (7.1.19), and so (7.1.18) is a direct consequence of 

We still need another application of the concept of eigenvalues which is 
related to the spectral representation (7.1.17) and which will be used in later 
sections. 

L e m m a  7.1.3 Let A be an arbitrnrg l x e matrix. Then there exists a 
nonsingular matrix C such that CAC-I. is an upper triangular matrix with 
the eigenvdues of A along the main diagonal. 

Proof We use induction on e and suppose that the lemma is true for each 
(e  - 1) x (e - 1) matrix. Let 6 be an ei e n d u e  of A, and let 9 be the right 
eigenvector corresponding to 8, i.e. A+ = ecPT. Let V be any nonsingular 
matrix such that #T is the first column of V. If D(1) denotes the first column 
of the matrix D,  then 

?? = 8-l. 0 

% 

(V-'AV)(,) = (V-'A) V(1) = V-'AcPT = BV-'C$~ 

= ev-lv(l) = 8 ( v - ~ v ) ( ~ ~  = eer, 

where el = (1.0,. . . ,O). Thus 

where A' and B are (t  - 1) x (l - 1) and 1 x t - 1 matrices, respectively. By 
the induction hypothesis, t>here exists a nonsingular (l  - 1) x (e  - 1) matrix 
W such that W-'A'W is upper triangular. Put C = VW', where 

1 0  
w'=( 0 w ) *  

Then C is nonsingular and CAC-' is an upper triangular matrix. Since 

I 

det (CAC-I) = det(A) = n 4 ,  
i=l 

CAC-' has the eigenvalues of A along the main diagonal. 0 

7.1.3 Recursive Stochastic Equations 

Here we show that each sequence of random variables fulfilling a certain 
recursive stochastic equation is a Markov chain. However, it is also possible 
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to show the reverse statement, namely that each Markov chain can be seen 
as a solution to a recursive stochastic equation. 

Let Yl , Y2, . . . be independent and identically distributed integer-valued 
random variables. Let XO : 0 + 2 be independent of Y1, Y2,. . . and let the 
random variables XI, X2, . . . be defined by the recursive stochastic equation 

(7.1.20) 

where + : 2 x a! -+ 2 is an arbitrary function. 

Theorem 7.1.3 For all n 2 1 and io, il, . . . ,in E Z, 

P(X* = in I xn-1 = in-,, . . . , Xo = io) = P(Xn = in I Xn-1 = in-1) 

whenever P(Xn-l = & - I , .  . . , XO = io) > 0 .  

Proof From (7.1.20) we get 

P(Xn = i, I X,-l = &-I,. . . , xo = io) 
= 
= P(f#(~n-l, Yn) = 4 (7.1.21) 

P(+(in-l,Yn) = i, I X,-l = in-], . . . ,Xo = io) 

= P(f#(in-l,Yn) = in I Xn-1 = in-1) = P(Xn = in I Xn-1 = in-1) 

where in (7.1.21) we used the fact that the random variables XO,. . . , Xn-1,  

Fkom the proof of Theorem 7.1.3 we see that the conditional probability 

not depend on n., because the Y,s are identically distributed. Moreover, the 
joint probability P(X0 = io, XI = il, . . . , Xn = in) can be given by 

defined by YI,. . .,Yn-l, are independent of cb(in-1jYn). 

pij  = P(Xn = j I Xn-1 = i) is given by pij = P(f#(E, Yn) = j ) .  Thus pij does 

P(X0 = io, XI = il, . . . ! X, = in) = a ~ i ~ i ~  . . , (7.1.22) 

where aio = P(X0 = io). These properties of the stochastic process {Xn} 
given by (7.1.20) are basic for the notion of a homogeneous hlarkov chain as 
introduced in Section 7.1.1. 

We tackle the reverse problem. Suppose tha.t XO, XI, . . . is a Markov chain 
on the finite set E = {1,2, .  . . , a } ,  with initial distribution a = (ax,. . . ,at) 
and transition matrix P = (p i j ) .  Starting from a recursive equation of type 
(7.1.20), we want to construct a Markov chain {Xk} with the same initial 
distribution and transition matrix, i.e. such that for each n = 0 , l : .  . . , 

P(X0 = 20,.  . . ,x, = in) = P(XA = io,. . . , X; = in) ,  (7.1 23)  

for all io,. . . , in E E. Two stochastic processes {Xi} and {Xi} for which 
(7.1.23) holds for all n = 0, 1, . . . are called stochasticdly equivalent. 
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Take {Z,,n E lN} a sequence of independent random variables, uniformly 
distributed on [0,1]. We define an Evalued random variable Xh with 
probability function a = ( ( ~ 1 ,  . . . , at) by the statement 

k-1 k 

for all k = 1, .  . . , l ,  or explicitly by 

1 k-1 k 
~6 = ~ k ~ ( ~ a i  < 5 Cai) - (7.1.24) 

The random variables Xi , Xi, . . . are then defined recursively. Let the function 
q5 : E x [0,1] + E be defined by 

k=l i=l i=l 

(7.1.25) 

(7.1.26) 
It is easily seen that for the sequence {XA} defined in (7.1.24)-(7.1.26), the 
joint probabilities P(X6 = i0 ,X;  = il, ...,XA = in) are given by (7.1.2), 
i.e. {Xk) is a Markov chain with initial distribution a and transition matrix 
P. 

The construction described above can be used to simulate a Markov 
chain with given initial distribution and transition matrix. Note that this 
construction remains valid for Markov chains with countably infinite state 
space. 

7.1.4 Bonus-Malus Systems 

As a first illustration of the use of Markov chains in insurance, we show how an 
automobile insurance problem can be modelled by the use of Markov chains. 
Up to minor modifications, most automobile insurances employ the following 
bonus-malus system. There is a finite number 4 of classes (tariff groups) and 
the premium depends on the class to which the policy-holder belongs. Each 
year the class of a policy-holder is determined on the basis of the class of the 
previous year and on the number of reported claims during that year. If no 
claim has been reported, then the policy-holder gets a bonus expressed in the 
lowering to a class with a possibly lower premium. Depending on the number 
of reported claims, the policy-holder gets maluses, expressed by a shift to a 
higher class. Formally, we need the following ingredients: 
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0 f? classes numbered by 1,. . . , .!; we call class 1 superbonus and class f? 
superma6us; the annual premium depends on the number of the actual class 
and is computed from a given scaJe; 

0 apremiumscaleb=(bl,bz, ..., br),whereweassumebl < b 2 I . . . I b r ;  
0 transition rules which say how the transfer from one class to another is 

determined once the number of claims is known; once k claims are reported, 
let 

1 
t i 3  (k) = { 0 otherwise; 

if the policy gets transferred from class i to class j ,  

0 an initial class io  for a new policy holder entering the system. 

Let T(k)  = (tz ,(k)), , ,=, ,  ,e .  Thus each T ( k )  is a 0-1 matrix having in each 
row exactly one 1. Suppose that for a policy-holder the numbers of yearly 
reported claims form an IN-valued sequence YI , Yz, . . . of independent random 
variables with common probability function { q k } .  Denote by XO, X I , .  . . the 
year-by-year classes for the policy-holder. Since we assume that the class for 
the next year is uniquely determined by the class of the preceding pear and 
by the number of claims reported during that year, we can express { X , }  
by the recursive equation X n  = Cb(Xn-1, Yn), where d( i ,  k) = j if and only 
if t , (k )  = 1. Thus, in view of the results given in Section 7.1.3, { X , }  is a 
hlarkov chain. The transition probability p,, that the policy passes from class 
i to class j is pt3 = Ck=O q&(k). In practice, one usually assumes that the 
number of claims reported by the policy-holder follows a Poisson distribution 
with parameter A, possibly depending on the policy-holder. Explicitly, 

oc 

(7.1.27) 

For the analysis of bonus-malus systems it is interesting to study the following 
characteristics: 

0 the probability that in the n-th year the policy-holder is in class j ;  
0 the expected accumulated (total) premium paid by the policy-holder over 

At least two variants are possible for the computation of the accumulated 
premium: undiscoiinted or discounted premiums. We will discuss both of them 
later in Section 7.3.2. Another crucial issue is whether it is profitable for 
a policy-holder not to report small claims in order to avoid an increase in 
premium, a behaviour called hunger for bonus. Formally, we can define a 
strategy for the policy-holder by a vector z = (XI,. . . :ze), where xj is the 
retention limit for class i, i.e. the cost of any accident of amount less than 
xi is borne by the policy-holder; the claims connected with higher costs are 
reported. The problem is to determine an optimal value of z. 

the period of n years. 
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Example Table 7.1.1 presents as an example the German bonus-malus 
system. There are 18 bonus classes 1a.belled from 1 to 18; new policies are 
placed in class 15. The bonus rules and the premium scale are given in the 
adjoining table. The transition probabilities pdj in (7.1.27) can be given by 
Table 7.1.2 where {k} = (Xk/k!)e--x. 

Class Premium scale Class after one year (per no. of claims) 
0 1 2 3  4,5, ... 

18 200 13 18 18 18 18 
17 200 13 18 18 18 18 
16 175 13 17 18 18 18 
15 175 13 16 17 18 18 
14 123 13 16 17 18 18 
13 100 12 14 16 17 18 
12 85 11 13 14 16 18 
11 70 10 13 14 16 18 
10 65 9 12 13 14 18 
9 60 8 11 13 14 18 
8 55 7 11 13 14 18 
7 50 6 11 13 14 18 
6 45 5 11 13 14 18 
5 40 4 10 12 13 18 
4 40 3 9 11 13 18 
3 40 2 8 11 13 18 
2 40 1 7 11 13 18 
1 40 1 7 11 13 18 

'hble 7.1.1 German bonus-malus system 

Bibliographical Notes. Further elementary properties of Markov chains 
with finitely or countably infinitely many states can be found in Berger (1993), 
Chung (1967), Feller (1968), Iosifescu (1980), Kemeny and Snell (1990) and 
Krengel (1991), for example. For more details on simulation of Markov 
chains, see Ross (1997b) and Winkler (1995), for example. The German 
bonus-mdus system is discussed in Boos (1991), where the bonus-malus 
systems of further European countries are given as well. The Danish and 
Finnish bonus-malus systems are considered in Vepsiilainen (1972). Other 
references where bonus-malus systems are modelled by Markov chains are 
Dufresne (1984), Lemaire (1985,1995) and Loimaranta (1972). Strategies for 
the claim behaviour of a policy-holder have been investigated in Dellaert, 
Fkenk and van Ftijsoort (1993), where it is shown that it is optimal to claim 
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2 
3 
4 
5 
6 

8 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 
l ( 0 )  . . . . .  (1) . . .  (2) . (3) . . . .  (4,5,.) 

(0) . . . . .  (1) . . .  (2) . (3) . . . .  {4,5,.) 
. (0) (1) (2) (3) (4,5,.) 
. .  (0) (1) (2) (3) (4,5,.) 
. . .  (0) . . . . .  (1) . (2) (3) . . . .  (4,5,.) 

7 .  . . . .  (0) . . .  . (1) . (2) (3) . . .  (4,5,.) 

g . . . . . .  . (0) . .  (1) . (2) (3) . . .  (4,5,.} 
. . . . . . . .  (0) . .  (1) (2) (3) . . .  (4,5,.) 
. . . . . . . . .  (0) . .  (1) (2) . (3) . (4,5,.) 
. . . . . . . . . .  (0) . (1) (2) . (3) . (4,5,.} 
. . . . . . . . . . .  (0) . (1) . (2) (3) (4,5,.) 
. . . . . . . . . . .  * (0) . . ill (2) (3747.1 
. . . . . . . . . . .  . (0) * . (1) (2) (3,4,.) 
. . . . . . . . . . . .  (0) . . .  (1) (2,3,.) 

(0) * {112,.) 
. . . . . . . . . . . .  (0) . . . .  {1,2,.} 

. . . . .  . .  . . . . .  
. . . . .  . . . . . .  

. . . .  (0) . . . . .  (1) . (2) (3) . . .  (4,5,.) 

. . . . . .  (0) . . .  (1) . (2) (3) . . .  (4,5,.} 

. . . . . . . . . . . .  . . .  

Table 7.1.2 lhnsition probabilities for the German bonus-malus system 

for damages only if its amount exceeds a certain retention limit. Further 
related results can be found, for instance, in Bonsdorff (1992), Islam and 
Consul (1992) and Szynal and Teugels (1993). 

7.2 STATIONARY MARKOV CHAINS 

7.2.1 Long-Run Behaviour 

For large n, it may be difficult to compute the probability function a, = 
(a?', .... ap) ) of X, using (7.1.10). One way out is to find conditions under 
which the a, converge to a limit, say T = limn+m a,, and then to use T as 
an approximation to a,. This method is of practical importance because in 
many cases the computation of R is much easier than that of a,. We begin 
with a simple example. 

Example Let 

with 0 < plp' 2 1. In this case, it is not difficult to show that the n-step 



M ARKOV CHAINS 281 

transition matrix P(n) = P" is given by 

p n =  1 ( P' P )  (1-p-p' )"  ( pt - p )  + 
P + P '  P' P P + p '  -P' P' 

Assume that p + p' < 2; then we have 

lim Pn = - 
n+w 

and, by (7.1.10), 
P 

n-kw 

However, if p + p' = 2, then 

P ifn isodd, 
P.=( I if n is even. 

(7.2.1) 

Note that the limit distribution a in (7.2.1) does not depend on the choice 
of the initial distribution a = ao. This invariance property of a is connected 
with the notion of ergodicity of Markov chains. 

Definition 7.2.1 A Markov chain {Xn} with transition matrix P = (pij) is 
said to be ergodic if 
(a) the following Bmits exist for each j E E: 

(7.2.2) 

(b) the r j  are strictly posdtave and independent of i and, 
(c) ( ~ j )  is a probability finction, i e .  CjEE rj = 1. 

The ergodicity of Markov chains will be characterized by a concept from 
matrix theory. An l x E matrix A = (aij)  is called nonnegative if all entries 
a,j are nonnegative. A nonnegative matrix A is ca-lled regular if there exists 
some no >_ 1 such that all entries of A"O are strictly positive. 

Theorem 7.2.1 A Markov chain {Xn} with transition matrix P i s  ergodic 
af and only if P is  regular. 

Proof We first show that the condition 

(7.2.3) 

(nf is sufficient for ergodicity. Let my) = minicEp$) and Mj(") = max,.Espii . 
From (7.1.7) we have p$+') = C h E E p i i p c )  and, consequently, 
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i.e. m y )  5 m.!"") 3 for all n 2 1. Analogously, we get Mj"' 2 
a 2 1. Thus, to prove (7.2.2), it suffices to show that 

STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

for all 3 

for each j E E. Let u = mini,jcEpiy) > 0. Then, 

k k k 

Since p : ; ~ )  - apg! 2 0, this gives 

Thus, 
~j'~)(1-u)i-up:?). Consequently, ~ j ( ~ o + ~ ) - m l m + ~ )  5 ( ~ j ( * )  -rn?))(l -u): 
and by induction 

M!kno+n) 3 - m!kno+n) 3 < - (hfjn) - vaY))(l - a)', (7.2.5) 

for each k 2 1. This means that there is a sequence n1,n2, ... of natural 
numbers tending to infinity such that 

2 mY'(1 - a) + up:?). Analogously, we have &.Ilna+n) I 

for each j E E. Since the differences Mjn) - my) are monotone in n, (7.2.6) 
holds for each sequence n1, a2, . . . of natural numbers tending to infinity, 
i.e. (7.2.4) is proved. The limits 7rj are positive because 

n, = lim p ! ~ '  > lim m(n' > m y )  2 a > 0. 
R+, 3 - - n+m 

Moreover, CjEE rj = CjEE limn+m p i j  (n) = limn+, c p!? = 1 because 
interchanging of limit and finite s u m  is always allowed. On the other hand, 
the necessity of (7.2.3) is an immediate consequence of min jc s r j  > 0 and 

0 

As the limits nj  = limnjap$' do not depend on i, (7.1.6) and (7.1.10) 
imply that l i m n + m ~ n  = alirn,,, P(n) = ?r. Note that one can prove an 
even stronger result than (7.2.2). Indeed, (7.2.5) gives 

d;) - 7r.l 3 -  < M)") - m!") J -  < (1 - .)ln/mJ-17 

(7.2.2) having in mind that E is finite. 

(7.2.7) 

which is a geometric bound for the rate of convergence in (7.2.2). 
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Corollary 7.2.1 If the Markou chain {Xn} is ergodac, then T = ( X I , .  . . , re) 
is the unique probabilistic solution to the system of finear equations 

(7.2.8) 

Proof From (7.1.7) and (7.2.2) we get, interchanging limit and summation, 

Suppose now that there exists another probability function T’ = (z{ 7 . .  . , xi> 
such that 

X i  = C X : p i 7 ) 7  j E E ,  (7.2.9) 

= CiEE 7 r i p i j  for j E E.  By induction we can show t.hat 

i E E  

for all n = 1,2 , .  . .. Thus, letting n tend to infinity in (7.2.9), we get 

In matrix notation, (7.2.8) can be written as T = rrP. This equation is 
called the balance equation for P .  It yields a useful tool when computing the 
limiting probability function T = limn+oo a,. In Section 7.2.4 we will discuss 
this problem in detail. 

7.2.2 

Let A be any nonnegative 4 x C matrix. Remember that the eigenvalues 
8 1 , .  . . ,Sc of A are numbered so that [ell 2 . . . 2 l&l. Let e = (1,. . . , 1) 
be the C-dimensional vector with all components equal to 1 and E the .t x t? 
matrix all of whose entries are 1, i.e. consisting of C (row) vectors e. Moreover, 
by ei we denote the C-dimensional (row) vector having zeros at aJl components 
with the exception of the i-th component, which is equal to 1, i.e. 

ei = (0,. . . ,O, 1,0, .  . .) . 

hrthermore, let P be a regular stochastic C x E matrix, and T the probability 
function given by the limits (7.2.2) or, equivalently, by (7.2.8). By ll we denote 
the E x C matrix consisting oft? (row) vectors T .  

Besides the geometric bound (7.2.7) for the rate of convergence in (7.2.2), 
one can give further bounds using concepts of matrix algebra. These bounds 
are obtained from the following important result, called the Pemn-E;f.obenSus 
theorem for regular matrices. 

Application of the Perron-Fkobenius Theorem 

- 
i- 1 
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Theorem 7.2.2 Zf A is replar, then 
(a) 10, I > lBii for i = 2 , .  . . , &; 
(b) the eigenvalue 8, is real and strictly positive; 
(c) the right and left eigenvectors &, 
and are unique up to constant multiples. 

The proof of Theorem 7.2.2 goes beyond the scope of this book. It can be 
found, for example, in Chapter 1 of Sencta (1981). The eigenvalue 81 of a 
regular matrix A is called the Perron-Robenius eigenvalue. 

Corollary 7.2.2 If P is a regular stochastic naatriz, then 
(a) 81 = 1,& = e and = T ;  
(b) l B i l < l  f o r i = 2 ,  ...,&. 
Proof By inspection we get that PeT = eT, and from (7.2.8) we have 
TP = n. Hence 1 is an eigenvalue of P and e ,n  are right and left 
eigenvectors for this eigenvalue, respectively. Also, 81 = 1, i.e. 1 is the 
eigenvalue with the largest modulus. Kamely, let B be some eigenvalue of 
P, and 4 = (&, . . . ,$tie) the corresponding right eigenvector. Then, (7.1.12) 
gives 101 I+il 5 C:=, pijl$jl 5 maxjEE 14Jl for each i 6 E. Hence 101 5 1. 
Thus, Theorem 7.2.2 gives that 

Moreover, if P is a regular stochastic matrix with distinct eigenvalues, then 
Theorem 7.2.2 leads to the following bound for the rate of convergence in 

Corollary 7.2.3 Zf all etgenvalues B1 , . . . ,8! of P are distinct7 then 

have all components strictly positive 

< 1 for i = 2 , .  . . , C. 

(7.2.2). 

(7.2.10) 

Proof From Corollary 7.2.2 it follows that limn+x ~ ~ = , O ~ & t , b , ,  = 0 since 
le,l < 1 for i = 2, .  . . , e. Moreover, also by Corollary 7.2.2, we have 81 = 1 and 
& = (1,. . . , l), = 7r for the right and left eigenvectors corresponding to 
81. Using the spectral representation (7.1.17) of P", we arrive at (7.2.10). cf 

There exists a slightly different variant of (7.2.101, which is still true when 
not all eigenvalues are distinct. This variant can be obtained from the theory 
of nonnegative matrices. By the algebraic multiplicity of an eigenvalue, one 
understands its multiplicity as a root of the characteristic equation (7.1.13). 

Theorem 7.2.3 Assume that A is  regular. Further, assume that if 1021 = 1831, 

the algebmac multiplicity m2 of& i s  not smaller than that of&, nor of any 
other eigenvalue having the same modulus as 0,. Then, 
(a) for 62 # 0 and n 4 00, 

A" = epjJ;+l + O ( F P - ~ ( B ~ I ~ )  ; (7.2.1 1) 
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(b) for 82 = 0 and n 2 I - 1, 

An = O ~ & p l t l .  (7.2.12) 

The proof of this theorem can also be found in Chapter 1 of Seneta (1981). 
Moreover, proceeding in the same way as in the proof of Corollary 7.2.3 we 
arrive at the following result. 

Corollary 7.2.4 Assume that P U a regular stochastic matrix satiahing the 
conditions of Theorem 7.2.3. Then, for c > 1021, 

lpij (n) - 7rjl = O(cn), a + 00. (7.2.13) 

7.2.3 Irreducibility and Aperiodicity 

In this section we study another type of ergodicity condition which 
is sometimes easier to verify than (7.2.3) thanks to its probabilistic 
interpretation. Let ~j = min{n 2 0 : X, = j }  denote the step when { X n }  
is in state j E E for the first time; we put Tj = 00 if X n  # j for all n E IN. 
For i,j E E we say that state j is accessible from i and write i + j, if 
P(7j < 00 I XO = i) > 0. 

Theorem 7.2.4 State j is accessible from i if and only if pi;’ > 0 for some 
nLO. 

Proof Sufficiency is easy to see, because {Xn = j }  C { ~ j  5 n) C {q < 00) 

and, consequently, 0 < pi;) 5 P(q < 00 I Xo = i). Conversely, if pi;’ = 0 for 
all n E IN, then 

P ( T ~  < 00 I Xo = i) = lim P ( T j  < I XO = i) n+m 

Note that the relation of accessibility is transitive, i.e. i + k and k + j 
imply i + j. This is an easy consequence of Theorem 7.2.4 and Corollary 7.1.2. 
If i + j and j + i, then we say that states i and j communicute, and we 
write i H j .  Communication is an equivalence relation which means that 

rn i e, .i (reflexivity), 
rn i # j if and only if j H i (symmetry), 
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i t) k and k t) j imply i +) j (transitivity). 

Consequently, the state space E can be partitioned into (disjoint and 
exhaustive) equivalence classes with respect to the relation of communication. 
A Markov chain {Xn) or, equivalently, its transition matrix P = b i j ) ,  is 
called aweducible if E consists of only one class, that is i t) j for all i, j E E.  
Example It is easy to see that the matrices 

112 112 112 112 
p1 = ( 1/2 1/2 ) ’  p2 = ( 1/4 314 ) 

are irreducible, where= the 4 x 4 matrix P having the block structure 

is not irreducible. 
Besides irreducibility, there is still another property of the states which is 

important for ergodicity. Define the period d, = gcd{n 2 1 : p l l )  > 0) of state 
i, where gcd means the greatest common divisor. We put & = 00 if pi:’ = 0 
for all n 2 1. A state i E E with di = 1 is called aperiuddc. If all states are 
aperiodic, then the Markov chain {Xn} or, equivalently, its transition matrix 
P = (p i j  j is called aperiodic. The next theorem shows that the periods &, dj 

coincide if i,j belong to the same equivalence class of communicating states. 
We will use the notation i + j [n ]  if pi;) > 0. 
Theorem 7.2.5 If states d ,  j E E communicate, then di = d j .  

Proof If j + j[n], i + j[k] and j + i[m] for some k,rn,n 2 1, then using 
Corollary 7.1.2 i + i[k + rn] and a’ + ilk + rn + n]. This means that di divides 
k + m and k + m + n. Thus, di also divides n = (k + m + n) - (k + n). 
Consequently, d, is a common divisor of all ra such that pi;) > 0, i.e. di 5 d j .  

El By symmetry we also get dj 5 di .  

Corollary 7.2.5 All states of an irreducible Markov chain have the same 
period. 

The remaining part of this section is devoted to the proof that condition 
(7.2.3) is fulfilled if and only if the Markov chain is irreducible and aperiodic. 
For this purpose we need an elementary result from number theory. 

Lemma 7.2.1 Let k = 1 , 2 , .  . ., Then, for some no 2 1, 

I = { n l k + n 2 ( k + 1 ) ;  n1,n2 EIPr’} 3 {no ,no+l ,?ao+2 , . . . } .  
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Proof If n 2 k2: then n - k 2  = m k + d  for some m E IN and 0 5 d < k .  Thus 
I7 n = (k - d + m)k + d(k  + 1) E I, i.e. we can take = k2. 

Theorem 7.2.6 P is an irreducible and aperiodic stochostic mcrtrix if and 
on19 if P is regular. 

Proof Assume that P is irreducible and aperiodic. Consider the set of integers 
J ( i )  = {n 1 1 : pi:) > 0) for each i E E and note that, by the aperiodicity 
of P, the greatest common divisor of J ( i )  is equal to one. Moreover, from 
Corollary 7.1.2, one gets that n, m E J ( i )  implies n + m E J ( i ) .  Next  we show 
that J ( i )  contains two consecutive numbers. For then, Lemma 7.2.1 implies 

J ( i )  3 {n(i) ,n(i)  + 1, * . .} (7.2.14) 

for some n(i) 2 1. So, assume that J ( i )  does not contain two consecutive 
numbers. Then there is a minimal difference k 2 2 between any two integers 
of J(a). Consequently, for some na = 0,1,  ... and d = 1 ,..., k - 1, we 
have n = mk + d E J ( i )  because otherwise, for all ra E J(k),  we would 
have n = nak, in contradiction to our assumption that gcd(J(i)) = 1. Let 
nl,  n1 + k E J ( i ) .  We show that there exist a, b E IN such that the difference 
between a(n1 + k )  E J ( i )  and n + bnl E J ( i )  is strictly less than k. Namely, 
a(nl+ k) - n - bnt = (a  - b)nl+ (a- m)k-  d and, if a = b = m+ 1, then the 
difference is k - d < k. Therefore J ( i )  contains two consecutive numbers and 
(7.2.14) holds for all 4. E E. Now, from (7.1.9) a.nd the irreducibility of P, we 
also get that J ( i j )  = {n 2 0 : pt;’ > 0) 3 {n ( i j ) ,n ( i j )  + 1, .  . .}. Hence P is 

0 regular. The proof of the converse statement is left to the reader. 

7.2.4 Stationary Initial Distributions 

In Corollary 7.2.1, we showed that the limit distribution 7r = limn+ma, of 
an ergodic Markov chain {X,} with t.ransition matrix P = (p i j )  satisfies the 
balance equation 

a = aP. (7.2.15) 

Moreover: under the assumption of ergodicity, ?r is the only probability 
solution to (7.2.15). 

If we do not assume ergodicity, then (7.2.15) can have more than one 
probability solution. However, if the initial distribution a0 of {X,) is equal to 
any probability solution to (7.2.15): then (7.2.15) implies that a1 = aoP = 
a0 and, by iteration, a& = a0 for all k 2 0. Because of this invariance 
property, each probability solution Q to (7.2.15) is called a stationmy initial 
distribution of {X, , } .  Piote that, besides the invariance property a0 = a1 = 
. . ., a Markov chain {X,} with a stationary initial distribution possesses an 
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even stronger invariance property. In this connection, it is worth cansidering 
the notion of a (strictly) stationary .9eqvence of random variables. 

Definition 7.2.2 A sequence of E-valued random variables Xo, X 1 , .  . . is 
stationav i f  for all k, rt E IN and 20, .  . . ,.in E E, 
P(xb = i0, X k + l  = il,. . . , X k + n  = in) = P(X0 = i0, XI = i l l .  . * , x, = i n )  - 
Theorem 7.2.7 A Markov chain { X n }  with Q stationary initial distributaon 
is stationary in the above sense. 

The proof of this fact is left to the reader. 

We finish this section with a brief discussion of three methods to solve the 
balance equation (7.2.15). The first two methods axe called direct methods, in 
contrast to an iterative method that will be discussed later on. 

Theorem 7.2.8 Assume that the stochastic matrix P is regular. Then the 
matrix I - P + E is invertible and the solution to (7.2.15) is given bg 

x = e(I- P + E)-' .  (7.2.16) 

Proof First we verify that I - P+ E is invertible. We do this by showing that 
(I - P + E)xT = 0 implies xT = 0. Flom (7.2.15) we have x ( I  - P) = 0. 
Thus, (I - P + E)zT = 0 implies that 0 = x ( I  - P + E)sT = 0 + xExT,  
i.e. xExT = 0. On the other hand, x E  = e. Thus, ezT = 0, which implies 
EzT = 0.  Consequently, (I - P)zT = 0, which means that PsT = zT. 
This implies for any n 2 1 that xT = P"zT. From Theorem 7.2.1 we have 
P" + II. Thus, as n + 00, zT = PnxT + bT, i.e. xi = Ejz1 n p J  for all 
i = 1, .  . . , C. Because the right-hand side of these equations does not depend on 
i, we have z = ce for some c E R. Since we also have 0 = ezT = meT = Ce, 
we get c = 0. Thus, I - P+ E is invertible. Furthermore, since x(1-  P) = 0, 

0 

If the number C of states is small, the matrix I-P+E can easily be inverted. 
For larger 8, numerical methods have to be used like the Gaussian elimination 
algorithm. Another possibility for solving (7.2.15) is to transform this equation 
in a way slightly different from that used in the proof of Theorem 7.2.8. The 
inversion of this transformed version of (7.2.15) is facilitated by the next result. 

Lemma 7.2.2 Let A be an A!? x C matrix such that A" + 0 w n + 00. Then 
I - A is invertible and, for each n = 1,2, .  . ., 

I + A + . . . + An-' = ( I  - A)-'(I - A n ) .  

we have T ( I  - P + E )  = x E  = e. This proves (7.2.16). 

(7.2.17) 

Proof Note that 

( I - A ) ( I + A +  ...+ A"-') = I + A +  ...+ A"-' -A-  . . .-  A" 
= I - A " .  
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Since A" + 0, the matrix I - A" is nonsingular for sufficiently large n. Hence 
det((1- A)(I  + A + . . . + A"-l)) = det(1- A) det(I+ A + . . . + An-1) # 0, 
where det means determinant. Thus, I - A is invertible and (7.2.17) follows. 

17 

As 7r satisfies (7.2.15), so does m for each c 2 0. Hence we put i p  = 1 and 

+ ( I - P ) = b ,  (7.2.18) 

where P = (pij)i,j=I, ..._ e-1 and ?i = ( i i ~ , . . . ~ + t - ~ ) , b  = (pfl,.-.,Pe,t-1). 
Then, the originally required solution is given by ?ri = iiJc for i = 1, .  . . , C, 
where c = 31 + . . . + f i t -  Note that the matrix I - P in (7.2.18) is invertible. 
This follows from the following result. 

Lemma 7.2.3 If the stochastic matrix P is regular, then P" + 0 AS n + 00. 

Hence I - P is invertible and ( I  - P)-' = CT=, P". 

Proof In view of Lemma 7.2.2, it suffices to show that P" + 0. Since 
P is regular, there exists a natural number no 2 1 such that 6 = 
m a i E &  CjE~p$"' < 1, where E = (1,. , . , l -  1). Note that 

solve the transformed equation 

( @ " ~ i j  = C ~ i i l p i l i 2 * . . ~ i , , - l j  I C p i i , P ~ , i , . . . P i , _ , j = ( p n ) U  
i i  ...., in-i EE il ,....in - 1 EE 

and consequently 0 5 (&")ij 5 (P")ij = pi;) < 1 for all n 2 q,; i,j E E. 
Thus, using the representation 78 = kn, + rn for some k,m E N with 
0 5 rn < no, we have 

il ,...,il,€& 

I 6 k >  
- n  

provided that n 2 TQ. This gives limn-,oo(P ) i j  _< limk,, dk = 0. 0 
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Lemma 7.2.3 implies that one possible method for solving (7.2.18) is the 
Gaussian elimination algorithm. The computational effort of this method is 
proportional to .t3. It requires that the whole coefficient matrix is stored, since 
this matrix must be updated at each step of the algorithm. In general, one 
cannot use sparse matrix storage techniques, since these procedures suffer 
from computer memory problems when t gets large. Moreover, in some cases, 
the method tends to be numerically unstable due to the subtractions involved. 

The following iterative method is well suited for sparse matrix computations. 
It can also be used for larger e as the method works only with the original 
coefficient matrix. However, the rate of convergence may be slow. The 
coefficient matrix I - P in (7.2.18) is invertible and the inverse (I - @)-l can 
be written in the form (I - k)-I = C:=, kn. Hence, we have 

00 

ii = b C  P" , (7.2.19) 
n=O 

which is the basis for computing ii iteratively. Start by defining bo = b; then 
put bn+, = bnP for n 2 0. As such, (7.2.19) can be written as 

00 

(7.2.20) 

and, for some no = 1 ,2 , .  . ., the quantity Czo 6, can be used as an 
approximation to ii. In practice, one needs to estimate the error that occurs 
by using only a finite number of terms in (7.2.20). 

Bibliographical Notes. More material on the long-run behaviour of 
Markov chains can be found in Berger (1993) and Chung (1967), for 
example. A detailed treatment of Perron-Fkobenius-type theorems is given 
in Seneta (1981). Theorem 7.2.8 is taken from Resnick (1992). For further 
numerical aspects in solving the balance equation (7.2.15) we refer to 
Kulkarni (1995) and Tijms (1994). 

7.3 MARKOV CHAINS WITH REWARDS 

7.3.1 Interest and Discounting 

We begin with the primary case of a deterministic interest and discounting. 
Suppose that r > 0 is the interest rate (or rate of return), i.e. investing 
one unit (of a currency} at time k = 0 we get 1 + F at k = 1. If we make 
investments of one unit at times k = 0,1, .  . . , n - 1, then the accumulated 
value p,, immediat.ely before time n is f/n = (1 + r) + (1 + r)2 + . . . + (1 + T ) ~ .  
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Conversely, we ask for the present value v at time k = 0 of the unit invested 
at k = 1. It is easily seen that u is the solution to (1 + r)v = 1. The quantity 
v = (1 + r)-l is called the discount factor. If investments of one currency unit 
are made at k = 1,2,. . . , n, then the discounted value at k = 0 is equal to 
v + v2 + . . . + vn. We can also add the unit investment at 0 with discounted 
value 1. Tbe accumulated discounted value is 1 + 2) + . . . + vn and converges 
to (1 - u)-l  as n + 00. This elementary model can be generalized in at least 
two ways. 

0 The interest rate can be different in each time interval, say Tk in [k - 1, k). 
Denote the corresponding discount factor by Vk. If investments are of unit 
value then the accumulated value pa at time n is 

yn = (1 + rn) + (1 + m)(l + rn-l)  + . . . + (1 + rn)  . . . (1 + r l )  
= (1 + r n ) ( l +  gn-1) 3 

for n = l1 2,. . . and yo = 0. The discounted accumulated value, including 
the investment at time 0, is given by 1 + trl + ulu2 + . . . + v1 . . . Vn,  where 

0 If the interest rates are constant and equal to r ,  but the value invested at 
k is Zk for k = 0,1, .  . . , n - 1,  then the accumulated value y, at t h e  n 
is pn = Cgt t i ( 1  + r)"-Z. Moreover, if investments are made at 1,. . . ,n, 
then the discounted value at time zero is C:==, zkwk, where v = (1 + r)-'.  
If we also take into account the investment at time 0, then the discounted 

v&. = (1 + r p .  

value at O is C;!o zkv k . 

7.3.2 Discounted and Undiscounted Rewards 

Next we combine the concepts of interest and discounting with that of a 
Markov chain. Let the state space be E = (1,. . . , t?} and consider a Markov 
chain ,YO, .XI,. . . on E with transition matrix P. We suppose that when the 
Markov chain (Xn} is visiting state i, a fixed reward is obtained, where Oj 
can be any real number. Let p = (01 , . . . , SC) denote the vector of rewards. 
Kote that the components of p can have other interpretations than rewards. 
For example, they can describe costs, or premiums as in the bonus-malus 
systems considered in Section 7.1.4. 

The accumulated discounted reward R: at 0 obtained from visits at times 
0,. . . , n - 1 is n", = CkZO 2' fixh , where w is the constant discount factor. 
Since the state space is finite, this reward converges with probability 1 when 
n + 00 to the infinite-horizon discounted reward 

n-1 k 

(7.3.1) 
k=O 
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We call this the total discounted reward. We can also consider the undiscounted 
reward R: for visits at times 0,. . . , n - 1 and given by Rt = x:li fix,. If we 
want to emphasize that {Xn} has the initial probability function a, then we 
denote the undiscounted reward for visits at times 0,. . . , n - 1 by R:(a). 

We axe interested in computing the expected rewards E R$, E Rd and E Ri,  
where the existence of these expectations follows from the finiteness of E. For 
this purpose, remember that ei denotes the .!-dimensional (row) vector having 
zeros at all components with the except.ion of the ith component, which is 
equal to 1. 

Theorem 7.3.1 Assume that the llfarkov chain { X , }  starts at tame n = 0 
from state do, i.e. XO = io. Then, 

E ~ d ,  = e i , ( I  - VP)-'(I - v n ~ n > p T ,  (7.3.2) 
ERd = e i , ( I - ~ P ) - ' / 3 ~ ,  (7.3.3) 

n- l  

(7.3.4) 
k=O 

Proof To show (7.3.2), note that 

n-1 n-1 

k=O k=O 
n- 1 n-I 

Since wnPn + 0 as n + 00, Lemma 7.2.2 implies that I - UP is invertible. 
Thus we get (7.3.2) from (7.2.17), and (7.3.3) immediately follows from (7.3.2). 

Il'ote, however: that in (7.3.4) we cannot use the summation formula (7.2.17) 
since I- P can be singular. In the rest of this section, we work out asymptotic 
formulae for the expectation and variance of the undiscounted reward RK as 
n -+ 00. 

Assume that the transition matrix P is regular. As usual, let x denote the 
uniquely determined stationary initial distribution corresponding to P ,  and 
II the .! x t? matrix consisting oft? vectors IC. 

Lemma 7.3.1 I fP is regular, then 

The proof of (7.3.4) is similar to the first part of the proof of (7.3.2). 

( P -  n)n = P" - n (7.3.5) 

for n 2 l1 and 
lim (P - n)" = 0.  (7.3.6) 

ntca 
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Proof Clearly, (7.3.5) is obvious for n = 1. Assume now that (7.3.5) holds for 
n = k - 1; k > 1. Then, 

( P  - n>k = ( P  - n)k-l(P - n) = (Pk---l - rI)(P - n) 
p k  - np - pk---'n +n2 = p k  - II, = 

because IIP = PII = II = n2. Hence, by Theorem 7.2.1 we have (P-II)" -+ 
O a s n + o o .  0 

Since (P - -+ 0 as n -+ 00, Lemma 7.2.2 implies that the matrix 
I - (P - II) is invertible. The inverse 2 = (I - (P - II))-l is called the 
fundamental matrix of P .  
Lemma 7.3.2 For the findarnentat matrix 2 = ( I  - ( P -  n))-' of a regular 
stochastic m a t e  P ,  

50 

2 = I + C ( P k  - TI) (7.3.7) 
k=l  

and, alternatively, 
n-1 n - k  Z = I +  lim C - ( P ~ - I I ) .  

n+cc n k = l  
(7.3.8) 

Proof Using Lemmas 7.2.2 and 7.3.1 we get (7.3.7). To prove (7.3.8), we note 
that 

" k  n n-1 n-k 
n n n 

k=1 k=l k=l  k= 1 

We show that the last expression tends to 0 as n + 00. Any matrix A satisfies 
the identity (I - A) C%l k A k  = xi==, Ak - nA"+l, and hence 

1 "  

k=l k = l  

Thus, limn-rcc Ct!=, k(P - = 0. This gives (7.3.8). 0 

We turn to the expected undiscounted reward E R:. We assume that the 
Markov chain {&} has the regular transition matrix P and an arbitrary 
initial distribution a. Define the stationary reward rate, $ = rpT, i.e. the 
stationary expected reward per step, and a = aZpT - p ,  which sometimes is 
called the ezcess reward regarding the initial distribution a. 
Theorem 7.3.2 If P is regular, then the expected wadiscounted reward E q  
i3 

where en .ls some remainder tern  with en + 0 QB n + 00. 

ER; = n f i + a + e , ,  (7.3.9) 
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Proof From (7.3.7) we get. 

Thus, for some en + 0 as n + 30, 
n-1 

a = aPT +a(c Pk)pT -nnpT - e n  = ER: -nxpT - e n ,  

where we used a slight generalization of (7.3.4) in that, for an arbitrary initial 
0 

An immediate consequence of Theorem 7.3.2 is that limn+a, n-'E R: = p. 
Moreover, the reader can show that limn+= n-l R: = p. Next we investigate 
the asymptotic behaviour of Var Rt as n + 00. 

Theorem 7.3.3 Suppose P is regular. Then, for any initial distribution a, 

(7.3.10) 

k = l  

distribution a, E RU, = ax;!; PkpT. This gives (7.3.9). 

lim n-'VarR: = 3; + 2ndiag(P)(Z - I)oT, 
where 5: = x i = ,  .j(@j - B)' and Z i s  the fundamental matrix of P. 

Proof We have 

n+oo 

k = l  k = l  

First we prove (7.3.10) under the additional assumption that the initial 
distribution a is equal to the stationary distribution x .  Then 

By the stationarity of { X n } ,  we have 

n-1 

(7.3.11) 
l<k<l<n  k=l 
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n c n- 1 1 n - k  
-Var (c Px,) = c.,p," + 2ndiag(P) c -Pkpr - np2 

k=l j=1 k=l 
72 

n-1 n - k  n-1 = 5; + 27r diag(P) (c -PkpT - -n/3') 
2 k=l 

where in the second equality we used that a2 = ?rdiag(p)IIpT. Using 
(7.3.8), this gives (7.3.10) for a = n. It is not difficult to show that, 
limn-too n-l (Var (R:(a)) - Var ( R ~ ( A ) ) )  = 0, where Ri(a) is the undis- 
counted reward for visits at times 0,. ..,n - 1 when { X n )  has the initial 

0 distribution a. Thus, (7.3.10) holds for arbitrary a as well. 

7.3.3 Efflciency of Bonus-Malus Systems 

In this section we discuss one possible efficiency concept for bonus-malus 
systems. Let P(X) = ( ~ ~ j ( X ) ) 8 , j = l q ~ , ~ , ~  be the transition matrix of such a system 
given in (7.1.27), where X > 0 is the rate of reported claims by the policy- 
holder. Assume that P(X) is regular. The main idea of introducing bonus- 
malus systems is to reduce the premium for good drivers while increasing it 
for bad ones. &member that the system is modelled by the vector of premiums 
,L3 = (PI , .. . , B E ) ,  where ,8 = const6 and 6 is the underlying premium scale. 
Fbthermore, in the undiscounted case we consider the stationary premium 
rate B(x) = A ( x ) ~ ~ .  

Suppose that consecutive claims are independent and identically distributed 
with mean E U .  Then the net premium is AEU. Suppose also that the scale 
of p is the same as for claim amounts. Ideally, we would like to have that 
$(A) = AEU. Typically: ,&A) is not linear in X but, under some additional 
assumptions, the function &A) is continuous and increasing from PI to Pt,  as 
will be proved later in Theorem 7.4.6. 

For simplicity, we take E U  = 1. The deviation of &A) from linearity can 
be measured as follows. If p(X) were linear, then we would have 

logB(X) = logc+ 1ogX (7.3.12) 

for some constant c > 0. Taking derivatives on both sides of (7.3.12) we get 
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or, equivalently, 

Thus, the eficiency of a bonus-malus system might be measured by 

(7.3.13) 

where the system is perfectlg eficient for the arrival rate X if 

q(X) = 1 .  (7.3.14) 

As we have already noticed, q(X)  5 1 (A > 0) is atypical. It is therefore 
desirable that q(X) takes values close to 1 for all X restricted to a. certain key 
interval (q, cz) of interesting claim arrival rates. So, 

B(&) = &EU (= Xo) (7.3.15) 

for some XO E (cl:cz). The upcoming representation formula for &A) implies 
that, if the function q(X) takes values close to 1 for all X E (c1,cz): then &A) 
does not deviate too much from the expected risk X for all X E (q, c2). There 
results that the average premium p(X), paid by a policy-holder with any given 
claim arrival rate X E (c1 , CZ):  is nearly fair under the net premium calculation 
principle. 

Theorem 7.3.4 Let XO be o solution to (7.3.15). Then 

A0 

B(A) = Xexp(/ (1 - q(z))z-l dz) . (7.3.16) 
x 

Proof Definition (7.3.13) implies that 

q(z)z-1d=c = /,”” (1% P(x))‘ dz 

= log$(X,) - lOg$(X) = log& - log$(X) 

= I,*’ 2-l dz + log X - log &A) . 

Thus, logfi(X) = J?(l- ~ ( z ) ) z - ~  dz + log X and (7.3.16) follows. 0 

In order to compute the efficiency q(X), we need to know the stationary 
distribution A ( X )  corresponding to P(X) and its derivat<ive d.rr(X)/ dX. Meth- 
ods for computing r ( X )  have been discussed in Section 7.2.4. Moreover, 
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(7.2.13) implies that the vector d?r(X)/ dX = (dxl(X)/ dX, . . . du(X)/ dX) 
is the solution to the following system of linear algebraic equations 

dlr(X) d?r(X) 
dX dX 

-- - -P(X) + c(X), 

where 

(7.3.17) 

(7.3.18) 

and c(X) = n(X)dP(A)/dX. These equations can be solved by the same 
methods as discussed in Section 7.2.4. For example, proceeding similarly as in 
the proof of Theorem 7.2.8, from (7.3.17) we have dn(X)/ dX(I-P(X)) = c(X) 
and, by using (7.3.18), d?r(X)/ dX(I - P(X) + E) = c(X). Thus, dr(X)/ dX = 
c(X) ( I  - P(X) +$?)-I. 

Bibliographical Notes. The concept of efficiency 9(X) was introduced by 
Loimmanta (1972); see also Lemaire (1985), where in the case of discounting 
the notion of the efficiency q d ( A )  was proposed. A credibility theory for the 
evaluation of bonus-malus systems is given in Norberg (1976) and generalized 
in Borgan, Hoem and Norberg (1981). 

7.4 MONOTONICITY AND STOCHASTIC ORDERING 

7.4.1 Monotone Transition Matrices 

In this section we assume that the state space E is countably infinite, say 
E = {1,2, ...}, but finite state Markov chains are included as well. Let 
a = ( ~ 1 ,  az, . . .) and a' = (ail ah, . . .) be two probability functions and P a 
stochastic matrix on E. We ask for conditions on P such that the following 
implication holds: 

(a I s t  a'> * (aP 5 B t  a'P)  7 (7.4.1) 

where the inequality a sat a' between two probability functions a,a' on E 
means that 

M 00 

c a i  5 C a :  (7.4.2) 
i= k i= k 

for all k 2 1 and, equiwilently, afT 5 a'fT for each increasing sequence 
f = {fl , fi, . . .}. If (7.4.1) is fulfilled then P is called a stochastically monotone 
transition matriz. In the following theorem we give four equivalent versions of 
this monotonicity property, where the probability function pi = Cpil,pi*, . . .) 
denotes the i-th row of P. 
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Theorem 7.4.1 Let P be a stochastic matrix on E .  The following statements 
are equivalent: 
(a) P is stochastically monotone, 

(c) for each increasing sequence f = (fl, fi, . . .) of real num.bers, the sequence 
Pf' is increasing, 
(d) (a sse a') + (aP" Sst a'Pn for all n = 1,2,. . .). 
Proof (a)+(b) Take a = ei and a' = e,. 

(b) ( 2  5 j) * (pi S t  P j ) ,  

and that, in view of Theorem 3.2.1, p i  Sst p j  means that p i  f ' 5 p j  f ' for 
each increasing sequence f = (fi , fi, . . .). 
(c)*(d) is an increasing sequence for all 
n = 1,2, .  ... Thus, a sst a' yields (aP")fT = a ( P " f T )  5 a' (P"fT)  = 
(a'P")fT for each increasing sequence f = (fi, fi,. . .), i.e. a P n  sst a'Pn. 

By induction we have that P"f 

(d)*(a) This step is obvious. D 

Let q5 : E x [0, I] + E be the function introduced in (7.1.25). The definition 
of q5, given in Section 7.1.3 for finite E ,  can easily be extended to a countably 
infinite state space. Explicitly, 

(7.4.3) 
pn=l k=l k=l 

Here is a further equivalent version of (7.4,1), but now in terms of (i. 

Corollary 7.4.1 The transition mat* P as stochastically monotone if and 

Proof Suppose that P is stochastically monotone. Then statement (b) of 
Theorem 7.4.1 gives c,"=, Pik 2 cr=l Pjk for dl z 5 j and m 2 1. Thus if 
mi and mj are defined by 

only if (i 5 j )  * (qqi, Z) 5 q5(j, 2) for all Z E [O, 11). 

m,-1 m. mj-1 

k=l &=I k=l  k=l 

then mi 5 mj. Hence @(i,z) 5 @(j,z) for i 5 j. The proof of the reverse 
0 

An immediate consequence of (d) in Theorem 7.4.1 is the following 
result. Let XO, XI,. . . aud X & X ; ,  . . . be two Markov chains with the same 

statement is analogous and is left to the reader. 
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stochastically monotone transition matrix P and with initial distribution a 
and a', respectively. If a Sst a', then X n  sst X,!, for all n 2 0; moreover, 
the following stronger statement on so-called monotone coupling of Markov 
chains is true. 

Theorem 7.4.2 Let P be stochastically monotone and a sst a'. Then them 
exist a probability space (a, F, P) and Markov chains { X n } ,  {X,!,} defined on 
(R, F, P) having the same transition matrix P and the initid distribution a 
and a', respectively, such that for all n = 0,1,2,. . . and w E R , 

Proof From probability theory (see Kolmogorov's extension theorem stated in 
Section 9.2.2) we know that one can construct a probability s p x e  (Q', F', P') 
which carries a sequence Zi, Z;,.. . of independent and uniformly (on [0,1]) 
distributed random variables. Moreover, Theorem 3.1.2 implies that there 
exist a probability space (R",F'',P'') and E-valued random variables X" 
and Y" with probability functions a and a', respectively, such that X"(w) 5 
Y"(w)  for all w E 0". Define now R = R' x $2'',3 = F' x F",P = P' x P", 
Zn(w) = Zk(w') with LJ = (w',w") E R' x $2". Put Xo(w) = X"(w") and 
Xn+l(w) = (b(Xn(w),  Zn(w)) for n = O,l, . . ., where the function d(i,z) 
defined in (7.4.3) is monotone in the variable i. Analogously, put X,$(w) = 
Y"(w") and XA+,(w) = qi(Xk(w),Zn(w)) for n = 0,1, .... Clearly, using 
arguments given in Section 7.1.3, we have that the sequences { X n }  and {X , ! , }  

0 are Markov chains and (7.4.4) holds. 

Examples 1. Note that all results given in this section can be analogously 
stated and proved for Markov chains with an arbitrary countably infinite 
state space E which is linearly ordered, in particular for E = 23. As such: each 
random walk on Z is a Markov chain with stochastically monotone transition 
matrix. Indeed, from (7.1.11) one easily gets that in this case, for all i 5 j 
and m E Z, 

x 00 c Pik =P(i+Y 2 m) 5 P(j + Y  3 m) = CPjk 
k=m k=m 

2. In a completely analogous way- one can show that the transition matrix of 
the following Markov chain is stochastically monotone. Let {Yn,n 2 1) be 
a sequence of independent and identically distributed random variables with 
values in IN; p k  = P(lL = k), For some fixed P,  P' 2 1 with 8' < l ,  let 
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where ,Yo is independent of {Y,} and takes values in E = (1,. . . , e } .  Then 
{X, , }  is a Markov chain with stochastically monotone transition matrix. 
The sequence { X , }  can be interpreted as a discretetime risk process with 
state-dependent increments where premiums are added to the portfolio only 
when the risk reserve process is below the critical level P. Furthermore, any 
downcrossing below the zero level is compensated immediately. 

7.4.2 Comparison of Markov Chains 

We continue our comparison of two Markov chains {X,} and { X L )  with 
state space E = {II 2, .  . .}, initial probability functions a, a' and transition 
matrices P, P', respectively. We search for further conditions to have X, sat 
Xk for all n = 0, 1, . . .. Clearly, a sst a' is necessary for this. Let 4 and 4' be 
the functions induced by P and P' via (7.4.3). The proof of Corollary 7.4.1 
indicates that a further condition 

(i _< j) =+ (#(i, z )  5 #(j, z) for all z E [0,1]) (7.4.5) 

is needed. The next theorem rewrites this condition in terms of p i  and p i ,  the 
i-th and j-th row of P and P', respectively. 

Theorem 7.4.3 Condition (7.4.5) holds if and only if 

(I 5 j )  * (Pi s s t  .Pi). (7.4.6) 

As the proofis analogous to that of Corollary 7.4.1, we leave it to the reader. 
If (7.4.6) holds for two stochastic matrices P and PI, we say that P is 

stochastically smaller than P' and write P sst P'. With this notation we are 
in a position to state the following extension to Theorem 7.4.2. 

Theorem 7.4.4 Let a sst a' and P sst PI. Then there ez& a probability 
space (R,F,P) and Markov chains {X, , } ,  { X L }  defined on (S2,T,P) with 
initial probability function a, a' 0nd transition matrix P ,  PI, respectively, 
such that X,(w) 5 XA(w) for  all w E R and n = 0 , l : .  . .. 
The proof is omitted as it is similar to the proof of Theorem 7.4.2 if the 
equivalence of P P' and (7.4.5) is taken into account. 

7.4.3 Application to  Bonus-Malus Systems 

Consider a bonus-malus system as defined in Section 7.1.4. A bonus-malus 
system is called regular if the stochastic matrix P(X) = &(A) )  given in 
(7.1.27) is regular for some X > 0. Note that the regularity of P(X) for one 
specific X > 0 implies the regularity of P(X) for all X > 0. Recall that the 
matrix T(k)  (k = 0,1,. . .) describes transitions of policies in the next year 
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after k claims and that t j ( k )  is the i-th row of T(k) .  Since in each row there is 
only one 1, each of the matrices T ( k )  is stochastic. Suppose that vi(k)  denotes 
the position of 1 in the vector t i ( k ) .  It is reasonable to postulate that for i 1 j 
we have v i (k )  1 V j ( k )  for all k = O , l ,  . . .. In matrix notation, the assumption 
translates into the condition that 
(A) for each k = 0,1, .  . ., the matrix T(k) is stochastically monotone. 
Similarly, it is natural to assume that a policy with more claims gets 
transferred to a worse class, that is for k 1 k' we have v i (k)  5 vi(k') for 
all i = 0,1, .  . . , C .  In matrix notation, this means that 

Note that, if postulate (B) holds, then there exists a natural number ko 
such that T(k)  = T(ko)  for all k 2 b. In real bonus-malus systems it is 
assumed that a policy-holder reaches class 1 if they do not report claims 
during sufficiently many successive years; similarly, they will get in class e if 
they report at  least one claim in a sufficiently long series of years. This leads 
to the assumption that 
(C) for all k = 1,2 ,..., asn  + 00, 

(B) T(O) <St T(1) 1 s t  T(2) 1 s t  * * - *  

1 0 ... 0 0 ... 

Tn(0) + ( 1  0 1:. . .  f ) ,  T " ( k ) +  [ 0 . .  0 ; :* f .  ; ) .  
1 0 . . .  0 0 ... 

Theorem 7.4.5 Let Y(A) be a Poisson distributed random variable with mean 
A > 0. Then, for the stochastic matrix P(A) defined an (7.1.27), the following 
statements hold: 

(b) P(X) is stochastically monotone, provided that (A) is satisfied; 
(a) P(X) = ET(Y(W);  

(c) P(A) 1 s t  P(A') for A 5 A', provided that (B) holds. 

Proof Statement (a) directly follows from the definition (7.1.27) of P(A). 
Furthermore, note that (b) is an immediate consequence of the fact that P(A) 
is a mixture of the monotone matrices T(O), T(l), . . .. In order to prove (c) we 
use the fact that for the Poisson distributed random variables Y(A), Y(A'), we 
have Y(A) Sst Y(A') whenever X 1 A', where the proof of this monotonicity 
property is left to the reader as an exercise. Thus, Theorem 3.2.1 implies that 
the random variables Y (A) and Y (A') can be defined on a common probability 
space (s2,7,P) such that Y ( A , w )  1 Y(A ' ,w)  for almost all w E St .  Now 

In the rest of this section we assume that postulates (A), (B) and (C) are 
fulfilled. Furthermore, we assume that the bonus-malus system is regular and 

P(A) Sst P(X') follows. 
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that n(X) is the stationary probability function for P(X). We set P(0) = T(0).  
Then, it is not difficult to show that the matrix function X I-) P(X) is 
continuous for X 2 0. Putting ~ ( 0 )  = el, we also have that the vector function 
X c) n ( X )  is continuous for A 2 0. Note that the case X = 0 has to be treated 
separately because P(0) is not regular. 

Remember that p(X) = x(X)PT is the expected stationary premium per 
year in the undiscounted case while p ( X )  = e,@(X) CT=o v"P(X)"flT is the 
expected total discounted premium (at zero), where do is the initial class of 
policy-holders entering the system. 

Theorem 7.4.6 The functions ,@A) and pd(X) are continuow and increasing. 
Moreover, 

lim &A) = P I ,  ?~%P(x) = ,%, (7.4.7) 
X+O 

and in the discounted case 1 / (1 -  v)& 5 p d ( ~ )  5 1/(1 -v)/&. 

Proof The proof of the continuity of B(X) and ,@(A) uses the continuity of 
P(X) and n(X) and is left to the reader. The monotonicity of &A) and ,@(A) 
is obtained from statements (b) and (c) of Theorem 7.4.5, where we use the 
fact that n(X)  sst n(Y) whenever X 5 A'. The limit behaviour of &A), that. 
is (7.4.7), follows from postulates (B) and (C). The bounds for sd(X) are 
obtained from 

. .  
0 1 0 ... 0 0 ... 

Bibliographical Notes. For stochastic monotonicity and comparability of 
Markov chains, see Stoyan (1983). Itcsults for monotone and ordered Markov 
chains on abstract state spaces, in particular the monotone coupling of Markov 
chains, can be found in Lindvall (1992), for example. 

7.5 AN ACTUARIAL APPLICATION OF BRANCHING 
PROCESSES 

Assume that a very valuable item (like an airplane) has to be insured but 
that the value is so large that one single company can hardly underwrite an 
insurance policy for the item. Start out at time 0 with the first line insurer. 
As part of the necessary administrative paper work, this company starts 
negotiations with a number of second line insurance companies to which it 
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sells part of the original policy. Each of these second line companies acts in 
a similar way, itself ending up with a number of third line companies, etc. 
The subsequent sequence of reinsurers makes up an (oversimplified) model of 
a wtnsurance chain. In this section we are only interested in the expected 
number of companies involved in the coverage of the original policy in the 
n-th link or at any specific time point. 

We assume that each company in the chain takes a random administrative 
time with distribution F before it simultaneously signs all its reinsurance 
contracts. The number of such reinsurance companies is assumed to be 
randomly distributed with a probability function {pk ,  k E IN}. Each company 
starts its own subsidiary chain, independently of the stochastic history of other 
companies acting prior or simultaneously with it. Also all of the administrative 
times are independent and follow the same distribution F. 

The sequence of random variables {X,} counting the number of companies 
in each link of the chain is called a Gaiton-Watson-BienaymC branching 
process. We do not need the knowledge of F when calculating the probability 
function of Xn. Let R,,, be the number of subsidiary companies of the i-th 
company in the n-th link. We assume that all the Rn,i are independent and 
identically distributed with the same probability function (pk, k E IN}. We 
also write R1,1 = R. We leave it to the reader to show that {Xn} is a Markov 
chain with state space IN, where 

(7.5.1) 

Let fix,(s) be the generating function of the number of companies Xn in 
the a-th link and j ~ ( s )  the common generating function of the number of 
subsidiary companies of any company. Clearly, (7.5.1) immediately gives that 
gxl (s) = s. Furthermore, the following formulae hold. 

Theorem 7.5.1 For n = 1,2,. . . and Is1 < 1, 

fix,+, ( 5 )  = i X n  ( $ R ( S ) )  = # R ( P X ,  ( 5 ) )  (7.5.2) 

and consequentlv 

n times 
Proof In view of our assumptions, equation (7.5.1) implies that 

This gives the first equation in (7.5.2), and (7.5.3) follows by iteration. The 
0 second equation in (7.5.2) is now straightforward. 
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The following corollary is an easy consequence of Theorem 7.5.1. We leave 
it to the reader to show this as an exercise. 

Corollary 7.5.1 For each n. = 1,2, . . . we have E X ,  = ( p ~ ) ~  and 

The process {X(t)} counting the number of companies involved as a function 
of time is called an age-dependent branching process or a Bellman-Harris 
process and is much less trivial to analyse. We can formally introduce this 
process as follows. Let Xn,,(t) be the number of subsidiary companies of the 
i-th one in the n-th line that are involved in the reinsurance chain, t units 
after signing its contract. Let T = 2’1.1 be the administrative time for the first 
line company. We assume that T and all Xn,,(t), n = 2,3, .  . ., and i = 1,2,. . ., 
are independent. Carefully considering the generation tree of the reinsurance 
chain, we notice that for each company the stochastic mechanism is exactly 
the same as if the process took its start with the initial company. This yields 

if t < T ,  
if t 2 T .  { X~, i ( t  - T )  

X ( t )  = (7.5.4) 

Let p(t )  = E X ( t )  denote the expected number of companies involved at time 
t .  Applying a conditioning on T we derive an integral equation for the function 
P(t) .  

Lemma 7.5.1 For all t >_ 0, 
t 

At)  = F(t)  + P R  1 ~ ( t  - v) dF(v) . (7.5.5) 
0 

Proof Starting from (7.5.4) and considering T as a kind of a renewal point, 
we condition both on the length T of the first administrative time and on the 
number R of its subsidiaxy companies. We begin by conditioning on T .  Then 

p(t)  = E ( E ( X ( t )  1 T ) )  = J E ( X ( t )  1 T = ~ ) d F ( v )  
0 

I” f 
= E ( X ( t )  I T = TI) dF(v) + E (X(t) I T = v) dF(v) . 

The second integral is easy since at time t only the first company is active and 
hence E(X(t)  I T = v )  = 1 in this case. For the first integral we condition 
additionally on R. Then E ( X ( t )  I T = v )  = Ego pjE ( X ( t )  I T = v,  R = j) 
and we again rewrite the remaining conditional expectation. Since at time v 
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the first company underwrites j contracts, each one of these j descendants 
starts its own reinsurance chain. The total number of companies within that 
chain at time t consists of the sum of these j populations that had a time slot 
from o to t to deal with the administrative duties. Hence 

I 
j 

E ( X ( t ) ( T = v ,  R = j ) = E ( z X 2 , i ( t - ~ )  T = v ,  R = j )  
i=l 

and by our independence assumptions we are allowed to write 

E (X*,j(t - V) I T = V, R = j )  = p ( t  - V) . 
Combining all of the above and using p~ = c& kpk we get (7.5.5). 0 

Notice that the integral equation in Lemma 7.5.1 is more general than 
(6.1.18). Depending on the value of p~ we have to treat three different cases 
in order to analyse the asymptotic behaviour of p(t) as t 00. 

Theorem 7.5.2 Assume that F is nondefective and nonlattice. 
(a) If p~ = 1: then p(t) = 1 for ull t 2 0. 
(b) If PR > 1, then 

(7.5.6) 

where y is the positawe solution to equation &(y) = pi1  (which always &ts). 
(c) I f p ~  < 1 and zf there exists a positive solution 7 to AT(-() = p i ' ,  then 

Ic(t) P R  - 1 lim - = 
t+30 ert yp; $j?)(-y)l ' 

(7.5.7) 

provided that &:'(7) < m. Otherwise the limit in (7.5.7) is zero. 

Proof (a) Only in the case p~ = 1 is (7.5.5) a genuine renewal equation with 
a nondefective distribution F. It can be checked by inspect.ion that p(t) 3 1 
is a solution to (7.5.5) and the uniqueness follows from Lemma 6.1.2. 
(b) The main problem with equation (7.5.5) is that we need to rewrite it in 
such a form that it becomes a genuine renewal equation. This can be done 
by using the concept of associated distribution introduced in Section 2.3. For 
this define the positive quantity y by the equation &(y) = p i ' .  Then the 
associated distribution F-, is introduced by the integral 

P-y(~) = p~ Jd' e-ry dF(y) ; 

see also (2.3.6). Multiplying (7.5.5) by e-yf we obtain 
rt  
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which leads to a renewal equation for the allied function g ( t )  = e-Ytp(t). Thus, 
g ( t )  = e-?T(t)  +s," g(t  -ti) dp-,(v) and, using the notation z ( t )  = e-?'F(t), 
we arrive at the renewal equation (6.1.18) with F replaced by p-,. We now 
apply the key renewal theorem (see Theorem 6.1.11). Notice that Lemma 6.1.4 
can be applied with Z~(Z) = 1, z2(2) = e--Ys and next z~(z) = F ( t ) ,  
z~(x) = e--7=, using the fact that the difference of two directly Rieniann 
integrable functions is directly Riemann integrable. We then find that 

00 

lim g ( t )  = @-,)-'I z(x) dz , (7.5.8) 
0 t+ca 

where p--, is the mean of l?-, and hence 

For the numerator in (7.5.8) we have by integration by parts 

Thus we have proved part (b) for the case p~ > 1. 
(c )  Similarly as in the proof of Theorem 6.5.7 we can rewrite (7.5.5) to get 

p ( t )  = F(t)  + p~ 

where now F'(t) = p ~ F ( t )  is a defective distribution function. However, since 
we assume that a positive solution y to r h . ~ ( ~ )  = p i 1  exists, we can define 
the associated distribution l?,(t) = 6 eTU dF(v)(riz.r(y))-' = s," e7t dF'(t) as 
before and proceed in the same way as in the previous case. Rewrite (7.5.5) 
in the form 

e"p(t) = ertF(t) + er(t-")p(t - v) dRT(w) (7.5.9) I" 
and with z ( t )  = eTtF(t) and g ( t )  = eVtp(t), the equation 

is again a genuine renewal equation. Putting q ( 2 )  = e72 and z 2 ( 2 )  = F(x) ,  
Lemma 6.1.4 implies that z ( t )  is directly Riemann integrable. Thus, using 

0 Theorem 6.1.11, statement (c) follows. 
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The result in part (b) of Theorem 7.5.2 shows that the average number 
of companies increases exponentially fast in time. The crucial quantity y 
that measures the scale of increase is called the Mdthusian parameter in 
demography. Note that its actual value is intrinsically dependent on all 
ingredients of the process. The case ,UT < 1 is not very realistic in the insurance 
context; however it is included for completeness. 

Bibliographical Notes. For more details on branching processes we refer to 
the books by Athreya and Ney (1972), Harris (1963) and Sevastyanov (1973). 



CHAPTER 8 

Continuous-Time Markov 
Models 

In the previous chapter we studied sequences of random variables, called 
Markov chains, describing evolutions (of prices, premiums, exchange rates, 
etc.) in discrete time periods. It is sometimes convenient to have a model 
describing situations where states change at arbitrary time points. This is 
achieved by considering a collection of random variables { X ( t ) ,  t 2 0}, 
where the parameter t runs over the whole nonnegative half-line EL+. For the 
time parameter t, other continuous sets like [0,1], R, etc. are also possible. 
Recall that such a nondenumerable collection of random variables is called 
a stochastic process. A continuous-time counterpart for the class of Markov 
chains considered in Chapter 7 are Markov processes in continuous time with 
a denumerable state space. In order to avoid technical difficulties we begin 
this chapter with the case of a finite state space E = {1,2,. . . , l } .  

8.1 HOMOGENEOUS MARKOV PROCESSES 

8.1.1 Matrix Transition Function 

Markov chains in Section 7.1 were defined by a probability function a and a 
one-step transition matrix P, or equivalently b the Probability function a 

the P(") fulfil the Chapman-Kolmogorov equation (7.1.7). In continuous time 
we also consider a probability function a = (ax, ( ~ 2 , .  . . ,at) and a family of 
stochastic matrices P(h) = f$ij(h))i,jcB, where h 2 0. We assume that 

P(h l  + h2) = P(h lP(h2)  (8.1.1) 

for all hl,h2 2 0. The matrix identity (8.1.1) is called the (continuous-time) 
Chapman-Kolnaogorov equation. We also assume continuity at zero, that is 

limP(h) = P(0) = 1. (8.1.2) 
hL0 

and the family of n-step transition matrices P h ; n = 1,2, .  . .. Recall that 

Stochastic Processes for Insurance and Finance 
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Copyright 01999 by John Wiley & Sons Ltd, 
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We leave it to the reader to show as an exercise that then P ( h )  is uniformly 
continuous in h 2 0. A family of stochastic matrices {P(h) ,  h. > 0) fulfilling 
(8.1.1) and (8.1.2) is called a matrix transition function. 

Definition 8.1.1 An E-valued stochastic process { X ( t ) , t  2 0 )  as called 
a homogeneous Markov process if there exist a matrix tmnsition function 
{P(h) ,  h 2 0 )  and a probability function a on E such that 

P(X(0) = i o l X ( t l )  = i l ? .  + .  , X ( t , )  = i n )  
= ~ i o p h i l  (tl)~i,i2(t2 - t l )  * * *~i,,-li, ,(tn - in-1) 7 (8-1.3) 

for all n = O , l , .  . . ? io: i l , .  . . , in E E ,  0 5 ti 5 . . . 5 tn. 

We interpret ai as the probability that the evolution starts at time 0 in state 
i E E ,  and pij(h) as the probability that, in time h, the evolution moves from 
state i to state j. The probability function a = ( a ~ , a ~ ,  . . . ,at) is called an 
inftaal distribution. In the sequel we will omit the phrase “homogeneous” if 
this does not lead to confusion. Note that, for each fixed h 2 0, the matrix 
P = P(h)  is the transition matrix of the Markov chain { X n , n  E IN} with 
X n  = X(nh). In accordance with this it is not surprising that continuous-time 
Markov processes have the following conditional independence property. 

Theorem 8.1.1 An E-valued stochastic process { X ( t ) }  is a Markov process 
:f and ody  if there e k t s  a matriz tmnsition function { P ( h ) ? h  2 0 )  such 
that, for all n 2 1, i o , i l ,  ... , i n  E E and 0 5 tl 5 ... 5 t,, 

P (X( t , )  = in I X(t , - l )  = Z,-X,.. . , X ( t , )  = i l , X ( O )  = io) 
- - ~ i , , - l i ~ ( t n  - tn-1) 7 (8.1.4) 

whenever P(X( tn-1)  = & - I , .  . . , X ( t l )  = e ’ l , X ( O )  = io) > 0. 

The proof of Theorem 8.1.1 is analogous to the proof of Theorem 7.1.1. 
Moreover, analogous to Corollary 7.1.1, the following conditional indepen- 
dence property of continuous-time Markov processes is obtained. 

Corollary 8.1.1 If { X ( t ) )  is a Markov process, then 

P(X(t,) = i, I X(t,-l)  = in-l,. . . , X( t1 )  = i l ,X(O)  = io) 
= P(X( t , )  = in 1 X(t,-1) = i n - l ) ,  (8.1.5) 

whenever P(X(tn-1)  = in->, . . . , X ( t l )  = i l ,X(O)  = 20) > 0. 

We turn to the study of the main property of the transition functions 
p i j (h ) ,  h 2 0, i.e. the existence of the transition intensities. Let 6jj = 1 if 
i = j and 0 otherwise. 
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Theorem 8.1.2 If { P ( h ) , h  2 0) is Q rnatriz tra7lsitaon function, then the 
following limits exist and QW finite: 

q i j  = lim h-'@ij(h) - 6ij) . (8.1.6) 
hlO 

Proof Without loss of generality we can assume that P(X(0) = i) > 0 for all 
i E E. First we show (8.1.6) for i # j .  Define d! (h)  = 1 and 

$(h)  
fG(h) 

= 
= 

P(X(vh) = i ; X ( k h )  # j ,  1 5 k < v I X ( 0 )  = i) , 
P(X(wh) = j ;  X(kh.)  # j ,  1 5 k < v 1 X(0) = 2 ) .  

Then, by (8.1.1), 

Now, by (8.1.2) we obtain that for all E > 0 and i,j E E with i # j there 
exists > 0 such that 

max P j i ( h )  < E ,  ,$Fh0pii(h) > 1 - E ,  min pj j (h)  > 1 - E .  (8.1.10) 
O<h_<ho O<h<ho 

Hence i fnh  < ho and z1 5 la, then (8.1.9) implies that $(h)  > 1 - 2 ~ .  Inserting 
this into (8.1.7) gives pjj(nh) 2 (1 - 2E) pij(h)(l- E )  2 (1 - &)npij(h) 

(8.1.1 1) 

if n.h < ho. Putting aij = liminfh,oh-'pij(h), this implies that aij < 00. 
Indeed, if aij = 00, we would find h arbitrarily small for which pi j (h) /h  
and, by (8.1.111, also pij(nh)/nh would be arbitrarily large. On the other 
hand, choosing n such that h0/2 5 nh < b, (8.1.10) gives (nh)-lpij(nh) < 
( n h ) - ' ~  < h i ' 2 ~ .  Thus, aij < 00 and it remains to show that 

(8.1.12) 
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By the definition of a,j there exists hl < h~ such that hL'pij(h1) < aij + E .  

Since P i j ( h )  is continuous, for all sufficiently small t o  such that hl + to < ho 
we have p i j ( t ) / t  < aij + E for hi - to < t < hi + to. NOW, by (8.1.11), for 
any h < to we can fmd an integer n h  such that hl - to < nhh < hl + to 
and (1 - &)h-lpij(h) 5 (nhh)-'pij(nhh) < aij + E .  Since E > 0 is arbitrary, 
(8.1.12) follows. Thus, the existence of the limits qi j  in (8.1.6) is proved for 
a # j. Since the state space E is finite and the matrix P(h) is stochastic, we 
have 

This completes the proof. 0 

The matrix Q = (qi j ) i , j=l , . . . , t  is called the intensib matria: and its entries 
qiJ transition intensities. The matrix of transition intensities Q is sometimes 
called a q-matrix. In the case of a finite state space, Q is the generator of 
{ P ( h ) ,  h 2 0) in the sense of the theory of transition semigroups. For a more 
general state space the concept of the generator requires a stronger definition; 
see Chapter 11. 

Corollary 8.1.2 For each i # j ,  qij 2 0 and qii 5 0. Furthermore, QeT = 0 
or, equivalently, for  each i E E ,  

(8.1.14) 
j E E  

Proof From definition (8.1.6) we immediately get q i j  2 0 and qii 5 0, for 
0 

Note that Definition 8.1.1 and Theorem 8.1.1 are completely analogous for 
Markov processes on a countably infinite state space, E = {1,2,. . .} say. 
Also Theorem 8.1.2 remains true in a slightly modified form. In the proof 
above, the finiteness of the state space has not been used when showing the 
existence and finiteness of qij for i # j. In the case of a countably infinite state 
space, one still can show that the limits qji in (8.1.6) exist, but they may be 
infinite; see, for example, Karlin and Taylor (1981), Section 14.1. Moreover, 
instead Of (8.1.13), one can only prove that qii 2 - Cjgi qij for all i E E. 
The case when equality prevails is of prime importance. A matrix transition 
function (P(h) ,  h 2 0}, acting on a countably infinite &ate space E, is called 
conservative if 

Cqij = -qii < 00 (8.1.15) 
j # i  

for all i E E. Most of the results that are stated and proved in the context of 
finite state Markov processes remain valid for conservative matrix transition 

i # j. (8.1.14) follows from (8.1.13). 
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functions on a countably infinite state space. However, the proofs are more 
involved. 

A state i E E is called absorbing if qii = 0. The motivation for this 
terminology will be discussed in Section 8.1.3. The notion of an absorbing 
state plays an important role in the definition of the class of phase-type 
distributions; see Section 8.2. Alternatively, a state i E E is called stabie 
if 0 5 -qi, < 00, and dnstantaneow if -qii = 00. 
Example Let E = N. The reader can show that any IN-valued 

stochastic process with independent and stationary increments? as defined 
in Section 5.2.1, is a Markov process. Any compound Poisson process with 
N-valued claim sizes is Markov in the sense of Definition 8.1.1. In particular, 
if { X ( t ) ,  t 2 0) is a Poisson process with intensity X > 0, then a0 = 1 and 

-Ah (Xh)j-‘ e -  if j 2 i, 
(j - i)! 

otherwise. 
pij (h)  = (8.1.16) 

This implies for qij = pi j  (1) (O+) that 

X i f j = i + l ,  

0 otherwise. 

8.1.2 Kolmogorov Differential Equations 

In this section we show that there is a one-to-one correspondence between 
matrix transition functions and their intensity matrices. In an extension 
to Theorem 8.1.2 we first show that the transition functions pij(h) are 
differentiable for all h 2 0. 

Theorem 8.1.3 For all i, j E E and h 2 0, the tmnsition finctions p , j (h )  
are differentiable and satisfy the folloun*ng system of digerential equations: 

P$)(h) = qikpkj(h) (8.1.17) 
kEE 

Proof Let h’ > 0. From the Chapman-Kolmogorov equation (8.1.1) we get 

pij(h + h’) - p i j ( h )  = pik(h’)f)kj(h) -Pij(h) 
k € E  

= Cpik(h’)pkjj(h) + k,ii(h‘) - l ] ~ i j ( h ) .  
k f i  

Similarly, 

pij (h - h‘) - p i j ( h )  = pij(h - h’) - Pik(h’)pkj(h - h’) 
kEE 
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= - C pik(h')pkj (h  - h') - ~pii(h')  - lbij (h  - h') . 
k f i  

Dividing by h', letting h' 
(8.1.17) because, by Theorem 8.1.2, 

0, and using the continuity of p ~ ( h )  we obtain 

and 

The differential equations in (8.1.17) are called the Kolmogorov backwad 

P(')(h) = QP(h)  (8.1.18) 

equations. In matrix notation (8.1.17) take8 the form 

for all h 2 0. In the same way as (8.1.17) was proved, one can show that 

P(')(h) = P(h)Q (8.1.19) 

for all h 2 0, which is the matrix notation of the Kolmogomv forward 
equations. The initial condition for both Kolmogorov equations is P(0) = I .  

The solution to (8.1.18) and (8.1.19) needs concepts from matrix calculus. 
We assume that all matrices considered below have dimension P x t and that 
vectors have dimension 1 x t .  The convergence of sequences of matrices and 
vectors is defined entry-wise. For example, if {A,}  is a sequence of matrices, 
A, + 0 as n + 00 means that (A& + 0 for all i , j  = 1 ,..., E .  We 
introduce a norm implying the same topology as described above: for a vector 
z = (21,. . . , ze), we define llzlI = 1zfl and, for an t x P matrix A = (aij), 
we define IlAll = zi,j=l,. , . ,t Iaijl. Note that for h E R we have IlhAll = lhl IlAll 
and that IlAll = 0 if and only if A = 0. It is clear that A, + 0 if and only if 
llAnll + 0. Furthermore, for a 2 0 and arbitrary matrices A, B ,  

llA + Bll I IlAll + IlBll 1 IlABll I IlAll IlBll I IlaAll = allAll - (8.1.20) 
Lemma 8.1.1 The series CLo(hA)"/(n!)  converges unaformly with respect 

Proof Let h E [-h,ho] and m E IN. By a generalized triangle inequality, 
deduced from (8.1.20), one has 

to h E [-ho,ho], for each ho > 0. 

n=O n=m+l 
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for each sufficiently large m, uniformly in h E [-b, ho]. 0 

The series Cr=o(hA)"/(n!) is therefore a well-defined matrix function 
which is continuous with respect to h on the whole real line R. We call this 
function the matrix exponential function and denote it by 

+.. exp(hA) = I+ hA +. .. + - (hA)" 
n! 

.. (8.1.21) 

Let A(h) be a matrix function such that all entries are differentiable functions 
of h. We define the matrix derivative by 

Lemma 8.1.2 The matrix exponential function exp(hA) i s  differentiable on 
the whole d line and 

cxp(hA) = A exp(hA) = exp(hA)A . 
dh 

(8.1.22) 

Proof We have 

exp((h + h')A) - exp(hA) = 2 (h + h'), - h" A" 
h' n! 

- 
n=1 

h' 

where 
O 5 rn(h,h') 5 n(n - 1)(2h)" (8.1.23) 

for Ih'l 5 Ihl. The bound (8.1.23) is obtained by a Taylor expansion of the 
function g(z) = (h. + 2)" - hn. This gives g(x) = znhn-l + $(n - l)(h + 
6 ~ ) " - ~ ,  where 0 5 6 5 1. Hence, letting h' + 0, we get 

n=l dh 

Clearlv 

Arbitrary e x t matrices A, A' are called commutative when AA' = A'A. 

(8.1.24) 

In the next lemma we need that for such commutative matrices 

exp(A + A') = exp(A) exp(A') . 
The demonstration of this result is left as an exercise to the reader. 
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Lemma 8.1.3 Let Q be an arbitrary L x f matrix such that gij _> 0 for i # j, 
and QeT = 0.  Then the matrix exponential function {exp(hQ), h 2 0 )  is a 
matrix transition function which solves the Kolnaogorov differential equations 
(8.1.18) and (8.1.19). 

Proof Note that for Q = 0 the statement is obvious. Assume now that 
Q # 0. We first check that exp(hQ) is a stochastic matrix for all h 2 0. 
Since QeT = 0, we have QneT = 0 for dl n = 1,2 ,... and, moreover, 
exp(hQ)eT = eT. To prove that all entries of exp(hQ) are nonnegative? let 
a = max{ -qii : i = 1, .  . . , t ) .  Then, P defined by 

P = a-lQ + I (8.1.25) 

is a nonnegative matrix and since PeT = a-'QeT + IeT = eT, the matrix P 
is stochastic. That the entries of exp(hQ) are nonnegative now follows from 
the representation 

00 

exp(hQ) = exp(ah(p - I ) )  = e-ah (8.1.26) 
n! n=O 

In this equality, (8.1.24) has been used together with the fact that 
exp(-ahl) = e-ahI. Furthermore, (8.1.24) implies that exp(hQ) fulfils the 
Chapman-Kolmogorov equation (8.1.1). Now, using (8.1.22) we see that Q is 
the intensity matrix of the matrix transition function exp(hQ), i.e. exp(hQ) 

0 is a solution to (8.1.18) and (8.1.19). 

We are equipped to state the main result of this section. 

Theorem 8.1.4 The matriz transition function { P ( h ) , h  2 0) con be 
wpresented by its intensity matrix Q via 

P(h)  = exp(hQ) . (8.1.27) 

Proof By Lemma 8.1.3, {P'(h)}  = {exp(hQ)} is a solution to the Kolmogorov 
backward equation (8.1.18) and fulfils the initial condition P'(0) = I. From 
the theory of systems of ordinary linear differeutial equations we learn that 

0 

If the eigenvalues el, . . . , t9e of Q are distinct, then the spectral representa- 
tion (7.1.17) of Q" can be used to determine the matrix exponential function 
P(h)  = exp(hQ). In this case we have 

such a solution is unique. Thus, P'(h) = P(h)  for each h 2 0. 

(8.1.28) 
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where &,plr, are the (right and left) eigenvectors corresponding to 8i. The 
proof is analogous to that in Section 7.1.2 and is left to the reader. 

Theorem 8.1.4 leads to another interesting conclusion. For each fixed pair 
i , j  E E,  the function h I+ pij (h)  is either identically zero or everywhere 
positive in (0, m), as can be easily shown by the reader. 

Note that the assumption of a finite state space is essential for the result of 
Theorem 8.1.4. If the state space is infinite, E = { 1,2, . . .} say, the situation 
is much more complex. There may be many matrix transition functions 
corresponding to one intensity matrix. 

8.1.3 An Algorithmic Approach 

Our goal in this section is to construct a Markov process with state space 
E = {1,2,.. . , l }  and with a given intensity matrix Q = (qjj)i,jEE. We first 
explain the construction and then show that the obtained process is indeed a 
Markov process with the preassigned intensity matrix Q. The construction is 
realized in several steps and can be used for simulation of Murkow processes. 

Suppose the intensity matrix Q is given so that qij 1 0 for i # j ,  and 
t Cj,l qjj = 0. Let a be an initial distribution. Let q( i )  = Cjzi q,, for all 

i E E .  We define a stochastic matrix Po by setting 

(8.1.29) 

for all i , j  E E with q ( i )  > 0. When q( i )  = 0, the corresponding row of 
Po is put equal to ei. From (8.1.6) and (8.1.29) follows that Po = (p!j) 
is a stochastic matrix. Let { X , , n  E IK} be a Markov chain with initial 
distribution a and transition matrix Po. Let { Z n , n  E IN} be a sequence of 
independent random variables with common exponential distribution Exp( 1) 
and independent of { Xn}. 

With respect to the Markov process { X ( t ) ,  t 1 0 )  under construction, the 
random variables Xo, XI , . . . will play the role of an embedded Marlsow chain 
which describes the state of { X ( t ) }  in the intervals between its jump epochs. 
The random variables ZO,& , . . . can be interpreted as unscaled sojoarn times 
in these states. If q(i)  = 0 for some i 6 E ,  i.e. the state i is absorbing, then 
the sojourn time in this state is infinite. We construct { X ( t ) , t  > 0 )  in the 
form X ( t )  = C~=oxnI(u, 5 t < u,+l) as follows. 

Step 1 Put 00 = 0 and 2; = Zo/q(Xo) .  We interpret 2; as the realized 
sojourn time in state Xo which is chosen at time 00 = 0. Note that 
P(ZA > zlX0 = i )  = e-9(*)= for all i E E with P(X0 = i) > 0; z 2 0. 

Step 2 Put u1 = a0 + 2; and X ( t )  = X, for 00 = 0 5 t < u1 which defines 
the trajectory of { X ( t ) }  until the first jump epoch (71. 
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Step 3 (analogous to Step 1) Put 2: = & / q ( X l )  which will be the sojourn 
time of { X ( t ) }  in state X I  chosen at time al; P(Z[ > zJX1 = i) = e-Q(')' for 

Step 4 Put a2 = a1 + 2: and X ( t )  = X1 for a1 5 t < Q. 

P(X1 = i) > 0. 

Step 2n-1 Suppose that the 26, Z[ ,  , . . , 2A-l, DO, V I , .  . . , an and { X ( t ) ,  t E 
[O,g,)} are defined for some n 2 1. Then put 2; = Zn/q(Xn). 

Step 2 n  Put an+l = an + 2; and X ( t )  = Xn for a,, 5 t < Dn+1. 

In this way, we can define the sample paths of { X ( t ) ,  t 2 0 )  on EX+ because 

P( lim a,, = 30) = 1, 
n3m 

(8.1.30) 

as can be shown by the reader. 

Theorem 8.1.5 The stochastic process { X ( t ) , t  2 0) wnstmcted above is a 
homogeneous Markov process. 

For a full proofof Theorem 8.1.5 we refer to Elesnick (1992), pp. 378-379. Here 
we only remark that the sequence { (cn, Xn), a E IK} of states X O ,  XI , . . . and 
sojourn bimes a1 - OO,Q - a1 , . . . in these states has the following properties: 
(a) the times in between jumps 01 - a o , ~  - D I , .  . . are conditionally 
independent and exponentially distributed provided that the X O ,  XI, .  . . are 
given. Hence, for all n. 2 1, io, . . . , i,-1 E E and 21,. . . , x,, 2 0 we have 

n 

3 p( n (a,rt - > 2,) I xo = i o , .  . . ,xn-i = tn-1 

m= 1 

(b) the sequence {(an, Xn), n E Ik'} is a Murkov renewal process, i.e. for all 
n > l , i , j , i ~ +  ..., i , - l  ~ E a n d z , z l ,  ..., z n z O w e h a v e  
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provided that 
n-1 n 

P( n{xm=im)n{x,=i)n n{Om-a,-l >zm)) > o .  
m=O m=I 

Note that the matrix Q is uniquely determined by the transition matrix 
Po = (p:j) of the embedded Maxkov chain and by the vector of expected 
sojourn times ( l /q( l ) ,  . . . , l/q(t)). 

We now show that the Markov process {X(t),t 2 0) constructed above 
is the '"right" one, i.e. its intensity matrix equals the preassigned matrix Q. 
For that purpose, we need to show that the transition probabilities p i j ( h )  of 
this Markov process can be expressed in terms of the ul~ca177 characteristics 

Theorem 8.1.6 For all i, j E E and h 2 0, 
{Q(i))iEE and Po = @ j ) i , j € E -  

p . .  (h)  = 6 . .  -q(i)h + q(i)e-d")t &Pkj (h  - t )  dt - (8.1.31) '3 v e I" k f i  

In particular, if i E E U an absorbing state, then P i j ( h )  = 6ij .  

Proof Without loss of generality we can assume that P(X(0) = i) > 0. 
Consider the decompositionpij(h) = Ii j (h)+Il j (h) ,  where Iij(h) = P(X(h) = 
j,nl > h I X(0) = i) and Ij j (h)  = P(X(h) = j , ~ 1  5 h I X(0) = 2 ) .  Then, 

and 
P(X(h) = j,ul E dt,X1 = k , X o  = i) 

P(X0 = i) 
k#i 
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2 0  P(X(h) = j I X ( t )  = k)P(-  E dt)P(Xi = k I Xo = i) 
q(i)  kfi 

If i E E is an absorbing state, then the process {X(t),t 2 0) constructed 
above stays in i once it gets there and hence pij (h)  = 6ij for all h 2 0. 0 

Corollary 8.1.3 For all i, j E E ,  

(8.1.32) 

Proof Taking the first derivative in (8.1.31) with respect to h and letting 
0 

Comparing (8.1.6) and (8.1.32) we see that the intensity matrix of 
the Markov process { X ( t ) , t  2 0) constructed in this section equals the 
preassigned matrix Q. 

Example A Markov process { X ( t ) ,  t 2 0 )  with state space E = { 1, .  . . , f} 
is called a birth-and-death process if p&-l + = 1 for all 1 < i < l and 
p& = = 1. The products p:,i+lq(i) and ~ & - ~ q ( i )  are called birth mte 
and death rate, respectively. Indeed, for the Markov process constructed in 
this section, we showed in Corollary 8.1.3 that p:,i+lq(i) and p&-lq( i )  are 
the transition intensities qi,i+l and qi.i-1 for the transitions i + i + 1 and 
i + i - 1 in the sense of (8.1.6). 

h J. 0, (8.1.32) follows. 

8.1.4 Monotonicity of Markov Processes 

In this seccion we study monotonicity properties of Markov processes which 
are analogous to results given in Theorems 7.4.1 and 7.4.2 for (discretetime) 
Markov chains. 

We consider the finite state space E = (1,. . . + l }  although all definitions 
and results given in this section can be formulated (usually under some extra 
conditions) for the case of a countable infinite state space too. Let Q be an 
intensity matrix on E. We say that Q and the underlying Markov process is 
stochastically monotone if 

k2r kzr 

for all i , j , r  E E such that i 5 j ,  and r 5 i or F > j .  

(8.1.33) 
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The stochastic monotonicity of intensity matrices is easily linked to that 
of the corresponding transition matrices. Write f, = (0,. . . , O , l , .  . . ,1) for a 
vector with the first 1 at the r-th component and ei = (0,. . . ,0 ,1 ,0 , .  . . ,0) as 
before. Condition (8.1.33) can be rewritten in the following way: for T 5 i 5 j 
or i 5 j < r, 

eiQf,T I ejQfT- (8.1.34) 

Theorem 8.1.7 The intensity matrixQ k stochastically monotone if and only 
if the transition mat* exp(laQ) is stochosticcrlly monotone for a11 h 2 0 .  

Proof Let exp(hQ) be a stochastically monotone matrix. Then 

ei ex~(hQ)fT I ej  ex~(hQ)fT (8.1.35) 

for all i _< j .  But eif; = ejf: for T 5 i 5 j and a 5 j < r. Subtract 
this equality from (8.1.35), divide by h, and let h + 0 to find (8.1.33). The 
converse is left as an exercise. 0 

Let now Q be an arbitrary intensity matrix and choose a > 0 such that 

a 2 qM&$-qii} - (8.1.36) 

Then Q + a 1  is a nonnegative matrix and F = Q/a + 1 is a transition matrix. 
Thus for P(h) = exp(hQ), we have 

(8.1.37) 

as in the proof of Lemma 8.1.3. From (8.1.37) we get the following useful 
representation of a Markov process { X ( t ) }  with intensity matrix Q and initial 
distribution a. Let { N ( t ) }  be a Poisson process with intensity a and let 
{X,} be a Markov chain with transition matrix P and initial distribution 
a. Furthermore, assume that { N ( t ) }  and {X,} are independent. Then it 
is easily shown that. the stochastic process { X ( t ) }  with X ( t )  = X N ( ~ )  is a 
Markov process with intensity matrix Q and initial distribution a. 

The representation of P(h) in (8.1.37) is called a vnafonn representation. 
It is also possible in the case of a countable infinite state space provided 
that (8.1.36) holds for some finite a > 0. Then, the Markov process is called 
subordinated. All results, derived in the rest of this section for a finite state 
space, extend to the case of a countably infinite state space. 

Lemma 8.1.4 The intensity matrix Q is stochastically monotone if and only if 
for some a 2 2 maxiEE{ - q i i } :  the snatrkz Q / a + I  i s  a stochastically monotone 
transition matrix. 
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Proof Assume first that Q is a stochastically monotone intensity matrix and 
that a 2 2m~j~.s{-qi i} .  Let i , j ,r  E E with i 5 j ,  and r 5 i or r > j .  Then, 
using (8.1.33) we have 

a-'qik + I ( i  2 r )  5 a - l q j k  + r(j 2 r )  . (8.1.38) 
k r r  k l r  

Furthermore, if i < T 5 j then 
r-I 

k z i  k=i  k l i  

5 c a-'qjk - + q j j )  5 a - l q j k  + 1 . 
k l r  k,r 

Thus, using Theorem 7.4.1 we see that the matrix Q/u + I is stochastically 
monotone. On the other hand, assuming that &/a + I is stochastically 
monotone for some a 2 2maxi~~{-qdi}, the monotonicity of Q immediately 
follows from (8.1.38). 0 

Theorem 8.1.8 Let Q be a stochastically monotone intensity matrix and let 
a and a' be initial distributions on E such that a Sst a'. Then there exist a 
probability space (Q, F, P) and Markov processes { X ( t ) } ,  {X ' ( t ) }  defined on 
( R , T ,  P), having the same entensity matrix Q and the initial distributions a 
and a', respectively, and such that for all t 2 0, 

X ( t )  5 x ' ( t ) .  (8.1.39) 

Proof By Lemma 8.1.4 and Theorem 7.4.2 there exist a probability space 
(Q,F,P) and Markov chains {&}, {Xh} defined on (Q,.F,P), having the 
same transition matrix P = &/a + I for some u 2 2max,,=~{-qii} and the 
initial distributions a and a', respectively, and such that with probability 1 

xfa I x:, (8.1.40) 

for all .n E IN. Assume now that { N ( t ) }  is a Poisson process with intensity 
a such that a 2 2rna~ ,~~{-q i i} ,  and { N ( t ) }  is independent of {Xn} and 
{Xk}. Then by the uniform representation of Markov processes we can set 

D X ( t )  = X N ( ~ )  and X ' ( t )  = X;V(t). Clearly (8.1.40) implies (8.1.39). 

Example Let { X ( t ) , t  2 0) be a birth-a.nd-death process with state space 
E = (1,. . . , l }  and intensity matrix Q, that is qi,,-1 + qii + qi,i+l = 0 for 
i = 2,. . . , e -  1, and q u  f q 1 2  = 0, qt,t-1 +qct = 0. We leave it to the reader to 
show that any birth-and-death process is a stochastically monotone Markov 
process. 
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8.1.5 Stationary Initial Distributions 

We say that a probability function K = (7r l , .  . . , 7rc) on E = {I , .  . . , l }  is 
a stationary initial distribution of a Markov process with matrix transition 
function {P(h) ,  h 2 0) if nP(h) = K for all h 2 0. Using the finiteness of 
the state space E we have 0 = limh,o h-ln(P(h) - I) = nQ. Conversely, if 
TQ = 0 then clearly nQ" = 0 and hence nP(h) = ~Cr'-~(hQ)"/n! = K 
for h 2 0. 

As in the case of (discrete-time) Markov chains considered in Section 7.2, 
it is possible to give a characterization of stationary initial distributions as 
limit distributions. The situation is even easier for continuous-time Markov 
processes since only an irreducibility condition is needed. Notice that without 
any additional condition, we have pii(h) > 0 for all i E E and h 2 0 as follows 
from (8.1.37). Furthermore, we call the Markov process { X ( t ) }  with matrix 
transition function {P(h) ,  h 2 0 )  irreducible if for all i # j ,  Pij(h) > 0 for 
all h > 0. This is equivalent to the itreducibility of the intensity matrix Q, 
which means that for each pair i , j  E E with i # j there exists a sequence 
il, . . . , i n  E E (ik # it) such that qiilqil ia . . . qimM1j > 0. We recommend 
the reader to prove the equivalence of these two notions of irreducibility. 
Irreducibility implies that the stationary init<ial distribution n of { X ( t ) }  is 
uniquely determined and satisfies nQ = 0. 

Theorem 8.1.9 If the Markou process { X ( t ) }  is irreducible, then for each 
i E E, 

lim P(X(t) = i) = ~ i ,  {8.1.41) 
t+w 

where n = (TI , .  . , ,re) is the stationary initial distribution of { X ( t ) ) .  

Proof Let { X ( t ) }  be irreducible, which means that the transition matrix 
P(h) is regular for each h > 0. Then, from Theorem 7.2.1 we get that 
limn-,oo P(nh) = II for each h > 0 where I3 is the matrix with each row equal 
to n. It follows from (8.1.1) and (8.1.2) that the matrix transition function 
{P(h) ,  h 2 0) is uniformly continuous. Thus, for each E > 0 we can find a 
(small) number > 0 such that for all t > 0 sufficiently large, there is an 
n E IN for which IIP(t) - IIll 5 IIP(t) - P(nho)ll + I(P(nho) - II(l I 2.5. 

Bibliographical Notes. A coherent mathematical theory of Markov process- 
es in continuous time was first introduced by Kolmogorov (1931). Important 
contributions to this class of stochastic processes were also made by W. Feller, 
W. Doeblin, J.L. Doob, P. Levy and others; see Feller (1971). More details on 
Markov processes with denumerable state space can be found, for example, 
in Chung (1967), Cinlar (1975), Karlin and Taylor (1981), Resnick (1992). 
Notice that by some authors, a Markov process with denumerable state space 
is called a continuous-time Markov chain. Standard references for the theory 
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of systems of ordinary linear differential equations axe books like Boyce and 
Di Prima (1969) and Simmons (1991). For stochastically monotone Markov 
processes, see Massey (1987) and Stoyan (1983). 

8.2 PHASE-TYPE DISTRIBUTIONS 

In this section we introduce the class of phasetype distributions which 
have a useful probabilistic interpretation and are convenient for numerical 
computations. We derive useful formulae for ruin functions and we show 
that an arbitrary distribution on nt, can be "approximated" by phasetype 
distributions. The probabilistic definition of phase-type distributions uses the 
theory of Markov processes. As a phase-type distribution can be characterized 
as a matrix exponentid distribution, we need to recall some necessary concepts 
and results from matrix algebra. 

8.2.1 

Unless otherwise stated, we again assume that matrices have dimension k' x k' 
and that vectors have dimension 1 x C. By 8i = &(A),  a = 1,.  . . ,t, we denote 
the eigenvdues of a matrix A = (aij)i,jEE; E = (1,. . . ,€}. As before we 
assume that 101 I 3 1821 2 . . . 2 I&l. The following auxiliary result for linear 
transformations of matrices is easily proved. 

Lemma 8.2.1 If A' = a A  + bI for some constants a, b E R, then 

Some Matrix Algebra and Calculus 

e,(A') = a&(A)  + b ,  i = 1, .  . . ,!. (8.2.1) 

We derive an upper bound for the "largest" eigenvalue 81 of a nonnegative 
matrix. 

Lemma 8.2.2 Let A be nonnegatave. Then, 

(8.2.2) 

Proof We have 

gives lelllqiil I CjZ1 a,j maxkeE 
= C:=, aij$jj, i = 1, .  . . ,€, where Q, = (41:. . . , &). This 

L i = 1,. . . ,C, and consequently 

t 
101 I q&y Mil I rn= c aij ye.  I4k I ' 

j = ,  

Thus 10, I 5 r n a x i E E  cj=, aij. The proof that fel l  I maXjcE Ckl e Q i j  is 
similar because AT has the same eigenvalues as A. I3 
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The bound given in Lemma 8.2.2 can be used to show that, for a certain 
class of matrices, the real parts of all eigenvalues are nonpositive. We say that 
B = ( b i j )  is a subintensity mot* if bij 2 0 ( i  # j )  and c:sl bij 5 0, where 
for at  least one i E E, cf=l b,j < 0. 

Theorem 8.2.1 If B t;9 a subintensity mat&, then &(B) = 0 or %(@i(B)) < 
0,  for each i = 1, .  . . , t .  
Proof Let B be a subintensity matrix and c > ma,Xi,=E(-bi,). Then B’ = 
B +cI  is a nonnegative matrix. By Lemma 8.2.1, we have &(B) = e,(B‘) -c. 
Furthermore, Lemma 8.2.2 yields lel(B’)1 5 c. Since lOl(B’)J _> J&(B‘)J 2 
. . . 2 lee(B’)I, this completes the proof (see Figure 8.2.1). 

Figure 8.2.1 The eigenvalues of a nonsingular subintensity matrix 

Corollary 8.2.1 A setbintensity matrix B is nowangular if and only if 

Proof It suffices to notice that 0 is not an eigenvalue of B if and only if B is 

In the next theorem we give a representation formula for the matrix 

%(&(B))<o forecrchi=l ,  ..., e. 

nonsingular. Thus, the statement follows from Theorem 8.2.1. 

exponential function exp(tA) of an arbitrary e x 4 matrix A. 

Theorem 8.2.2 Let el,. . . , @t be the eigenwalues of A. Then 

exp(tA) = al(t)Al + . . . + at ( t )At  , (8.2.3) 

where uk(t) ,  Ak tare @wen recursively by a l ( t )  = eelt,, A1 = I and ak(t) = 
s,” e ~ * ( t - - z b ~ - ~  (2) dz, A~ = ( A  - ell). . . ( A  - e k - l I )  for Ic = 2,. . . , t .  
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Proof Suppose first that A = diag(0) with 6 = (81,. . . , el)  and that all 
eigenvalues &, . . . , Ot are distinct. Then, by the definition (8.1.21) of exp(tA), 
we have exp(tA) = diag(eelf,. . . , eett) and (8.2.3) is obvious for L = 1. 
Suppose that (8.2.3) holds for some e = n - 1. Then, the right-hand side 
of (8.2.3) can be written as 

We have to show that, for all n = 1: 2,.  . ., 
n k - l  

(8.2.4) 
&= 1 i=l 

For n = 1, (8.2.4) is obvious. Furthermore, for k 2 2 we have 

Assuming that (8.2.4) holds for some n = j - 1, this gives 

k - 1  k-1 

k = l  i=l k=2 i=2 

Thus, (8.2.4) holds for all n 2 1. Consequently, for A = diag(0) and 81,. . . ,8t 
distinct, (8.2.3) is true for all .t 2 1. Suppose now that A is an arbitrary (not 
necessarily diagonal) matrix with distinct eigenvalues 81, . . . , Be. Then, it is 
not difficult to show that 

exp(tA) = *diag (eelt,. . . ,eset) *-', (8.2.5) 



CONTINUOUS-TIME M ARKOV MODELS 327 

where ip = (4:, . . . ,4:) is the .t x l matrix consisting of right (column) 
eigenvectors of A. Thus, from the first part of the proof we have 

e k- 1 

exp(tA) = + ( E a k ( t )  n (diag(6) -&I))@-' 
k = l  k l  

e k-1 

= x a & ( t )  n (+diag(O)+-' - ei@+-l) 
k = l  kl 

e k- I 

k = l  i=l 

If not all eigenvalues of A are distinct, we can proceed as follows. By 
Lemma 7.1.3, 

A =CDC-',  (8.2.6) 
where D is (upper) triangular and C nonsingular. Note that 

1 n(& - s) = det(A - d) = det(CDC-' - SCC-') 
i=l 

L 
= det(D - sl) = n(& - 5). 

Thus, the eigenvalues of A and D coincide, i.e. { d l l , .  . . , dtt} = {el,. . . , Oc). 
Consider a triangular matrix D' = (di,) such that dij  = dij for i # j and, D' 
has distinct diagonal elements d;, with < E for all i = 1,. . . , L and 
some E > 0. Then, the matrix A' = CD'C-' also has distinct eigenvalues 
and by (8.1.20) 

[IA - A'll = IlC(D - D')C-'II <_ lIlCl1 ~ ~ C - ' ~ ~ & .  (8.2.7) 

Moreover, it is not difficult to show that 11 exp(tA') - exp(tA)II + 0 whenever 
llA' - All + 0. This completes the proof since E > 0 in (8.2.7) can be chosen 

i= 1 

- 

arbitrarily small. 0 

If the eigenvalues &, . . . ,& of A are distinct, then (8.2.5) immediately 
implies that lirnt-,= e-@t exp(tA) = 0 for each s > maXiEE !I?(&). Indeed, 
using (8.2.5) we have 

e-"t exp(tA) = CP diag(e(el--s)t,. . . , e(ec-8)t)@-1 + 0 

since le(e;-s)t I = exp( -(s-%(&))t]  + 0 as t + 00. If the eigenvalues 81,. . . ,8e 
are not distinct, then the same exponential bound for the matrix exponentid 
function exp(tA) can be obtained from Theorem 8.2.2, as is pointed out in 
the follovhg result. 
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Corollary 8.2.2 Let 01,. . . ,el be the eigenvdues of A. Then, for each 

lim e-st exp(tA) = 0 .  (8.2.8) 
8 > m=iEB Wed, 

t-too 

Proof In view of (8.2.3) it suffices to show that 
lim e-stluk(t)l = 0, (8.2.9) 

t-+m 

for each k = 1,.  . . , L.  Clearly (8.2.9) is true for k = 1. Suppose that (8.2.9) 
holds for some k = n - 1 < l .  Then, for all w E ( O , t ) ,  

e(92(e,)-g)(t-z)e-stlu~-l (.)I &, 

where the second integrand becomes arbit.rarily small if v is sufficiently large. 
Indeed, because of our assumption that (8.2.9) holds for k = n - 1, for each 
E > 0 there exists v > 0 such that e-gz(an-l(z)( < E for all 2 > v.  Thus 

Since limt,, e(R(e=)-g)tJ: le-enzu,-l(z)l dz = 0 for each fixed v > 0, the 

Suppose now that A(t) = (uij(t)) is a matrix function where each entry 
aij(t) is a function of t. If A(t) is differentiable as defined in Section 8.1.2, 
then A(')(t) = dA(t)/dt has entries a!j'(t). A differentiation rule for products 
of matrix functions is given in the following lemma. 
Lemma 8.2.3 If A(t) and A'(t) are two diflerentiable matrizfunctions, then 

proof is complete. 0 

- d (A(t)A'(t)) = (zA(t))A'( t )  d + A(t);iiA'(t). d dt (8.2.10) 

The proof of Lemma 8.2.3 is left to the reader as an exercise. 
Conversely, by s," A(z) dz we mean the matrix with entries J: aii(z) d s  for 

w < t. In particular, for the matrix exponential function the following is true. 

Lemma 8.2.4 (a) If A is nonsingdur, then 
r t  

exp(zA) dz = A-'(exp(tA) - exp(vA)) I ,  
(b) If dl eigeravalues of A have negative red parts, then 

exp(zA) dz = -A-* 

(8.2.11) 

(8.2.12) 
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Proof Let the matrix function F(t )  be differentiable. Then, s," F(')(z) dx = 
F(t )  - F(v)  for v < t .  Thus, setting F ( z )  = A-'exp(sA), (8.2.11) 
follows from Lemma 8.1.2 because by (8.1.22) we have (d/dz>A-' exp(zA) = 
A-'(d/dz) exp(zA) = exp(zA). Now, (8.2.12) is an immediate consequence 

The following block operations on matrices will prove to be useful. Suppose 

of (8.2.8) and (8.2.11). 0 

we represent two .t x l matrices A and A' by 

A11 . . .  Aim ... A:, 

A =  ( At1 ... Akm AL1 ... A;,, 
... i ) , A'= ( A:1 -.. ; ) ,  

where 1 5 k,rn,n 5 P and A,,Aij are matrices such that the matrix 
multiplication AiTAij is possible for all i,jl r. Then 

(8.2.13) 
zr=1 AlrA:, - * * C,"=1 AlrA:, 

cT==, AkrA:, . . . C,"==, &A:, 

E 

AA' = 

For example, if Aii are 
(i # j ) ,  then 

x .ti matrices with CiZ1 = el k = rn, and Aij = 0 

AYl 0 ... 0 
A!& . . . 

A"= (Aij), = [ ; A& 0 ) .  

8.2.2 Absorption Time 

We are ready to return to continuous-time Markov processes. We assume that 
none of the states i E E = (1, 2, .  . . , e }  is absorbing. In Section 8.1.3 we 
showed that then the sample paths of a Markov process with the finite state 
space E can be chosen to be piecewise constant functions, where the distances 
between consecutive jump epochs are hyperexponentially distributed random 
variables. 

We now extend the state space E by adding one new state, say 0, and which 
we assume to be absorbing. For the extended state space E' = {0,1? . . . ,P}l  
we consider an intensity matrix Q = (qij)i,jEjy written in the block form 

0 0  
Q = ( * T  l 3 ) l  

(8.2.14) 
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where b = (bl , . . . , bp) is an l-dimensional vector with nonnegative components 
bi, B = ( b i j )  is an t' x t matrix with b,, 2 0 for i # j and b,i 5 0 such that 

bT = -BeT. (8.2.15) 

Let { X ( t ) , t  2 0) be the Markov process on E' with this intensity matrix Q, 
constructed in the same way as shown in Section 8.1.3, where X ( t )  = 0 for all 
t 2 q = inf{t' : X(t') = 0). We do not want 77 to be infinite with probability 
1. Hence B cannot be an intensity matrix (that is bi = 0 for all i = 1,. . . ,C) 
because otherwise the Markov process { X ( t ) }  would never visit state 0 when 
being started in E = (1 , .  . . ,P}. For that reason B is assumed to be a 
subintensity matrix. According to Theorem 8.1.6, the transition probabilities 
of { X ( t ) }  are given by 

&j if a = 0, 
P*j (h )  = 6 .  .e-q(*)h + J: q(i)e-q(*)t CkZi p k p k j ( h  - t )  dt if i # 0. 

(8.2.16) 
The random variable q is called the absorption time of { X ( t ) } .  Its distribution 
is determined by the initial distribution a' = (ao,al,. . . ,a() of { X ( t ) }  and 
by the subintensity matrix B. Note that, instead of a', it suffices to consider 
the (possibly defective) probability function a = (al, . . . ,at) on E. 

Definition 8.2.1 The distribution of 9 is called a phase-type distributaon with 
characteristics (a, B ) .  We denote thas distribution by P H ( a ,  B ) .  

{ '3 

Examples 1. Let l = 1,al = 1 and B = (-A) for some A > 0. 
Then P H ( a ,  B)  is the exponential distribution Exp(A). Furthermore, for an 
arbitrary l ?  1, for a1 = 1 and consequently a2 = . . . = at = 0, and for 

-A A 0 - * *  0 0 
0 -A x . - -  0 0 

. .  . . .  . ) 7  

B = (  ; . .  . .  . .  
0 0 0 f . .  0 - A  

-A A 0 - * *  0 0 
0 -A x . - -  0 0 

. .  . . .  . ) 7  

B = (  ; . .  . .  . .  
0 0 0 f . .  0 - A  

PH(a, B )  is the Erlang distribution Erl(l, A). 
2. Let L 2 1 and let a = (al?. . .,at) be an arbitrary (nondefective) 
probability function on E.  If 

-A1 0 0 * * -  0 0 
B = (  0 -A2 0 . - *  0 0 

0 0 0 * * *  0 -At  

for some XI,. . . , A t  > 0, then PH(a, B)  is the hyperexponential distribution 
e 

Ck=l a k E x p ( w  
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We next derive a formula for the tail of a phase-type distribution. 

Theorem 8.2.3 Consider the absorption time q wath distribution PH(a, B). 
Then, for each t 2 0, 

~ ( q  > t) = a e x p ( t ~ ) e - .  (8.2.17) 

Proof Clearly, (77 > t} = {X(t) # 0) and, consequently, 

(8.2.18) 
i=1 j = 1  

On the other hand, using formula (8.2.13) for block multiplication, we get 

(8.2.19) 

as can be shown by easy calculations. The proof is now completed by (8.1.27), 

Remember that, with positive probability, {X(t), t 2 0) may never reach 
the absorbing state 0. The following result gives a necessary and sufficient 
condition for the finiteness of q. 

Theorem 8.2.4 The absorption time q is almost stsrely finite, i.e. 

(8.2.18) and (8.2.19). 0 

P(q < m) = 1, (8.2.20) 

for each (possibly defective) probability function a = (a1 ? .  . . ,at) if and only 
if B 4s nonsangutar. 

Proof If B is nonsingular, then all eigenvalues of B have negative real parts 
as shown in Corollary 8.2.1. Thus by Corollary 8.2.2 (choosing s = 0) we have 
limt-too exp(tB) = 0 and hence, for each a, 

lim a e x p ( t ~ ) e ~  = 0. (8.2.21) 

Using (8.2.17) this gives (8.2.20). Conversely, let (8.2.21) hold for each 
probability function a and suppose that B is singular. Then there exists a 
vector z = (qr. .  . ,zl) # 0 with BzT = 0 ,  and so BnzT = 0. Consequently, 
exp(tB)zT = zT for all t > 0, and hence limtjmexp(tB) = 0 is not 
possible. Using similar arguments as in the proof of Lemma 8.1.3, it is not 
difficult to show that the matrix exp(tB) is nonnegative for each t 2 0. Thus, 
lim sup,+,(exp(tB))j, > 0 for some i, j E { 1,. . . , E }  and (8.2.21) cannot hold 

0 

t+m 

for each probability function a, i.e. B must be nonsingular. 

We need the following auxiliary result. 
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Lemma 8.2.5 Let B be a nonsingular subintensaty matrix. Then sI - B is 
nonsingular for each s 2 0 and all entries of ( s 1 -  B)-l are rataonal functions 
of s 2 0 .  f ir themore,  for all s 2 0, n E IN, 

lm exp(t(-sl + B))  d t  = (sl - B)-' (8.2.22) 

and 
(8.2.23) 

Proof Let s 2 0. By Corollary 8.2.1 all eigenvalues of B - 3 1  have negative real 
parts. Hence s l  - B is nonsingular. Furthermore, by Lemma 8.2.4, (8.2.22) 
follows. We now prove (8.2.23) by induction with respect to n. Using the 
differentiation rule (8.2.10) we have 

d d d 
ds ds ds 

0 = --I = - ((SI - B ) ( s l  - B y )  = ( s I - B ) - ' + ( s I - B ) - ( s I - B ) - '  

and, consequently, 

(8.2.24) 

i.e. (8.2.23) holds for n = 1. Assume that (8.2.23) holds for n = 1,2, .  . . , k. 
Then 

d 
ds -(sl - By-1 = -(sl - B y ,  

because 
d 
dS 0 = - ((SI - B)k+l(SI - B y ' )  

d = (k + l)(sl  - B)-1 + (SI - B)k+"(SI ds - B)-k-l. 
0 

Theorem 8.2.5 Assume that a0 = 0 and B is a nonsingulur subintensity 
matrix. If F is the phase-twe distribution with charactep.istics (a, B) ,  then F 
as continuous with 
(a) density 

(b) LapZace-Stieltjes transform 
f ( t )  = aexp(tB)bT, t 2 O ?  (8.2.25) 

C(s) = a ( s 1 -  B)-lbT, s 2 0 ,  (8.2.26) 
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(c) n-th moment 

p(") = ( - l )*n!aB-"eT, n 2 1. 

Proof Using Lemma 8.1.2, by (8.2.17) we have 

d 
dt 

f ( t )  = - - ~ ( 9  > t )  = a exp(tB) (-BeT) = Q e x p ( t ~ ) b ~  , 

(8.2.27) 

where the last equality follows from (8.2.15). Thus, (a) is proved. In order to 
show (b) it suffices to note that, by (8.2.25), 

00 00 

[(s) = 1 e-"tf(t) dt = h e-staexp(tB)bT dt 

= lmoexp(-s t l )exp(tB)bT dt = a exp(t(-sl+ B))dtbT I" 
= a ( s 1 -  B)-lbT. 

In this computation we used that e-6t1 = exp(-s t l )  and 

exp(-sM) exp(tB) = exp(t(-sI+ 33)) , 
where the last equality follows from Lemma 8.2.5. To show (c), we take the 
n-th derivative in (8.2.26). Then, (8.2.23) yields 

Putting s = 0 and using (2.1.6) and (8.2.15), this gives p(") = (-l)fli(n)(0) = 

Note that a formula similar to (8.2.26) can be derived in the case when 

[ (a )  = + a ( ~ l  - B)-'bT, s 2 0 .  (8.2.28) 

(- 1 ) W a E P e T .  0 

a0 2 0. Then, 

The proofof (8.2.28) is left to the reader. 

8.2.3 Operations on Phase-Type Distributions 

If it is convenient to indicate on which state space the hfarkov process { X ( t ) }  
is defined, then we say that the phase-type distribution has the characteristics 
( a ,  B,  E) and write PH(a ,  B, E). Furthermore, we will always assume that 
B is nonsingular. Consider two phase-type distributions PH(a1, B I ,  E l )  and 
PH(a2, Bz,&) simultaneously, where we take = (1,. . . , [I}  and E2 = 
{PI + 1,. , . ,[I + &}, We prove that the family of phase-type distributions is 
closed under convolution and mixing. 
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Theorem 8.2.6 The convolution of the phase-tvpe distributions P H ( a 1 ,  Bi ,  E l )  
and P H ( a 2 ,  Bz,l&) is a phase-type distribution with characteristics 
(a, B,  E ) ,  where E = El U E2, 

and 

(8.2.29) 

(8.2.30) 

with ( a k ) i ,  the i-th component o f a k ,  and b l  = -BkeT, k: = 1,2. 

Proof Let i(s), il(s), & ( s )  be the Laplace-Stieltjes transform of P H ( a ,  B ,  E), 
P H ( a 1 ,  B1, El) ,  P H ( a 2 ,  B2, Ez) ,  respectively. Then, it suffices to prove that 
i (s)  = &(s)&(s) for s 2 0. Note that 

We first show that the matrix sI - B is invertible. This is equivalent to 
showing that there exists a matrix A for which 

s I - B ~  -b;az ) 0 ( S I  - A B*)-l ) = I .  ( ( s I - B I ) - '  
0 s I - B ~  

In other words, A must satisfy (sl - B1)A - bFaz(sI - B2)-' = 0. Thus, 

where A = ( s I  - B1)-'bTa2(sI - B2)-l. Let 61 be the vector satisfying 
b: + (B1 +: az)eT = 0, i.e. b, = (a2)ob;. Now, using (8.2.26), for the 
Laplace--Stieltjes transform i ( s )  of P H ( a ,  B, E) we have 

-T 



CONTIXUOUS-TIME MARKOV MODELS 335 

It is clew how Theorem 8.2.6 can be generalized in order to show that 
the convolution PH(a1, B1,El )  * . . . * PH(an, B,, E n )  of n phase-type 
distributions is a phase-type distribution, n. 2 2. Its characteristics (a,  B,  E )  
axe given by E = U:==,Ek, ai = n:z:(aj)o(ak)i if i E Ek, where 
k = 1, . . . , TI, and 

Theorem 8.2.7 Let 0 < p < 1. The mixture p P H ( c r l , B l , E ~ )  + (1 - 
p)PH(az, B2,Ez)  is a phase-type distribution with characteristics (a, B , E ) ,  
where E = El U E2, 

As the proof of Theorem 8.2.7 is easy, we leave it to the reader. 

2 2 and for any probability 
function ( P I , .  . . , p n ) ,  the mixture C:=l pkPH(ak,  Bk, Ek) is a phase-type 
distribution with characteristics (a, BI E ) ,  where E = Ut==, Ek, a, = p k ( a k ) i  
if i E Ek and 

B = (  B2 0 * ”  0). 

We show now that the class of phase-type distributions is “dense” in the 
class of all distributions of nonnegative random variables. More concretely, 
for any distribution F on lR+, there exists a sequence Fn of phase-type 
distributions such that 

lim Fn(r)  = F ( z ) ,  (8.2.32) 

for each continuity point x of F. Recall that in Section 2.1.5 the sequence {Fn}  
was then said to wnwerge weakly to F ,  or F, 4 F. We need the following 
lemma. 

Lemma 8.2.6 Let {X,} be a sequence of real-valued random variables, 
and 2 E R. If limn,,EXn = x and lim,,,EX: = x2. then 
limn,ooEf(Xn) = f(x) for each bounded function f : R + lR. being 
continuous at x. 

Note that Theorem 8.2.7 implies that for 

Br 0 0 + a *  0 

0 0 * * .  Bn 

h+, 
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Proof Without loss of generality we suppose that sup, If(y)l 5 1. For each 
E > 0 we choose 6 > 0 such that. If(z) - f(y)l 5 E whenever )z - yl 5 6. Then, 

From Chebyshev's inequality 

and the proof is complete because E > 0 is arbitrary and the numerator of the 
0 last. expression tends to zero as ra + 0. 

Theorem 8.2.8 The famiKy of phase-type distributions is dense in the set of 
dl dGtributi0ns on R+. 

Proof Let F be an arbitrary distribution on R+ and define 

00 

F n  = F(0)do + C ( F ( k / n )  - F ( ( k  - l)/n))Erl(k,n) (8.2.33) 
k= 1 

for n 2 1. We first show that limn+mFn(z) = F ( z )  for each x 2 0 with 
F ( z )  = F(z-). Kote that 

where Gn,= = C ~ o e - n z ~ 6 k / n .  This can be seen by comparing the 
densities on ( 0 , ~ )  of the distributions given in (8.2.33) and (8.2.34). 
Furthermore, 

and sooo t2 dGn,z( t )  = n-lz + z2 + z2 as n + 00. Thus, by Lemma 8.2.6, Jr F( t )  dG,&,=(t) = E F ( X , )  + F ( z ) ,  where X,, has distribution Gn,i. NOW 
let FA = (F(0 )  + E(n))60 + C E 1 ( F ( k / n )  - F ( ( k  - l)/n))Erl(k,n). Since 
each Erlang distribution is phase-type (see Example 1 in Section 8.2.2), FA is 
a phasetype distribution by Theorem 8.2.7. This completes the proof because 

0 limn-,00 [Fn(z) - FA(z)l = 0 for each 2 2 0. 
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One can easily show that. the family of Erlang distributions {Erl(n, n), n 2 
1) possesses the following optimality property: among all phase-type distribu- 
tions on a state space E with n elements, Erl(n, n) is the best approximation 
to S1 (in the sense of the &-norm). Furthermore, note that Erl(n, n) converges 
to 61 as n + 00. 

Bibliographical Notes. More details on concepts and results from 
matrix algebra and calculus can be found for instance in Chatelin (1993), 
Graham (1981) and Wilkinson (1965). A comprehensive treatment of 
phase-type distributions is given in Neuts (1981); other references include 
Asmussen (1987), Latouche and Ramaswami (1998) and Neuts (1989). 
Theorem 8.2.8 is taken from Schassberger (1973). 

8.3 RISK PROCESSES WITH PHASE-TYPE 
DISTRIBUTIONS 

8.3.1 The Compound Poisson Model 

In this section we consider the ruin function in the compound Poisson model 
with phase-type claim size distributions. As usual we denote the intensity of 
the Poisson arrival process by A, and the claim size distribution by Fu. The 
ruin function $(u) has been shown in Theorem 5.3.4 to satisfy the relation 

00 

(8.3.1) 

(see also (6.5.2)), i.e. 1 - $(u) is the distribution function of the compound 
geometric distribution with characteristics (p,  F;), where p = (XE U ) / B  < 1 
with B being the premium rate, and Pv(z) = (p~)-l lo Fu(y) dy for x > 0. 
For Fu = PH(a, B )  we can derive a formula which is more suitable for 
numerical computations than (8.3.1). 

We first show that by passing from Fu to Pu we do not leave the family of 
phase-type distributions. 

Lemma 8.3.1 Let a0 = 0, B a nonsingular subintensity matrix, and F a 
distribution on R+. Zf F is the phase-type distribution PH(a, B ) ,  then Fs is 
also phase-type and given by Fa = PH(as, B), where 

aS=-pF1aB-  1 . (8.3.2) 

k FS ck 1 - $(u) = C ( 1  - P I P  ( u )  (4 7 21 > 0 
k=O 

I -  

Proof Using (8.2.17) and (8.2.11), we get that 

Fs (XI = p i 1  /d" F(y)  dy = pF1 1" o exp(yB)eT dy 
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= p;'a 1'' exp(yB) dy eT = pF'aB-'(exp(zB) - I)eT 

= 
0 

-pF'aB-*eT - p ~ ' a ~ - l  exp(zB)eT = 1 - a8exp(sB)eT, 

where the last equality follows from (8.2.27). Thus, by (8.2.17), P(s)  is the 
0 

The following useful theorem complements results for compound geometric 
distributions given in Section 4.5.1. 

Lemma 8.3.2 Let F,G be two distributiow on R+. Assume that G is the 
phase-type distribution P H f a ,  B )  with a0 = 0 and B nonsinplar, and that 
F is the cornpound geometric distribution with characteristics (p, G ) ,  where 
0 < p < 1. Then F = PH(pa ,  B + pbTa).  

Proof By Lemma 8.2.5 the matrix sI - B is nonsingular for all s 2 0. The 
series C L ( s I  - B)-'(pbTa(sI - B)-')k is a well-defined C x l! matrix for 
each s 2 0. Indeed, 

distribution function of PH(aS, B). 

m 
C l l ( S I  - B)-'(IPbTa(sI - B)-l)k!l 
k=n 

= fjlpk((d - B)- 'bT)(a(d  - B ) - l b T ) k - - ' ( a ( ~ I  - B)-')Il 
k=n 

m 

5 II(sI- B)-'bTa(sI - B)-'Il x p k ( a ( s I  - B ) - ' ~ J ~ ) ~ - ' ,  
k=n 

where the above series is convergent since by (8.2.26), 0 5 a ( s 1 -  B)-'bT = 
&(s) 5 1 for all s 2 0. KOW 

30 

(SI - B - pbTa) C ( s I  - B)-'(pbTa(sI - B)-')k 
k=O 

m 
= ( 5 1  - B )  C ( s I  - B)-'(pbTa(sI - B)--')k 

k=O 
00 

-pbTa ~ ( S I  - B)-'(pbTa(sI - B)-')k 
k=O 

00 00 

= C(pbTa(s1- B ) - ' ) k  - C ( p b T a ( s I  - B)-')k = I .  
k=O k=l  

Thus, 81- B - p b T a  is invertible for each s 2 0, and 
oc 00 

z ( p c t ( s 1 -  B ) - ' I I ~ ) ~  = pa(C(s1- B)-1(p6Ta(sI - B)-')')bT 
k= 1 k=O 
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= p a ( s 1 -  B - pbTa)-'bT. 

This is equivalent to 

339 

m 
~ p c r ( s 1 -  B)-'bT)& = 1 +pa(s1  - B - pbTa)-'bT. 
k=O 

Hence 

1 - P  
1 - p ( ~ 1  - B)-'bT 

= (1 - p ) + p a ( d - B - p b T a ) - l ( l - p ) b T .  (8.3.3) 

By Theorem 4.2.1 and equation (8.2.26), the left-hand side of (8.3.3) is 
the Laplace-Stieltjes transform of the compound geometric distribution with 
characteristics (p ,  PH(a,  B));  the right-hand side is the Laplace-Stieltjes 
transform of PH(pa,B + pbTa), as follows from (8.2.28). The proof is 
completed by the one-to-one correspondence between distributions and their 

The following probabilistic reasoning makes the statement of Lemma 8.3.2 
intuitively clear. Let X = xEo Uj have the distribution Fy, where 
N, t?~ , Vz, . . . are independent random variables such that N is geometrically 
distributed with parameter p and U1, UZ, . . . are distributed according to Fu. 
We show that X is distributed as the absorption time of a certain Markov 
process. For this purpose, we dissect the absorbing state 0 corresponding to 
the phase-type distributed random variables Cri into two "substates" 0, and 
Ob,  where o b  is no longer absorbing but fictttzow. Assume that, given the 
state 0 is reached, the Markov process to be constructed takes substate 0, 
with probability (1 - p )  and substate Ob with probability p .  If o b  is chosen, 
then a new state from E = {1,2,. . . , l )  is immediately chosen according to 
a, and the evolution is continued. In the spirit of the construction considered 
in Section 8.1.3, this leads to a Markov process on E' = {Oa, 1,2 , .  . . , .!} with 
initial distribution a' = (1 - p , p )  and intensity matrix 

Laplace-Stieltjes transforms. 0 

0 
'= ( (1-p)bT B + b T p a  

The geometric compound X = xzo Ui is distributed as the absorption time 
of this Markov process since Fu is the distribution of the (stochastically 
independent) times between consecutive visits of the instantaneous state Oa, 
and N is the number of visits in ob before the absorbing state 0, is reached. 

We are now ready to prove a numerically convenient representation formula 
for the ruin function $(u) in terms of the matrix exponential function. 
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Theorem 8.3.1 Assume that the claim sizes are distributed accordzng to 
Fu = PH(a,B) with a0 = 0, B nonsingdar and p = (mu)/@ < 1. Let 
as be defined by (8.3.2). Then, for all u 2 0, 

@(u) = p a s  exp(u(B + pbTa"))eT . (8.3.4) 

Proof Using (8.3.11, from Lemmas 8.3.1 and 8.3.2 we get that 1 - $(u) is 
the distribution function of P H ( p S ,  B + pbTa8). Now, it is easily seen that 

13 

Also, for the multivariate ruin function $(u,oc,y) introduced in Sec- 
tion 5.1.4, a similar algorithmic formula can be given when the claim sizes are 
phase-type distributed. Recall that $(u, 00, y )  denotes the probability that 
ruin occurs and that the overshoot (i.e. the deficit at the ruin epoch) is larger 
than y, where u is the initial risk reserve. Using the representation formula 
(6.5.17) for $(u, 00, y) we arrive at the following result. 

Theorem 8.3.2 Under the assumptions of Theorem 8.3.1, for all u, y 1 0, 

formula (8.3.4) follows from (8.2.17). 

-pas exp(u(B + pb'aP))eT) . (8.3.5) 

Proof By GI we denote the phase-type distribution PH(as exp(yB), B),  and 
by Gs the phase-type distribution PH(pas,B + pbTaS) .  By (8.2.17) and 
Lemma 8.3.1 

F;(U + u - v) = 1 - as exp((y + u - v)B)eT 
= 1 - (a'exp(yB))exp((u - v)B)eT = Gl(u - u ) ,  

where (8.1.24) has been used in the second equality. From (6.5.17) we have 

G ( y  + u - v) d(F&)*'(v) . 
M M 

$(u, 00, y) = c pk+' (F /J )*~(U)  - 1 phtl 
k=O k=O 

Hence, by Lemma 8.3.2, $(u,00,y) = (1 - p)"p(Ga(u) - GI * G*(u))(u). 
Now, (8.2.17), (8.2.29), (8.2.30) and Theorem 8.2.6 give (8.3.5). (Note that 

CI a2 = p d  is defective.) 

8.3.2 Numerical Issues 

In Theorem 8.2.8 we proved that the family of phase-type distributions forms 
a dense class of distributions on R+. Moreover: in Section 8.3.1 we showed 
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that phasetype distributions lead to formulae involving matrix algebraic 
operations, like matrix multiplication and addition, inversion and matrix 
exponentiation. In this section we discuss a few numerical methods, helpful 
when computing the matrix exponential. We further show some numerical 
experiments in computing the ruin function $(u) given in (8.3.4). 

The most straightforward but, at the same time, most dubious method for 
numerical computation of matrix exponentials is the use of the diagonalization 
method which has already been considered in Chapter 7. This method is known 
for its numerical instability. Moreover, it requires that all eigenvalues of the 
considered matrix are distinct. Thus, in order to compute the right-hand 
side of (8.3.4 we first assume that the eigenvalues of the matrices B and 
C = B + p6 as are distinct and represent these matrices by t) 

B = cP(B)diag(B(B))Jr(B), C = +(C)diag(B(C))Jr(C) , (8.3.6) 

where *(B) ,  +(C) and J[r(B), \k(C) denote the t x l matrices consisting of 
right and left eigenvectors of B,  C ,  respectively. Then we compute B-' = 
+(B)diag(B;'(B), . . . ,e;'(B))\k(B) and also p, as and 

(8.3.7) 

This way we obtain all elements needed to compute the expression in (8.3.4). 
Alternatively, exp(uC) can be computed by the following un:;fomizatton 

method. Put C' = UC and note that maxj,jEs(I + u-'C')i, 5 1, where 
a = max{lcijl : i,j E E}. Moreover, since all entries of I + a-'C' are 
nonnegative and all row sums of I + a-'C' are not greater than 1, we have 

o 5 ( I  + u-'c'}(I + a-'C') 5 ( I  + a-'C')E 5 E ,  

where the inequalities are entry-wise. By induction, 0 5 (I + u-'C')~ 5 E 
for each k E lhT. Thus, 

exp(uC) = cP(C)diag (exp(uB1(C)), . . . , exp(u&(C))) Jrc. 

where for the remainder matrix R, we have 

This means that, for numerical purposes, the approximation 

(8.3.8) 
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can be used. It follows from (8.3.8) that the error of this approximation 
becomes arbitrarily smdl when n is sufficiently large. 

Another way to compute the matrix exponential function exp(uC) is given 
by the Runge-Kutta method. This is based on the observation that, for each 
vector x = (q, . . . ,q), the (column) vector f(u) = exp(uC)zT satisfies the 
linear system of differential equations 

f“’(4 = Cf(4  > (8.3.9) 

with initial condition f(0) = zT. A common algorithm for the computation of 
the solution to (8.3.9) is a standard fourth-order Runge-Kutta procedure. This 
method has the advantage that one computes the whole function exp(uC)xT 
for all values tb within some interval. 

Still another approach for the computation of the ruin function $(u )  is based 
on the numerical inversion of the Laplace transform E(z) = so” e-tuc(u) du, 
where c(u) = p-’$(u) and Rz > 0, see Section 5.5. In the compound Poisson 
model with phasetype distributed claim sizes, E(z) can be given in closed 
form and, consequently, (5.5.14) can be applied to this case. Indeed, using 
Theorems 8.2.3 and 8.3.1 it is easily seen that c(u) is the tail function of 
F = PH(arS, B + pbTas). By an integration by parts we find 

e(z) = z-l+ 2-l e-ZUdc(u) = z-’(l-  [ ~ ( z ) )  I” 
and hence, by (8.2.26) we have 

~ ( 2 )  = z-’(1- a s ( t f  - B - @‘as)bT).  (8.3.10) 

We can now use the approximation formula (5.5.14) when inverting the 
Laplace transform E ( t )  given in (8.3.10). The results of a numerical experiment 
for the example given below are included in Table 8.3.2 in the column called 
Euler . 

Nowadays, the computation of the inverse matrix B-’ and the matrix 
exponential function exp(uC) can usually be done painlessly by standard 
software, as for example MATHEMATICA, MAPLE or MATLAB. For 
example, in the numerical experiment discussed below, the computation of 
exp(uC) by MAPLE led to the same values of +(a) as those given in the first 
column of Table 8.3.2. 

Example Let p = 0.75, and Fu = PH(a, B )  with t? = 4, 

a = (0.9731, 0.0152, 0.0106, O.OOlO), 

0.133 0.107 -5.807 5.296 

-28.648 28.532 0.089 0.027 
0.102 -8.255 8.063 0.086 

0.100 0.102 0.111 -2.176 

B =  ( 
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Tbe eigenvalues of the subint.ensity matrices B,C are distinct and their 
numerical values are given in Table 8.3.1. Furthermore, for E U = -aB-’e’ 
and b = ( b l , .  . . , b4) we have 

EU = 0.888479, b = (0.0, 0.004, 0.2711 1.863). 

Finally, using (8.3.4), the ruin function q6(zc) has been computed by the 
diagondization method and the results are presented in the first column of 
Table 8.3.2 called “Diagonalization”. 

a ei (B)  ei(C) 
1 -28.73487884 -28.736208960 
2 -8.397648524 -7.462913649 + i 0.511062594 
3 -6.090958978 -7.462913649 - i 0.511062594 
4 -1.662513676 -0.379909177 

zc 
0.1 
0.3 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 

Table 8.3.1 The eigenvalues 

Diagonalizat ion 
0.728 043 6176 
0.680 721 2139 
0.632 869 6427 
0.524 073 3050 
0.358 447 3675 
0.245 150 6038 
0.167 664 2644 
0.114 669 5343 
0.078 425 1920 

Maple 
0.728 043 6171 
0.680 721 2139 
0.632 869 6.129 
0.524 073 3051 
0.358 447 3678 
0.245 1% 6049 
0.167 664 2654 
0.114 669 5351 
0.078 425 1924 

Euler 
0.728 041 3240 
0.680 713 0932 
0.632 853 8609 
0.524 029 7168 
0.358 310 3419 
0.244 872 2425 
0.167 202 5238 
0.113 989 3001 
0.077 498 0890 

a b l e  8.3.2 The ruin function $(u) 

Bibliographical Notes. Another proof of Theorem 8.3.1 can be found in 
Neuts (1981) with the interpretation that the ruin function $(u) of the 
compound Poisson model can be seen as the tail function of the stationary 
waiting time distribution in the M/GI/1 queue. Theorem 8.3.2 extends 
related results which have been derived in Dickson (1992), Dickson and 
Waters (1992), Dufresne and Gerber (1988) and Gerber, Goovaerts and 
Kaas (1987), for example, for special phase-type distributions, in particular 
for hyperexponential and Erlang dist.ributions. For Runge-Kutta procedures 
concerning the solution of linear systems of ordinary differential equat.ions we 
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refer to Press, Flannery, Teukolsky and Vetterling (1988). Further numerical 
methods to compute a matrix exponential function can be found in Moler 
and van Loan (1978). The method for computing the ruin function +(u) by 
numerical inversion of its Laplace transform has been stated in Section 5.5. 
For further results concerning the numerical computation of the ruin function 
+(u)> see also Asmussen and Rolski (1991). 

8.4 NONHOMOGENEOUS MARKOV PROCESSES 

Life and pension insurance modelling require stochast,ic processes { X ( t )  , t 2 
0 } ,  for which the future evolution of the process after time t depends on the 
state X ( t )  = z and also on time t. Therefore in this section we outline the 
theory of nonhomogeneous Markov processes. In order to gain more intuition 
we first consider an example. Let T 2 0 be the lifetime of an insured. 
If T is exponentially distributed with parameter A > 0, then the process 
{ X ( t ) ,  t 2 0 )  defined by 

1 i f t < T ,  
2 i i t 2 T  X ( t )  = (8.4.1) 

is clearly a homogeneous Markov process with intensity matrix 

If P(T > z) = exp (-J;rn(w)dv), where m(t) is a hazard rate function, 
then the stochastic process { X ( t ) }  defined in (8.4.1) still fulfils the Markov 
property. The reader can show that, indeed, for all n 2 1, io? i l ,  . . . , in E { 1,2} 
and O <  tl < .,. < tn ,  

P ( X ( t , )  = in I X(tn-1) = in-1, .  . . , X ( t l )  = i l , X ( O )  = io) 
= P(X(t,) = i, I X ( t , - , )  = i , - I ) ,  (8.4.2) 

whenever P(X(t,-l) = i,-1 ,..., X ( t 1 )  = i l , X ( O )  = io) > 0. However, in 
general the transition probabilities P ( X ( t , )  = in I X(t,-l)  = &-I) depend 
on the pair ( t n - l , t n )  and not just on the difference t,, - tn-1, it9 was the 
case of a homogeneous Markov process. Throughout this section we consider 
Markov processes with the finite state space E = (1 , .  . . , I } .  

8.4.1 Definition and Basic Properties 

The homogeneous hlarkov processes discussed in the preceding sections of this 
chapter form a special case of the following class of nonhomogeneous Markov 
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processes. Consider a family of stochastic matrices P(t ,  t') = (p i j ( t ,  t ' ) ) i , jEE 
where 0 5 t 5 t', fulfilling 

0 P(t , t )  = I for all t 2 0, and 
0 for all 0 5 t 5 v 5 t', 

P(t,t') = P(t,v)P(v,t ') . (8.4.3) 

Each family of such stochastic matrices {P(t,t'),O 5 t 5 t '}  is said to be a 
(nonhomogeneous) ma* transition function. Referring to (7.1.7) and (8.1.1), 
the matrix identity (8.4.3) is also called the Chapman-Ko6mogorov equation. 

Definition 8.4.1 An E-valued stochastic process { X ( t ) , t  2 0) is called 0 

nonhomogeneous Markov process if there exist a (nonhomogeneous) matrix 
transition function {P(t,t'),O 5 t 5 t'} and a probability function a = 
(a, , 02, .  . . , op) on E such that 

P(X(0) = i o , X ( t l )  = i l , .  . . , X ( t n )  = in) 
- - a i o ~ i o i ,  (0, t 1 ) ~ i ~ i S  (tl, t 2 )  . * *~i,,-l i, (tn-1, tn) (8.4.4) 

foraZZn=O,l, ..., i o , i l !  ..., i , c E ,  O S t l  5 - . . 5 t n .  

Similarly to the characterization in Theorem 8.1.1 for homogeneous Markov 
processes, we have the following result. 

Theorem 8.4.1 The E-valued stochastic process { X ( t ) , t  2 0) i s  a non- 
homogeneous Markov process if and only af there exbts a matrix transition 
function {P( t ,  t'), 0 5 t 5 t ' }  such that, for all n 2 1, 20, il,. . . ,in E E and 
o5tx5 . . . L  tn ,  

P(X( t , )  = in I X(t , -1)  = i n - I , .  . . , X ( t l )  = il, X ( 0 )  = io) 
- - Pi"-l.;n(tn-l,tn)7 (8.4.5) 

whenever P(X(t,-l) = & - I , .  . . , X ( t l )  = i l , S ( O )  = io) > 0. 

The proof is similar to that of Theorems 7.1.1 and 8.1.1. 

continuous at t for all t 2 0, that is l i m t i ~ o  P(0, t ') = I and 
In this section we assume that the matrix transition function {P( t ,  t ' ) }  is 

iim P(t,  t') = lim P(t', t )  = I 
t ' l t  t' tt 

(8.4.6) 

for t > 0. We also assume that the limits 

P(t': 1)  - I = lim P(t ,  t ') - I 
QW = i! tf - t'tt t - t' (8.4.7) 
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exist for each t > 0 with the exception of a set of Lebesgue measure zero. 
Recall that all countable sets are of Lebesgue measure zero. On this set of 
exceptional points we put Q ( t )  = 0. By inspection we check that, for i # j ,  
q i j ( t )  2 0, q,,(t) 5 0 and for all i E E and t 2 0, 

j E E  

Again {Q(t) ,  t 2 0) is called the matrix intensity function of ( X ( t ) } .  
In the nonhomogeneous case, problems can arise. We give an example that 

shows that the limits in (8.4.7) need not to exist for each t > 0. Consider the 
two-state Markov process defined in (8.4.1). Then, we have 

t' 
p l l ( t , t ' )  = P(T 5 t' I T > t )  = 1 - exp(-/ m(v)dv), t' 2 t 

t 

and hence q12(t) = limc+t(t' - t)-'&2(tYt') = m(t) requires that the hazard 
rate function m(t) is continuous at t .  Similarly we can prove that 

0 
= ( m(t)  -rll(t) ) 

for each continuity point t of m(t) and 0 otherwise. 

Theorem 8.4.2 For all i , j  E E ,  0 5 t < t' for which the limits in 
(8.4.7) exist, the partial deriwattves B / (a t )p , j ( t ,  t') and a/(at ' )pi j ( t j  t') exist 
and satisfy the following s y s t e m  of diffmntial equations: 
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In the same way, 

This gives (8.4.9). The proof of (8.4.10) is analogous. 0 

The terminology, used in the homogeneous case, becomes more transparent 
when the differential equations (8.4.9) and (8.4.10) are called the Kolmogorov 
backward eqvations and the Kolmogorov forward equations, respectively. In 
matrix notation, the equations take the form 

a -P(t , t’)  = -Q(t)P(t,t’) at (8.4.11) 

(8.4.12) 

with the boundary condition P(t , t )  = I for all t 2 0. We can integrate the 
differential equations (8.4.11) and (8.4.12) to obtain the following result. 

Theorem 8.4.3 Suppose that {Q( t ) , t  2 0) is meavumble and that the 
function {maxl<ijr [ q i i ( t ) l , t  > 0) i s  integrable on every finite interval in R+. 
Then, for all 0 5 t < t’, the matrix transition function {P( t ,  t‘)} satisfies the 
integral equations 

a -P(t ,  t’) = P(t ,  t’)Q(t‘) at’ 
and 

rt‘  

P(t ,  t‘) = I + Q(u)P(w, t’) dw J, 
and 

rt’ 

P(t ,  t’) = I + 1 P(t ,  u)Q(w) dw . 

Proof Let t‘ 2 0 be fixed. Using the fact that, for 0 5 t 5 t’ 

(8.4.13) 

(8.4.14) 

P(t,  t’) = I - l‘ E P ( v ,  t’) dv , 

(8.4.13) is obtained from (8.4.11). The proof of (8.4.14) is analogous. 0 

Note that the matrix intensity function {Q(t ) ,  t 3 0) fulfils the condition of 
Theorem 8.4.3 if, for instance, it is piecewise continuous and locally bounded. 
Relations (8.4.13) and (8.4.14) can be used to express the transition function 
{P(t,t’),O 5 t < t‘} by the matrix intensity function {Q(t ) , t  2 0}, showing 
a one-to-one correspondence between the matrix transition function and the 
matrix intensity function of nonhomogeneous Markov processes with h i t e  
state space. We need the following auxiliary result, where we put uo = t .  
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Lemma 8.4.1 Let q : El+ 4 R be a measurable function which is integmble 
on every finite interval in R+. Then, for all 0 5 t 5 t' < 00, k = 1,2,. . .> 

Proof Note that 

where the summation is over all permutations (21, .  . . I ik) of ( 1 , .  . . , k). This 
in turn gives 

because all the summands in the above sum coincide. 0 

Theorem 8.4.4 Under the assumptions of Theorem 8.4.3 we have, for 
0 5 t 5 t', - t' t' 

P( t ,  t') = I + C J J . . . f' Q(w1). . . Q(v,) dun.. . dtpl (8.4-16) 
n=l t VI Vn-I 

and alternatively 

03 t' c1 

n=l t * t 
P(t ,  t') = I + / 1 . . . I"'-' Q(Q) . . - Q(vn) dv, . . . d q  . (8.4.17) 

Proof Inserting (8.4.13) into the right-hand side of this equation yields 
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By iteration we get, for arbitrary k 2 2, 

t‘ 

P(t,t’) = I + l  Q(w)dv 

+ [l:’. . . f L l  Q(w1). . . Q ( v k ) P ( w k ,  t‘) dwk . . . d q  . 

Put q( t )  = maxl<i<c - -  lqii(t)l. To complete the proof of (8.4.16), it suffices to 
observe that 

where the last equality follows from Lemma 8.4.1. (3 

We still mention another property of the matrix transition function 
{P( t ,  t‘)}. Under the assumptions of Theorem 8.4.3, the limit 

n 

(8.4.18) 
i=l 

exists for each sequence {(v?’, . . . , up))} such that t = wp’ 5 up) 5 . . . 5 
wp) = t‘ and r n a ~ ~ < ~ ~ ~ { v i ( ” )  - v:l\} +n+oo 0, where the limit A(t, t‘)  
does not depend on the particular choice of the sequence {(we’, . . . , wp,”’)} 
of partitions of the interval [t,  t’], and 

(8.4.19) 

8.4.2 Construction of Nonhomogeneous Markov Processes 

Let a be an initial distribution and {Q(t),t 2 0) a measurable matrix 
intensity function. Assume that the function {q(t) , t  2 0}, where q(t)  = 
rnaxl<i<t Iqii(t)l is integrable on every finite interval in R+. Our goal now 
is to construct a nonhomogeneous Markov process with the state space E = 
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(1: 2,. . . , l } ,  initial distribution a, and matrix intensity function {Q(t),  t 2 
0). We outline a construction principle which is similar to that discussed 
in Section 8.1.3 for the homogeneous case. It can be used for simulation 
of nonhomogeneous Markov processes wit.h a preassigned matrix intensity 
function. 

We define the family of stochastic matrices {P"(t) , t  2 0) setting 

(8.4.20) 

where qi (t) = C j-+ qij (t) . The nonhomogeneous Markov process { X (t) , t 2 0) 
with initial distnbution a and intensity function {Q(t ) , t  2 0), whose 
construction will be given below, has the form 

CQ 

X ( t )  = c X(an>I(an 5 t < On+] 1 * 
G O  

The jumps times an of the process { X ( t ) ,  t 2 0) and its states X(u,J at the 
jump times are given by the following algorithm. 
Step 1 Let X ( 0 )  be an E-valued random variable with distribution a. 
Step 2 If X(0) = io, then the sojourn time 20 in state io of the process 
{ X ( t ) ,  t 2 0) has the conditional (possibly defective) distribution function 

t 

F t 1 ( t )  = 1 -exp(-/ qb(v)dv), (8.4.21) 
0 

where we put u1 = 20 and X ( t )  = X ( 0 )  for a0 = 0 5 t < 01. 

Step 3 If X ( 0 )  = io and u1 = tl < 00, the process assumes state il at time 
tl with probability p:o,il(tl), which gives the new state X ( q )  of {X( t ) )  at 
jump time 01. 

Step 4 (analogous to Step 2) If 01 = tl and X(u1) = il, then the sojourn time 
21 in state il has the conditional (possibly defective) distribution function 
F/;]( t )  = 1 - exp(-J;Jl'+tq(v,il)dv), where we put uz = a1 + 21 and 
X ( t )  = X(u1) for a1 = 0 5 t < 02. 

Step 5 (analogous to Step 3) If X(u1)  = il and u2 = t2 < 00, the process 
jumps to st.ate i2 with probability pTl,j2(t*), which gives the state X(u2) of 
{ X ( t ) )  at time u2. 

Following this construction, we define the sample paths of { S ( t ) , t  2 0) on 
the whole nonnegative half-line El+, because 

P( lim on = 00) = 1 ,  (8.4.22) 
n+m 
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as can be proved by the reader. 

Theorem 8.4.5 The stochastic pmcess { X ( t ) , t  5 0) constructed d o v e  is a 
nonhomogeneous Markov process. 

The proof is omitted. It can be found, for example, in Iosifescu and 
Tautu (1973). 

Example A nonhomogeneous Markov process { X ( t ) , t  2 0) with state 
space E = (1, . . . , f?} is called a nonhomogeneous birth-and-death process if 
~ : , i - ~ ( t )  +p:,i+l(t)  = 1 and p&(t )  = p&- l ( t )  = 1 for all 1 < i < L‘, t 2 0. The 
products ( t )q(t ,  i) and p:,i-l ( t )q( t ,  i) are called the barth mte and death 
rate in state i at time t ,  respectively. 

We leave it to the reader to show that the Markov process { X ( t ) , t  2 0) 
so constructed is the “right” one, i.e. its matrix intensity function equals the 
preassigned matrix intensity function (Q( t ) , t  5 0). 

8.4.3 

We first review two basic economic factors: interest and discounting in 
continuous time. Suppose that the unit of time is one year and that the annual 
interest rate is TI. If the interest were to be paid once per year, then the value 
of one monetary unit after k years would be equal to (1 + T ~ ) ~ .  Analogously, 
if the interest is paid n times per year and the annual interest rate is equal to 
rn, then the value of one monetary unit after k payments of interest is equal 
to (1 +T-&)~.  Now, letting k and n go to infinity in such a way that k/n + t 
and r ,  -+ 6, then the value of one monetary unit at time t is equal to ebt. The 
value 6 is called the force of interest. Thus, if 6 is a force of interest and T is 
an annual interest rate which give the same value of one monetary unit after 
one year, then 6 and r are related by 6 = log(1 + r). Conversely, the present 
value at time 0 of one monetary unit at time t is equal to v ( t )  = e-6tl which 
is called a discount factor in the case of continuous discounting. 

Note that the above argument remains valid if a time-dependent force 
of interest d(t) is considered. Assume that the function 6(t) is Riemann 
integrable and approximate it by a piecewise constant function which is equal 
to 6(j/n) for all t E [ ( j  - l)/n,j/n). If k and n go to infinity so that 
k / n  + t, one can see as before that now the value of one monetary unit 
at time t is equal to exp(s,” 6(z) ds). The subsequent discount factor is then 
v ( t )  = exp(- s,” 6(z) dz). A formal proof of these facts is left to the reader. 

Application to Life and Pension Insurance 

Examples 1. We begin with the simplest life insurance modeL, considering 
a single life and only one cause of death. Suppose that the life time of an 
insured (after policy issue) is modelled by a random variable T with density 
function f(t)  and hazard ra.te function m(t). In the introduction to the 
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present Section 8.4 and just preceding Theorem 8.4.2, this model has been 
formulated in terms of a nonhomogeneous Markov process { X ( t ) }  with state 
space E = {1,2}. Assume that during his life the insured pays premiums at 
constant rate p l ( t )  I fi  and that discounting is based on a constant force of 
interest 6 > 0. Assume further that the insurer provides a lump payment of 
amount b l z ( t )  : 1 if the policy changes from stake 1 (alive) to state 2 (dead). 
The net prospective premium reserve p l ( t )  at time t after issue is defined as 
the expected discounted value at that time of the subsequent benefits minus 
all future premiums payable until the policy changes from state 1 to state 2, 
i.e. 

T- t  
p l ( t )  = E (e-6(T-t) I T > t )  - pE (1 eF6’ dz I T > t )  . (8.4.23) 

We leave it to the reader to show that the function p ~ ( t )  defined in (8.4.23) 
satisfies Thdele ’s difleerential equation 

0 

-- dpl(t) - p + 6/.4,(t) - m(t)(l - P l ( t ) )  . (8.4.24) 
dt 

If the equation p l ( 0 )  = 0 can be solved for the net premium rate 
3, then (8.4.23) determines a premium calculation principle based on the 
reserve function p l ( t ) .  We can represent p l ( t )  in terms of the underlying 
nonhomogeneous kiarkov process { X ( t ) }  with two states {1,2}. Here, 2 is 
an absorbing state, 412(5) = m(z) and p l l ( t , z )  = exp(-hzm(y)dy) = 
F ( z ) / F ( t )  for z > t. Note that the condition T > t means that X ( t )  = 1. 
Thus, (8.4.23) can be rewritten in the form 

- 

JF e-J(z--t) f(z) dz gyg-‘ e-dy dy)f(z) dz 
R t )  

- - P  
F ( t )  

Pl(t) = 

and consequently 

The net prospective premium reserve h ( t )  when t.he policy is in state 2 at 
time t is pz(t) = 0. 
2. The above example from l ie  insurance can be modified in the following 
way. Death occurs when the underlying process { X ( t ) }  passes from state 1 
to state 2. Rather than paying one lump sum at the time of death, a family 
income insurance provides a continuous payment of one monetary unit per 
time unit, lasting from the instance of death till a (fixed) time w. As before, 
premiums axe paid at a constant rate p but not longer than over a period w’, 
during survival of the insured. The quantities w and w’ are supposed to be 
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settled at the time the insurance contract is signed. In this case, the benefit 
rate function b(t) in state 2 and the premium rate function &(t)  in state 1 
are given by 

Then 

T 
- E (1 e-6(2-t)Pl(x) dz I X ( t )  = 1) 

can be written in the form 

hrthermore 
(8.4.27) 

In particular, for t 5 w, 

3. Another example is the following insurance model with three states: 
1-active, 2-disabled and %dead with possible transitions as depicted on 
Figure 8.4.1, where the matrix intensity function {&(t)} is given by q ~ z ( t )  = 

I I 

Figure 8.4.1 Tkansition graph 

a(t)  and q 1 3 ( t )  = q 2 3 ( t )  = b ( t )  for some nonnegative and continuous functions 
a(t)l b ( t ) .  It is easily seen that the corresponding matrix transition function 
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{P( t ,  t')} has the entries 

t' 

P 2 2 ( t )  = %YP(-i w d y ) .  

The above examples are special cases of a more general model which also 
includes a general life annuity payment, which is a kind of pension insurance. 
This general model allows two types of benefits: lumptype payments and 
continuous payments. Our concrete assumptions are the following: 

0 The state of the policy is described by a nonhomogeneous Markov process 
{ X ( t ) }  with a finite state space E = (1, .  . . , l } ;  a subset Eabs of E describes 
the absorbing states; we assume that Eabs is nonempty and that the process 
{ X ( t ) }  ultimately ends up in Eabs. 

0 The outgoing benefit for the transition i + j at time 2 (a lump payment) 
is bt, (z), and ,fI2 (2) and b, (z) are the premium rate and the annuity benefit 
rate in state j at time 2, respectively; we will assume in this section that 
all the functions P,(z), b , ( z )  and b,,(t) are continuous and bounded. 

0 The discounting is based on a general time-dependent force of interest 15(t); 
we assume that S ( t )  is bounded away from zero: i.e. S ( t )  > E > 0 for all 
t 2 0 and some E > 0. 
Let Iv,,(t) denote the number of transitions of the process { X ( t ) }  from 

state i to j by time t (i # j). If all qi,(t) are bounded, the random variables 
N,,(t)  are finite for all t > 0. We therefore assume that all qt,(t) are bounded 
and moreover continuous. Thus the cumulative benefit up to time t is 

and the cumulative premium by time t is n(t) = s," 
prospective premium reserve pi( t )  in state i E E at time t 2 0 is 

dy. h t h e r ,  the net 

oc 

PCci(t) = E (4 v(t ,a) d(B(z) - W))  I X ( t )  = 2 )  7 (8.4.29) 

where v(t ,  z) = exp(- s: S(y) dg). If i E Eah is an absorbing state, one usually 
puts ,&(a) = 0. In this case, (8.4.29) takes the form pi(t) = sp" w(t ,  z)b,(z) dz, 
generalizing (8.4.27). However, the following theorem shows that also for 
2 E E \ Eabs there is an alternative representation formula for p,(t) which 
generalizes (8.4.25) and (8.4.26). 
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Theorem 8.4.6 For i E E and t 1 0, 

- C 6" v ( t , s ) P i j ( t , z ) ( P j ( z )  - b j (3 ) )  dz * ( 8 . 4 3 )  
j E E  

As the proof of Theorem 8.4.6 is based on martingale techniques, it will be 
given later in Chapter 11; see (11.2.12). 

Notice that the premium reserve functions {p,( t ) ,  a' E E ,  t 1 0) satisfy the 
following system of equations. Let 0 5 t < t'. Then, 

+ v(t ,  t'> C ~ i j  ( t t  t '>pj (t'> 9 (8.4.31) 

which is obtained from (8.4.30) by separating payments in (t , t ']  from those 
in (elm), and by using the Chapman-Kolmogorov equations; see (8.4.3). 
Taking derivatives with respect to t on both sides of (8.4.31), we arrive at a 
generalization of Thiele's differential equation, see (8.4.24). 

Theorem 8.4.7 The premium reserve functions { p i ( t ) , i  E E , t  >_ 0 )  satish 
the following system of daflerentaal equations. For each i E E ,  

j E E  

+ (Pi( t )  - bi ( t ) )  - C bijft)(l,(t) * (8.4.32) 

The proof of this theorem is omitted. It can be found, for example, in 
Section 7.1 of Wolthuis (1994). 

Example A married couple buys a combined life insurance and widow's 
pension policy specifying that premiums are to be paid at rate 0 as long as 
both husband and wife are alive; pensions are to be paid at rate b as long 
as the wife is widowed and a life insurance of amount c is paid immediately 
upon the death of the husband if the wife is already dead (as a benefit to 
their dependant). Assume that the force of interest is constant and equal to 6. 
The reader should write down the system of generalized Thiele's differential 
equations (8.4.32) for the net prospective premium reserves p i ( t ) .  

Note that in general the diff'erential equations (8.4.32) do not help to 
calculate p i ( t )  because a boundary condition is needed. However, limt,, p , ( t )  

j#c 
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does not even need to exist. However, if the contract has a finite expiration 
time 20, then the boundary condition p,(20) = 0 has to be satisfied. As there 
was no lump sum at w in our model, the boundedness of bi ( t ) ,  b t j ( t ) ,  &(t)  
and q j j ( t )  imply lim,?, pi(t) = 0. As no human being grows older than 200 
years, we can safely assume that the contract expires after 200 years. 

In general it is difficult to solve (8.4.32) analytically. However, the following 
iteration procedure leads to an approximate solution to (8.4.32). For each t 2 0, 
let a denote the next jump epoch after time t at which { X ( t ) }  changes its 
state. Put ,~:(t) E 0 and define pF(t) recursively by 

+ 44 6) c P d t ,  4 C r y  (a) I X ( t )  = i) * (8.4.33) 
LEE 

Theorem 8.4.8 For each i E E and t 2 0, 

lim $(t)  = P j ( t ) .  (8.4.34) 

Proof Denote by a1 < uz < . . . the epochs after time t at which the state 
changes and let 00 = t .  We show by induction that 

n+a, 

This clearly is true for n = 0. Assume the above equation holds for n. Then, 
using (8.4.3) and u( t la1 )u (~ l , z )  = v(t,z) for t 5 a1 5 L, we get 



CONTINUOUS-TIME MARKOV MODELS 357 

Because v(t ,  z) + 00 as z + 00 and u,, + cm as n + 00, the assertion follows 
0 from (8.4.31) by bounded convergence. 

Bibliographical Notes. Further details and results on nonhomogeneous 
Markov processes with continuous transition functions, including the 
case of a general (infinite) state space, can be found, for example, in 
Iosifescu (1980) and Iosifescu and Tautu (1973). The speed of convergence 
of the series of product integrals in Theorem 8.4.4 has been investigated in 
Meller (1992). For nonhomogeneous Markov processes with discontinuous 
transition functions, the theory of product-integration and its application in 
insurance mathematics has been surveyed in Gill and Johansen (1990); see 
also Helbig and Milbrodt (1998). The original proof of (8.4.19) has been given 
in Dobrushin (1953). One of the fist papers where nonhomogeneous Markov 
processes have been applied to problems of life insurance is Hoem (1969). 
Here, the central result is Thiele's differential equation (8.4.24) for the net 
prospective premium reserve and goes back to Thiele; see Hoem (1983). 
For generalizations in different directions, see, for example, Milbrodt and 
Stracke (1997), Msller (1993), Norberg (1991, 1992, 1995), Norberg and 
Mprller (1996) and Ramlau-Hansen (1990). The exposition of Section 8.4.3 
partially follows Wolthuis (1994), where further examples of the general person 
insurance model discussed in Section 8.4.3 (like widow's pension, disability 
annuity, AIDS models) can be found. 
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8.5 MIXED POISSON PROCESSES 

In this section we give a thorough treatment of mixed Poisson processes which 
have found applications in insurance mathematics because of their flexibility. 
We show in particular t.hat a mixed Poisson process can be represented as 
a pure birth process, a special type of nonhomogeneous Markov processes. 
However, mixed Poisson processes are interesting in their own right. 

8.5.1 Definition and Elementary Properties 

Consider a counting process { N ( t ) ,  t 2 0). For example, the random variable 
N ( t )  can be interpreted as the number of claims arriving within a portfolio 
up to time t .  In this section we suppose that the distribution of the counting 
process { N ( t ) }  is given by a mixture of Poisson processes. This means that, 
conditioning on an extraneous random variable A, the process ( N ( 1 ) )  behaves 
like a (homogeneous) Poisson process, as introduced in Section 5.2.1. Starting 
from N ( 0 )  = 0, a formal definition goes as follows. 

Definition 8.5.1 The counting process ( N ( t ) ,  t 2 0) is called a mbed 
Poisson process if there exists a positive mndom variable, the mixing random 
variable A with distribvtion finetion F(x) = P ( A  5 x> such that for each 
n = 1 ,2 , .  . . I  for each sequence {kr ;  r = 1,2, .  . . , n} of nonnegative integers, 
and f o r O <  a1 5 bl 5 a2 5 b 5 ... 5 an 5 bn7 

(8.5.1) 

From (8.5.1) it can be seen that a mixed Poisson process is a stochastic 
process with stationary increments. However, in general the increments are 
not independent. We return to t.his question in Lemma 8.5.2. However, it is 
already useful to rewrite (8.5.1) in a slightly different form. 

Lemma 8.5.1 Let { N ( t ) ,  t 2 0) be a mixed Poisson process with mixing 
random variable A. Then, for  each n = 1,2>.  . ., for  each sequence { k r ; r  = 
1,2, .  . . ,n} of nonnegative integers, and for 0 5 a1 5 bl 5 a2 5 b 5 . . . 5 
an I bra, 

(8.5.2) 
where k = z:=l k, ,  and i A ( s )  = Ee-h8 i s  the Laplace transform of 11. 
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Proof The statement immediately follows from (8.5.1) since 

and (dk/dsk) sr  e-A8 dF(X)  = (-l)k e-"Xk dF(X). 0 

Let { N ( t ) }  be a mixed Poisson process with mixing distribution function 
F(X). To facilitate the writing we use the notation q ( t )  = P ( N ( t )  = i). Note 
that (8.5.1) implies 

Thus, for each fixed time point t ,  the random variable N ( t )  has a mixed 
Poisson distribution as defined in Section 4.3.3. If F is degenerate at a fixed 
point A, then we retrieve the Poisson random variable with intensity A. 

One remarkable property of mixed Poisson processes is that the probabilities 
{ao(t), t 2 0) for state 0 determine all the other probabilities {ai(t), t 2 0) 
for i 2 1. Note that the function ~ ( t )  is differentiable infinitely often 
by (8.5.3) and Lebesgue's theorem on dominated convergence. Furthermore, 
(8.5.3) yields 

k! 00 

@ ( t )  = (-l)k 1 Xkee-XtdF(A) = ( - l ) k p k ( t )  , k E IN. (8.5.4) 
0 

We can of course transform the explicit formula (8.5.3) for ai(t) into an 
equivalent expression for the generating function g N ( ~ )  (8).  This leads to the 
following result. 

Lemma 8.5.2 For Is/ < 1 and t 2 0, 

h ( t j ( 4  = M P  - s)) 1 (8.5.5) 

and hence 

E ( N ( t ) ( N ( t )  - 1). . . ( N ( t )  - r + 1)) = trE (Ar) ,  (8.5.6) 

for r = 1'2,. . .. I n  partacular, 

EN(t)=tEA, V a r N ( t ) = t 2 V ~ A + t E A  (85.7) 

and for the index of dispersion 

I N ( t )  = (EN(t ) ) - 'VarN(t )  = 1 + t I n .  (8.5.8) 
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Proof Applying Fubini's theorem we can write 

exp(-Xt(1 - s)) dF(X) = i ~ ( t ( 1  - 8 ) ) .  

This shows (8.5.5). To evaluate the successive factorial moments of N ( t ) ,  
take the rth derivative with respect to s E (0 , l )  of gNtt)(s) to obtain 
&it,l(s) = J,"(At)r exp(-At(1 - s)) dF(X) and hence as s t 1 we get, finite or 

0 

Lemma 8.5.2 implies that within the class of mixed Poisson processes, the 
Poisson process is the only one that is not overdispersed. It is also the one with 
the smallest variance function Var N ( t ) ,  which on top of that is linear and not 
quadratic. We now generalize (8.5.4) to the case of bivariate distributions. 

Lemma 8.5.3 For k l ,  kz E ILK and t ,  h 2 0, 

not, E ( N ( ~ ) ( N ( ~ )  - 1). . . ( ~ ( t )  - r + 1)) = $;t)(i) = t r ~  (AT). 

and hence 
Cov(N(t),N(t + h) - N ( t ) )  = t h V w A .  (8.5.10) 

Proof We omit the proof of (8.5.9) since it is analogous to that of (8.5.4). 
Using (8.5.4) and (8.5.9) we have 

= jom(tX)(hX)eLXee"*e-*('f") dF(X) = t h E  (A2).  

Since { N ( t ) }  has stationary increments, this and (8.5.7) give (8.5.10). 0 

It follows from (8.5.10) that neighbouring increments of a mixed Poisson 
process with nondegenerate mixing distribution are positively correlated. This 
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implies in particular that the increments are not independent: except in the 
case of a Poisson process. Thus, a large number of claim arrivals in a given 
time period has a tendency to trigger off a la.rge number of claim arrivals in 
the next period as well. 

The reader should see how the result of Lemma 8.5.3 can be generalized to 
the case of la-variate distributions. 

8.5.2 

In order to represent a. mixed Poisson process as a Markov process, we have to 
generalize the notion of a nonhomogeneous Markov process with a finite state 
space as it has been introduced in Section 8.4.1. Fortunately this extension to 
the case of a countably infinite state space is easy. 

Consider the state space E = IN and a family of matrices P(t,t‘) = 
(pij(t,t’))i,j,-my where 0 5 t 5 t’, fulfilling P(t , t )  = I for all t 2 0, and 

P(t ,  t ’ )  = P(t,  v)P(v,  t’) , (8.5.1 1) 

for all 0 5 t 5 ‘u 5 t ’ .  Then, an n\’-valued stochastic process ( X ( t ) ,  t 2 0) 
is called a nonhomogeneous Markov process if the conditions of Definition 
8.4.1 are fulfilled. We further assume that the conditions formulated in 
(8.4.6),(8.4.7) and (8.4.8) hold, i.e. the rnat~+z intensityfinction (&(t), t 2 0) 
is well-defined. Besides this we assume that q,(t) < 00 for all t 2 0 and 
i E lK, where qi ( t )  = Cjfi q i j ( t ) .  This means that each state E E IN is stabZe. 
Under the above assumptions, the Kolmogorov differential equations (8.4.9)- 
(8.4.10) (and their matxix forms (8.4.11)-(8.4.12)) remain valid. However, 
the theory needed to solve these (infinite) systems of differential equations 
is more complicated. We omit the details and refer the reader to Chapter 2 
in Bharucha-Reid (1960), for example. Instead we discuss a few examples of 
nonhomogeneous Markov processes with infinite state space. Note that for the 
probabilities poi(0, t )  = ai(t) for t 2 0 and i E IN, (8.4.10) implies 

(8.3.12) 

Markov Processes with Infinite State Space 

aj”(t) = C a k ( t ) q k i ( t )  - aj(t)qi(t) 7 i E N. 
kf i  

Examples 1. We first consider the case of a (nonhomogeneous) pure birth 
process, where q i j ( t )  5 0 for all j # i , i  + 1. In addition we take 

qi,i+1 ( t )  = ( b  + t)-l (a + i) 7 (8.5.13) 

for all i E IN and t 2 0, where a,b 2 0 are some constants. The resulting 
process { X ( t ) }  is called a Pdya process with parameters a,b.  Specifying 
t,he intensity functions qki and qi in (8.5.12), we see that the probabilities 
ai(t) = P(X(t) = i 1 S(0) = 0) satisfy the system of differential equations: 

C$)(t) = - ( b  + t)-laao(t) , (8.5.14) 
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and, for i = 1,2, .  . ., 
ail)(t) = ( b  + t1-l ( ( a  + i - 1)ai-I ( t )  - (a + i)ai(t)) . 

Together with the initid condition 

1 if i = 0, 
ai(0) = 0 otherwise, 

this system of differential equations has the solution 

(8.5.15) 

(8.5.16) 

(8.5.17) 

for all i E IN and t 2 0. Note that this is the probability function of the 
negative binomial distribution NB(a, t / ( t  + b)) and hence for each t >_ 0 

00 

C a t ( t )  = 1 
t=O 

(8.5.18) 

This means that a Pdlya process does not explode in finite time. We leave it 
to the reader to derive (8.5.17) as an exercise, using the recursion formulae 
(8.5.14)-(8.5.16). Let us mention that a Pdlya process can be approximated 
by a (homogeneous) Poisson process when a,b 3 0 are large. The reader is 
invited to prove this. 
2. The class of pure birth processes can be modified in the following way. 
Assume now that qi j ( t )  0 for all j # i - l , i , i  + 1. Then, { X ( t ) }  is called a 
(nonhomogeneous) birth-and-death process. If we additionally assume that 

X ( t ) i  ifj = i + 1, 
q i j ( t )  = { p ( t ) i  i f j = i - 1 ,  

for some nonnegative functions X(t) and p(t), then the probabilities al(t) = 
P(X(t) = i I X ( 0 )  = 1) are given by ab(t) = ~ ( t )  and 

cu:w = (1 - a ( t ) ) ( l  - cz(t))(cz(t))’-’ , (8.5.19) 

for all i = 1,2, .  . ., where q ( t )  = 1 - e-gl(‘)/gz(t), cz(t)  = 1 - (&(t))-l and 
t t 

g1(t) = (p(’u) - X(V)> du,  gZ(t) = e-gl( t ) ( l  + 1 p(u)egl(”) dv) , 

The proofof (8.5.19) is omitted. It can be found in Kendall(1948), for example. 
Kote that (8.5.19) yields expressions for the expectation and the variance of 
X ( t ) :  
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Furthermore, the probability of extinction before time t is given by 

8.5.3 

In t.his section we derive an intimate link between mixed Poisson processes 
and pure birth processes. In Example 1 of Section 8.5.2, the latter have 
been introduced as continuous-time but possibly nonhomogeneous Markov 
processes with state space E = N. They axe determined by the intensities 
or instantaneous birth rates qi,i+l(t) = -qii(t) = qi ( t )  which are the only 
nonzero elements of the matrix intensity function {Q(t)} .  The Kolmogorov 
forward equations (8.4.10) are then 

Mixed Poisson Processes as Pure Birth Processes 

w ~ * . j ( t , t ' )  = -pj ( t ' )Pi , j ( t , t ' )  + qj-l(tf)Pi,j-l(t,tf) if i # j ,  

i f i =  j ,  r $Pj&,t') " = -&')Pi&,t') 

with boundary or initial condition pi , j ( t ,  t) = &(j). 
The link between mixed Poisson processes and pure birth processes is given 

by the following result. 

Theorem 8.5.1 Let { N ( t ) , t  2 0) be o mixed Poisson process with mizing 
random variable A. Then, { N ( t ) }  is a pure birth process with intensities 

(8.5.20) q&) = -(ap(t))- 1 a0 (i+l) ( t ) ,  i E lK > 

where (YO (t) = iA ( t ) .  

Proof We fis t  show that the mixed Poisson process { N ( t ) }  is a Markov 
process. Notice that, by (8.5.2), we have P(N( tn )  = kl + . . . + kn , .  . . , N(0)  = 
b) > 0 for all kl,. . . , k,+l E Pi and 0 = to < t1 < . . . < tn.  Furthermore, for 
all n 2 1, kl: ..., k, E IN and O = z o  I z i  I ... < ~ n ,  

P(N(31) = kl , .. . , X(Z,) = k1 + . + k n )  
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= P ( N ( t n + l )  = Icl + . . . + k,+l I N ( t n )  = k1 + + Icn) 

Put p i j ( t , t ' )  = P(N(t ' )  = j 1 N ( t )  = i), where we assume that 0 5 t 5 t'. 
Then by the result of Lemma 8.5.3 we have, for i 5 j and 0 5 t 5 t', 

so that 

(8.5.21) 

for i 5 j, and pij ( t , t ' )  = 0 otherwise. It can be seen that the matrices 
P(t,t') = ( p , j ( t , t ' ) ) ~ c m  given by (8.5.21) satisfy P(t , t )  = I for all 
t 2 0, and p+j( t ,u)  = Cf=iP)ik(t,t ')p~j((t ' ,u) for all 0 5 t 5 t' 5 td and 
i 5 j, i.e. condition (8.5.11) is satisfied. This shows that ( N ( t ) }  is Markov. 
Furthermore, it follows from (8.5.21) that q i j ( t )  E 0 for a11 j # i,i + 1 and 

0 

One can show that the transition probabilities p i j ( t ,  t') satisfy the Kolmo- 
gorov forward equations (8.4.10) with the prescribed intensities. For i # j ,  
take first logarithms of both sides of (8.5.21) and then partial derivatives with 
respect to t'. This gives 

that qi ( t )  = -qi,i+l(t) is given by (8.5.20). 

0 ' . ( t , t ' )  @P'" - -- 
p2,3(t,t') t' - t @(tf) . 

j - i + 

On the other hand we can also directly evaluate the right-hand side of the 
Kolmogorov forward equation. Then, by (8.5.20) and (8.5.21), 

which coincides with the previous expression. For i = j the calculation is even 
easier. 
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Combination of equations (8.5.4) and (8.5.21) expresses the transition prob- 
abilities p , j ( t ,  t') in terms of the probabilities ai(t) = P(IL'(t) = i), 

where i I j and 0 5 t 5 t'. Further, note that (8.5.20) can be written 
in the form qo(t)  = -ag)(t) and q j+ l ( t )  = q j ( t )  - qj' ) ( t ) /qj( t )  for j 2 0. 
Alternatively, combine (8.5.4) with (8.5.20) to get another recursion formula 

(8.5.23) 

In many practical situations it suffices to solve the Kolmogorov forward 

t 
3 

a j ( t )  = Yqj-1 (t)aj-* ( t )  j = 1,2,. . . . 

equations for the case i = 0 and s = 0. We then arrive at 

a',''(t) = -qjj.(t>aj(t> + q j - l ( t ) a j - l ( t )  i f j  # 0, 
a h  = -qo(t )ao(t )  i f j = O ,  

with initial condition aj(0) = 60( j ) ,  and the intensities are given by (8.5.20). 
Once the functions {a j ( t ) , j  E IN} have been properly determined, the 
transition probabilities ;pi,(& t') follow immediately from (8.5.22). That the 
resulting transition probabilities pij ( t ,  t') satisfy the general Kolmogorov 
forward equations should be proved by the reader. 

Corollary 8.5.1 The mired Poisson process { N ( t ) }  satisfies the binomial 
criterion, i.e. for i j and s < t the inverse transition probabilities 
ri j( t ,  t ')  = P ( N ( t )  = i I N(t ' )  = j )  are given by the binomial distribvtaon 

A similar type of argument leads to the following result. 

(8.5.24) 

Proof Note that 

P('V(t) = i) aa(t)  
= pz j ( t , t ' )  - P(N(t ' )  = j) aj(t') 

Qj( t , t ' )  = P(N(t ' )  = j I N ( t )  = i) 

and apply formulae (8.5.4) and (8.5.22). 0 

8.5.4 The Claim Arrival Epochs 

We turn to the claim arrival epochs {On} defined by the mixed Poisson process 
{ N ( t ) } .  Recall that the arrival epoch an of the nth claim satisfies the identity 
{ N ( t )  2 n} = {on 5 t }  for all t 2 0. For the joint distribution of the arrival 
epochs (ulr . . . , cn) we have a generdiation of the conditional uniformity 
property of homogeneous Poisson processes stated in Theorem 5.2.1. 
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Theorem 8.5-2 The joint density function fa, ,,,,, ,,,, (x i , .  . . ,xn) of the random 
vector (01 , . . . , a,) is given bg, 

la! 

2:: 
fu ,,..., un (XI,. . . , x,) = Xne-A\an dF(X) = ( - l ) " a F ' ( Z n )  = -Qn(Xn) , 

(8.5.25) 
I" 

for 0 < 21 < . . . < xn while the density fa, ,..., ( X I , .  . . ,zn) is zero elsewhere. 

Proof Let bo = 0 5 a1 5 bl I ... 5 an 5 bn = zn be a sequence as in 
Lemma 8 . 5 . 1 .  Then 

r=l r=l 

where 
n n-1 

11 = P( n {AVr-l; at-) = 0) n 17 ( W a r ;  br)  = I } )  
r=l r=l 

and 
n n-1 

12 = P (0 { iV(br- l ;  a,) = 01 n n {N(ar ;  br )  = 1) n { ~ ( a ~ ;  bn) = 01) 

We apply the representation formula derived in Lemma 8.5.1 to both terms 
of the last difference. For the first term, in (8.5.2) we choose kr = 1 when r is 
even, and kv = 0 for P odd. This yields 

n-1 (n-1) 

r=l  r=l 

n 

11 = ( - 1 )  a 0  (an) n ( b r  - ar) * 
r=l  

For the second term we similarly find that kln = 0 and 

Thus, we ultimately obtain 
n n 
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where the last equality follows from (8.5.4). 

367 

0 

From Theorem 8.5.2 a number of intriguing corollaries can be obtained. 

Corollary 8.5.2 The density fu , (x )  of the arrival epoch on is given by  

(-lP ,zn-'aP)(z), 2 > 0 .  
n 

fun(.) = -an(.) = - 
X (n - 1). (8.5.26) 

The latter result itself leads to a set of rather simple formulae linking 
characteristics of on to the distribution of the mixing variable A. 

Corollary 8.5.3 For mch n 2 1, 

(8.5.27) 

and 
Eon =nE(A-'), ECJ: = r ~ ( n + l ) E ( A - ~ ) .  (8.5.28) 

Kote that the expectations in (8.5.28) do not have to be finite. Furthermore, 
(8.5.28) shows that the expected waiting time for the arrival of the nth claim 
is proportional to n. The proportionality factor gets larger when the mixing 
distribution is more concentrated around small values of A. 

The joint distribution of two consecutive claim arrival epochs illustrates a 
remarkable dependence structure in the mixed Poisson model. 

Corollary 8.5.4 The conditional densities fu,lul ,..., (z, 1 21, . . . , zn-l) 
and fu,lu,-2(zn I zn-l) of the sequence (o,;n 2 l} exist and a~ given by  

ar' (xn) 
funlul ,... ,u,-1(zn I ~19...>~n-1) = fu,~u.,-,(zn I zn-1) = - (n-l) 9 

(zn-1) 
(8.3.29) 

for 0 < x1 < . . . < xnll < xn, n = 1,2,. . ., and zero othewise. 

Proof Let 0 < 21 < . . . < xn. Then, using (8.5.25), we have 

Recall from (8.5.2) that 
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and 

Now, with the help of (8.5.4), we obtain (8.5.29). 0 

F’rom the result of Corollary 8.5.4 we realize that the sequence {an,n 2 1) 
has the Markov pmp&y; see also Section 7.1.1. 

8.5.5 The Inter-Occurrence Times 

We turn to the times in between consecutive claim arrivals in the mixed 
Poisson process. The inter-occurrence times are defined by the relations 
TI = 01 and for n 2 2 by Tn = qn - Cnn-l? and their joint density 
f ~ ,  ,..., T,, (21, . . . ,2n)  has a simple form. 

Theorem 8.5.3 Let { N ( t ) }  be n mked Poisson process. Then 

fT*,...,T,(21,...?2*) =(-l)nac)(zl + - . . + ~ n )  (8.5.30) 

for 21, - .  . , ~ n  > 0. 

Proof Use the chain rule for conditional densities to write 
n 

fTi ,..., T, (21, * * * 9%) = fl fT,ITl ,..., Tr-I (2, I - * - Yzr-1) fTl(51). 
r=2 

In order to determine the conditional densities ~ T , . , T ~  ,..., T ~ - ~  (2,. I 21, .  . . ,zr-l) 
notice that 

= P(C, 5 2 1  + . . . + Zp I 01 = XI,. 
P(0, 5 21 + . . . + 2 r i  up-1 = 2 1  + . . . + ~ r - l ) ,  

, ~ r - 1  = ~1 + . . + ~ r - 1 )  
= 

where in the second equation we used the Markov property of the sequence 
{a,} of arrival epochs as derived in Corollary 8.5.4. Hence 

~T~~T~,...,T~-~(G I x~,-..,zr-l) = f c r l u P - , ( 2 1  +...+ xr 1x1 + - - . + z r - ~ ) .  

Now (8.5.29) together with f ~ ,  (51) = ful (21) = &)(XI) yield the required 
result. 0 

One of the surprising consequences of Theorem 8.5.3 is that the inter- 
occurrence times are identically distributed but not independent. Moreover, 
(8.5.30) implies that for all permutations ($1 , .  . . , i n )  of ( l? .  . . >n) ,  

~ T I , T ~  ,..., ~,(21,22,.--,2n) = f ~ i , , ~ i ,  ,..., ~t,(21,~~,.--,2n)~ 
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This means that {TI ,  . . . , Tn} is an eschungeable sequence of random variables, 
since their joint distribution is invariant under permutations of the arguments. 
Restricting our attention to one or two inter-occurrence times, we immediately 
get the next consequences of Theorem 8.5.3. 

Corollary 8.5.5 Let { N ( t ) }  be a mixed Poisson process with mixing 
distribution function F(X) = P ( A  5 A). Then, 

1n purticuhr ET' = E (i4-l) while E (Ti) = 2 E  (A-2). For the bivariate 
case, 

~T~,T~(X,Y) = a f ) ( z  + y) = X2e-X(Z+~) dF(A) . 

In part:cu1ur E (TjTk) = E (A-2) and Cov (Tj, Tk) = Var (A-l). 

These results entitle us to reformulate the conditional uniformity property of 
mixed Poisson processes from Theorem 8.5.2. The latter meant that a mixed 
Poisson process has the order statistics property, i.e. given N ( t )  = n, the 
claim arrival epochs ol, . . . , un follow the same distribution as the sequence 
of order statistics from a uniform distribution on [O,t]. Using the notation 
fu, ,..., o n l N ( t ) ( ~ l , .  . . , z, I n) for the density of the conditional distribution of 
( u l , .  . . ,on) given that N ( t )  = n, we find the following result. 

Theorem 8.5.4 Let { N ( t ) , t  2 0) be ia mked Poisson process. Then, for 

I" 

0 < 21 < . . . < 2% < t ,  

(8.5.31) 

and 

Replacing the factors in the numerator by the right-hand sides of (8.3.31) and 
(8.5.25), respectively: and applying (8.5.4) to the denominator, we hal ly  get 
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that fn ,,..., u n l N ( t ) ( z l t . .  . zn I n) = t+n! holds. In a similar fashion, applying 
Theorem 8.5.2 and Corollary 8.5.2 to the ratio fnl ,.._, 4nlun+,(s1,. . . , zn  I t )  = 

n 

The following result is yet another phrasing of the same order statistics 
property. 
Theorem 8.5.5 Consider the sequence {un,n 2 1) of arrival epochs of o 
mixed Poisson process. men, for 0 < x1 < . . . < xn < 1, 

(8.5.33) 

The proof of Theorem 8.5.5 is based on standard transformation of random 
variables and is left to the reader. 

ful,...rnn,n,,+l (21 1 + . . ?  zn, t)/fq,,+1 ( t )  we obtain (8.532). 

fu,/nn+l,ua/nn+f ,...,un/un+t(21'z2:... zzn) = n! .  

8.5.6 Examples 

We now give a few examples of mixed Poisson processes that have found their 
way into the actuarial literature. 
1. The easiest example is the homogeneous Poisson process itself, which is 
characterized by the degenerate mixing distribution function F ( z )  = 6o(z-X), 
where X is a positive constant. Since in this case al(t) = e-xt(Xt)i/i! for all 
t E Ih', we find that qi ( t )  in (8.5.20) is given by qj(t)  = A. 
2. Discrete mixtures of homogeneous Poisson processes form the next example. 
Suppose that there exists an increasing sequence {An} of positive values An 
such that F ( s )  = C:=, QJ& - A,> for some sequence {a,} of weights with 
a, > 0 and C n ~ ,  = 1. It is easily Seen that ai(t) = C,a,e-xn'(Ant)i/i! 
holds. In the special case where A, = n and a, = e-"pn/n! for some p > 0, 
we have %(t)  = exp(-p( 1 - e-')). The corresponding mixed Poisson process 
is called of Neymon tgpe A. 
3. Another important example of a mixed Poisson process is obtained by 
choosing the gamma distribution r(u,  6) for the random variable A, i.e. f(s) = 
dF(z)/ds = (ba/I'(u)) e-brza-l, where Q and b are positive constants. Some 
authors have coined this mixed Poisson process a Pascal process. It turns out, 
however, that the resulting mixed Poisson process is a Pdya process with 
parameters a, b, as has been defined in Example 1 of Section 8.5.2. A simple 
calculation reveals that the number N ( t )  of claims arrivals up to time t is 
NB(a, t / ( t  + b)) distributed, so that 

(8.5.34) 

and this coincides with (8.5.17). For the generating funct.ion & N ( ~ ) ( s )  we obtain 

(8.5.35) 
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Proofs of (8.5.34) and (8.5.35) are easy exercises. Furthermore, using (8.5.20) 
and (8.5.34), we arrive at the transition intensities 

i E I N ,  i + 1 cri+l(t) a + i Q(t) = -- -- - 
t ai(t) b +  t ’ 

as in (8.5.13). Thanks to (8.5.22) we can even calculate the transition 
probabilities 

4. The Sachel process is obtained by using a generalized inverse Gawsian 
distribution with density 

and q,E > 0 and 6 E R as mixing distribution. The function Ke(s) is the 
modified Bessel function of the third kind defined in (2.2.2). For 6 = -0.5 
we get the inverse Gaussian distribution, and the resulting mixed Poisson 
process is called an inverse Gauss-Poisson process. From the definition of the 
modified Bessel function of the third kind we can derive the relationship 

a 1” exp(-bx - -)xe-’ dz z 

= 2 ( ; ) e ’ 2  K e ( 2 6 )  (8.5.36) 

for a ,b  > 0. This integral representation gives us an expression for the 
Laplace-Stieltjes transform of A: 

By (8.5.5), the generating function of N ( t )  is then 
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Relation (8.5.36) leads to the explicit formula for the probabilities ai(t): 

Finally, (8.5.20) and the latter relation yield the following expression for the 
transition intensit'ies qi(t):  

5. As a final example we mention the DeIaporte process, which is a mixed 
Poisson process with mixing distribution a shifted gamma distribution with 
density 

r(a)-l$(S - b ) ~ - l  exp (-v(z - b) )  if x > b, 
= { 0 if x 5 b. 

The Laplace-Stieltjes transform of A is b ( s )  = e-6"(q/(q +a))" for s 2 0 and 
hence, by formula (8.5.5), the generating function of X ( t )  is 

From this, we immediately conclude that for all t 2 0 the random variable 
N ( t )  has the same distribution as N l ( t )  + &(t), where N l ( t )  and N2(t) 
are independent, Nl( t )  has the Poisson distribution Poi(&) and N z ( t )  has 
the negative binomial distribution NB(a, t / ( t  + b)). Moreover, each Delaporte 
process is the sum of a Poisson process and an independent P6lya process. 
We leave it to the reader to prove this. The probabilities ai(t) are then given 
in terms of the confluent hypergeometric function U(a ,b ; s ) ,  defined by its 
integral representation (2.2.5).  Thus 

In particular, for cuo(t) we obtain a simple formula: 
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Using now (8.5.20) we see that qo( t )  = -c$)((t)/ao(t) = b + a/ (q  + t). 

Bibliographical Notes. A survey on nonhomogeneous continuous-time 
Markov processes with countable infinite state space can be found, 
for example, in Bharucha-Reid (1960). For further details on mixed 
Poisson processes we refer to Grandell (1997). The relationship between 
nonhomogeneous birth processes and mixed Poisson processes has been 
discussed, for example, in Lundberg (1964) and McFadden (1965). Mixed 
Poisson distributions whose mixing distribution is an inverse Gaussian 
distribution have been considered in Sichel(l971); see also Sichel (1974,1975). 
The Delaporte process was introduced in Delaporte (1960) as one of the 
first applications of mixed Poisson processes in an actuarial context; see also 
Delaporte (1965) and Willmot and Sundt (1989). Other special examples of 
mixed Poisson processes can be found in Albrecht (1984), Philipson (1960) 
and Willmot (1986). 



CHAPTER 9 

Mart ingale Techniques I 

A variety of reasons can be given to study martingales. Not only do they 
constitute a large class of stochastic procases, but in recent years, insurance 
and financial mathematics have been prime fields of application of martingale 
techniques. In contrast to Markov models, the theory of martingales usually 
does not give tools for explicit computation of quantities of interest, like ruin 
probabilities. However, martingale techniques appear quite unexpectedly in 
proofs of various results. In particular, martingales turn out to be particularly 
useful when constructing bounds for ruin probabilities. Even more important 
is the backbone structure provided by martingale theory within the realm of 
financial ma.thematics. 

The notions and results considered in the present chapter are basic for the 
modern theory of stochastic processes. Unfortunately, in contrast to most of 
the material given in the preceding chapters, we can no longer avoid using 
more advanced concepts of probability theory. More specifically, the notion of 
conditional expectation with respect to a a-algebra will broadly be applied. 

9.1 DISCRETETIME MARTINGALES 

9.1.1 Fair Games 

We start  from a simple example that will help to understand the general 
martingale technique introduced later. A gambler wins or loses one currency 
unit in each game with equal probability and independently of the outcomes 
of other games. At most games can be played, but the gambler has the 
privilege of optional stopping before no. We can formalize his gains in terms 
of a random walk {Sn, n E IN}. Put SO = 0 and S, = % and YI Y2,. . . 
as independent and identically distributed random variables assuming values 
-1 and 1 with probability 1/2, respectively. Thus S, is the gambler's gain 
after the n-th game. We now define a stopping rule bounded by no. Let 
wn : Zn + (0, l}, ra = 1,2 , .  . . ,no ,  be a family of test functions with 
Wno f 1. A stopping mle is a random variable T taking values from { 1,. . . , no} 
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such that 7 = n if and only if pui(k;> ...? x) = 0 for i = 1 ,..., n - 1 and 
wn(Y1,. . . ,Yn) = 1; n = 1,.  . . ,no. So, if after the n-th game the test function 
wn shows 0, then the gambler continues to play, while if the outcome is 1, he 
quits. If the stopping rule 7 is used, then the gambler leaves the game with 
the gain S, = czs, SnI(7 = n). We show that 

E S T  = 0 .  (9.1.1) 

This equation is a special case of an optional sampling theorem in 
Section 9.1.6, stating that the game is fair. Note that the event 7 = n is 
independent of Y,+I,. . . , I;,, for n = 1,.  . . , no - 1. Hence 

E[Sn,;r = n ]  = 

= 

= E [ S ~ ; T = ~ ] ?  

E[Sn + Yn+l +. . . + Yn,;7 = n] 
E[Sn; T = TZ] + E [k’,+l + . . . + Ym; 7 = n] 

i.e. 
E [Sm ; T = n] = E [Sn; T = n] , (9.1.2) 

for 1 1. n 1. no and, consequently, 

n= 1 n= 1 

Furthermore, note that a much stronger result than (9.1.2) is true in that 

for all k,n  E K. This equation illustrates in another way the fairness of 
the game. By E (Sn+k 1 YI?. . . , Yn), we mean the conditional expectation of 
Sn+k with respect to the sub-0-algebra of F and which consists of the events 
{w : (YI(u), . . . ,Yn(w)) E B } ,  for all Bore1 sets B E B(R*). 

We continue with a slightly more general model from insurance. As in 
Chapter 5, consider a sequence {Zn) of aggregate claims over intervals of 
equal length, say (n - 1, n], n = 1,2,. . .. After the nth period the cumulative 
claim amount is IV,, = EL1 Zi, where we set W, = 0. It turns out that we can 
decompose the random variables CV, into W n  = Sn+Vn, n = 0,1 , .  . .. Here the 
sequence {S,,,n E IN} fulfils a fairness property of the type (9.1.3) and hence 
no optimal bounded stopping rule for this sequence is induced by a family 
of test functions. Let us clarify this. Suppose that. the risks &,ZZ,. . . form 
a sequence of independent and identically distributed nonnegative random 
variables with finite mean E 2. Put k;: = Zi - E 2 and Sn = c%, K ,  then 
Sn = Wn - nE 2 and V ,  = n E  2. Furthermore, (9.1.3) holds, i.e. E 2 is a fair 
premium applied to {Zn} for each interval (n - 1, n], n = 1,2,. . .. Note that 
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E 2, is the net premium for the risk 2, and so {nE 2, n E IN} can be called 
the (cumulative) net premium process. Under our independence assumption, 
the sequence {Vn} is deterministic. The more complex situation of dependent 
risks Zl,Z2,. . . will be studied in Section 9.1.8. 

Equivalent formulations of (9.1.3) are E (&+k I SI, . . . , Sn) = Sn and 

E ( ~ n + k  I F,”) = sn 5 (9.1.4) 

where F: = { {w : (S,-,(w), . . . , S,(w)) E B}, B E B(Rn+‘))). This version of 
the fairness property (9.1.3) can be seen as an introduction to the general 
theory of discrete-time martingales, based on filtrations. 

9.1.2 Filtrations and Stopping Times 

Suppose {X,, n E IN} is an arbitrary sequence of real-valued random 
variables on (O ,T ,P)  with EIX,I < 00 for each n E IN. Inspired by 
the a-algebras appearing in (9.1.4), the a-algebra T: containing the events 
{W : (X(J(W) , .  . . , Xn(w))  E B}, for all B E 2?(Rn+l) is called the histoq of 
{ X , }  up to time n. We also say that Fz is generated by the random variables 
XO, . . . , X n .  The following statements are tnie: for all n E IN, 

F Z C F ’ ,  
3: c F?+p 
X ,  is measurable with respect to 3:. 

The family of a-algebras { Fz, n E IN} is called the history of { Xn}. However, 
it is more common to say that {F:, n E IN} is the filtration generated by 
{X,}. As such, it is a specid case of the following definition. 

Definition 9.1.1 A family {3n,n E IK} of a-algebras such that Fn C T 
and T,, c Fn+~ for all n E N U called a fiitmtion. We sag that the sequence 
{Xn,n E IN} is  adapted to the filtration {Fn} if X, U measurable with respect 
to Fn for all n E N. 
Example Consider the random walk {S,} from Section 9.1.1 which describes 
the evolution of the gambler’s gain. In this case F: is generated by the events 
{SI = il, . . . , S, = i n }  with il, . . . ,in E Z or, equivalently, by the events 
{YI = il, . . . , Y, = in} with il,. . . , in  E {-1,1} because there is a one-to-one 
correspondence between the sequences {S,,n E IN} and {Y,, n = 1,2,. . .}; 
i.e. Tz = Tz for each n E IN, and where 3; = F,, = {8,Q}. 

The stopping rule T considered in Section 9.1.1 is an example of the 
important notion of a stoppang time. 

Definition 9.1.2 A random wariable r tuking valves in lK U (00) is said 
to be a stopping time with respect to a fiitrution { T n }  (or eqvivalentfy an 
{F,}-stqpping time) if the event {T = n} belongs to Fn, for d l  n E IEU’. 
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Example Let {X,} be a sequence of real-valued random variables. Consider 
the first entrance time rB of {X,} to a Bore1 set B E B(lR), i.e 

min{n : X,, E B} if X, E B for some n E N, 
r B = {  oo otherwise. 

The random variable T~ is a stopping time with respect to {Fz} because 

{TB = n} = {XO $ B, . . . , x,-1 4 B, x, E B} E FZ. 

In the special case where X, = Cy=, Y J  is a random walk generated by a 
sequence Yj , Ya, . . ., all (descending and ascending) ladder epochs v:, v; as 
defined in Section 6.3 are stopping times. The formal proof of this fact is left 
to the reader. 

We say that a stopping time r is bounded if there exists an no E N such 
that P ( r  5 no) = 1. The following result is called Komatsu's lemma. It. 
gives further motivation for the concept of martingales introduced in the next 
section. 

Theorem 9.1.1 Let (3,) be a filtration and let { X , }  be adapted to {Fn]. 
Assume that for each bounded {3,,}-~topping time r, 

E X , = E X o .  (9.1.5) 

(9.1.6) 

Proof Let k E IN and A E 3 k  be fixed, and consider the random variable r 
defined by 

if i3 E A ,  
.(W) = { % + 1  i f w # A .  

It is easy to see that r is an {Fn}-stopping time because 

0 i f n < k ,  
{ ~ s n } =  A i f n = k :  { R i f n Z k + l :  

and, consequently, {r  = n} E 3, for each n E IN. Now, applying (9.1.5) 
consecutively to r and to the bounded stopping time T' = k + 1, we have 

E [Xr;; A] + E [xk+l; A"] = EX, = EXk+i = E [xk+1; A] + E[Xk+l; A'] 

i.e. E [Xk+l; A] = E[Xk; A]. This gives (9.1.6) since k E IN and .4 E 3 k  are 
arbitrary. 0 
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9.1.3 Martingales, Sub- and Supermartingales 

Let {Fn} be a filtration and let {X,} be a sequence of random variables 
adapted to {Fn} such that E IX,I < 00 for each n E IN. Then {Xn} is called 
a martingale with respect to {Fn} or an {3,}-m~tingale, if with probability 1 

E (Xn+l I Fn) = Xn 1 (9.1.7) 

for all n E IN. Similarly, (X,,} is called a submartingale if 

and a supermartingale if 

E(X?%+l I 3n) L &I , (9.1.9) 

for all n E IN. Note that (9.1.7) implies 

E (Xn+k I 3 n )  = Xn 7 (9A.10) 

for all k,n E E. Indeed, repeatedly using (9.1.7) and basic properties of 
conditional expectation we have 

Analogously, (9.1.8) and (9.1.9) imply 

(9.1.1 1) 

(9.1.12) 

for all k,n  E IK. Taking expectations on both sides of (9.1.10)-(9.1.12) we 
get 

0 for a martingale, EX, = E XO for all n 6 IN, 
0 for a submartingale, E Xn+k 2 E Xn for all k, n E IN, 
0 for a supermartingale, EXn+k 5 EXn for all k,n E IK. 

Let {X,} be a martingale with increments Yn = X n  - X,-1 having finite 
second momenta EX: < 00. Then it is not difficult to show that 

E Yn = 0, COV(Yn, Yn+k) = 0 (9.1.13) 
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and consequently Var Xn = Cz0 Var K. 
Examples 1. As already mentioned in Section 9.1.1, every random walk 
{S,}, S, = Gy!l K ,  with E Y  = 0 is a martingale with respect to {F:} = 
{F:} because E (Sn+l I F’:) = E (Sn 1 F:) + E (Yn+l I Ft) = Sn. We get a 
submartingale whenever E Y > 0 and a supermartingale if E Y < 0. For every 
random walk {Sn} with E lYl < 00, the sequence {Xn}, Xn = Sn - nE Y, is 
an { FZ}-martingde. 
2. Consider a random walk {Sn}, S, = Cy=l yi, with E Y  = 0 and 
Vary = v2 < 00. Then the sequence {Xn}, X, = Sz - na2, is an {FT}- 
martingale. The proof of this fact is similar to that given in Example 1. 
3. Consider a random walk {Sn}, S, = ‘&k;:, such that the moment 
generating function riay(s) is finite for some s E R. Then {X,} given by 
X, = esssn(Tjby(s))-n is an {Fr}-martingale. Indeed, 

E (eaSme8Yn+1 I Fl) - esSn E (eSyn+l I Fz) - 
( h Y  (s)>n+l (my ( S ) P + l  

~ ( x n + 1  I ~ z )  = 

4. Consider a martingale {IV,,n E aU} with respect to a filtration {Fa} and 
a sequence { Z n ,  n = 1,2,. . .} of random variables such that 2, is measurable 
with respect to Fn-l for each n = 1,2 , .  . .. Such a sequence {Zn} is said to 
be {F,}-predictabZe. If Fn = FT, then the value of 2, is determined by the 
values of Wo, . . . , Wn-1. The sequence {Xn} with XO = 0 and 

n 

xn = Z k ( w k  - Cvk-l), 72 E IN, (9.1.14) 

is a martingale with respect to {F,} provided that the integrability condition 
E IZk(W’k - I v k - l ) ]  C 00 is fulfilled for all k: = 1,2 , .  . .. Indeed, 

k = l  

E(Xn+1  I Fn)  
n 

= x E ( Z k ( j v k  - W k - l )  I Fn) + E ( & + l ( w n + l  -wn) 1 Fn) 
k=l 

n 

= z&(It’k - W k - 1 )  + Zn+lE (Wn+l - lvn I 3,) 
k= 1 
n 

= z k ( i v k  - k V k - 1 )  = xn. 
k= 1 

Note that (9.1.14) is a discrete analogue to a stochastic integral of a 
predictable process with respect to a martingale. 
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5.  Consider a homogeneous Markov chain (2,) with finite state space 
E = (1 , .  . . , t'} and transition matrix P. If 6 # 0 is an eigenvalue of 
P and 9 = (41,. . . ,&) the corresponding right eigenvector, then {X,} 
with Xn = 6-"4z, is a martingale with respect to the filtration {Ff}. 
This can be seen as follows. From the Markov property (7.1.3) we have 
E (Xn+l I F,f) = E (X,+1 I Zn). Now, for all a = 1, .  . . , t', (7.1.12) implies 

e 
E (x,+~ z, = a') = 8-v - l  '&4j = r n 4 , ,  

j=l 

from which we have E (X,+l I 2,) = tPn4z,, = X,.  
6. Suppose YI, yZ, . . . are strictly positive, independent and identically 
distributed with E Y  = 1. Then the sequence {X,} given by 

if n = 0, 
xn={ ;1Y2...Yn i f m L 1  

is a martingale with respect to the filtration {Fz}. Indeed, we have 

E (X,+1 I Fz) = 
= 

E (Yiy2 . . . Yn+l I Fz) = YiY2 . . . YnE (Yn+l 1 Fz) 
Y1Y2.. . Y,EYn+l = X,. 

7. Let f and f be density functions on R such that f # f. For simplicity 
assume that the product f(z)f(x) > 0 for all 5 E R. Let YI,& ,... be a 
sequence of independent and identically distributed random variables, with 
the common density either f or f. The likelihood ratio sequence { X n , m  E IN} 
is then given by 

Xn={  gf(Yt) f('k) i f n  2 1, 

1 ifn=O. 

We show that {X,} is an {F~}-martingale if the Y, have density f .  Indeed, 

beca.use E (f(Yn+l)/f(Yn+l)) = J-", f(z) dz = 1. In the alternative situation 
that Y, has density f ,  t.he additional assumption J-", f2(x)/f(z) dx < 00 

turns {X,} into a submartingale with respect to {Fz}. Indeed, in this case 

where Z is a random variable with density f 
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9.1.4 

In this section we give an application of discrete-time martingales to a general 
life insurance model. Let JO : R + (1, .  . . t?} denote the (random) cause of 
decrement of an insured person and let TO : R + IN denote the total lifetime 
of the insured (measured in years). Let bJk  be the payment at the end of the 
k-th year after policy issue, if decrement by cause j occurs during that year; 
j = 1,. . . ,8 .  Assume that the payments b J k  are not random but deterministic 
and that these payments are financed by annual premiums p0, &, pZ, . . . which 
have to be paid by the insured at the beginning of each year. 

For i = 0, 1, . . ., let the components of the random vector (Jj,T,) be 
distributed as the (conditional) cause of decrement and the residud lifetime 
of an insured after policy issue at time i, respectively. Then qJt(m) = P(J,  = 
j ,T,  c m) denotes the probability that an insured will die of cause j within 
na years after time i. Note that qJ8(rn) = P(J0 = j ,  TO < i + m I TO 2 i) and 
p,(rn) = 1 - C4=1 qJa(m) is the probability that the insured survives at  least 
na years after time i. By q,* we denote the probability that the insured dies 
within one year after time i by cause j, i.e. qJa = q J s ( l ) .  Then 

Life-Insurance Model with Multiple Decrements 

We consider a constant annual discount factor v with 0 < ti < 1 and use the 
abbreviations J = Jj and T = Ti- Then, at time i? the present value of the 
insured benefit is b ~ , ~ + l v ~ + l  and the present value of the insurer's overall 
loss X is given by 

r 
(9.1.15) 

k=O 

The annual premiums h? PI, ,&, . . . are called net premiums if they satisfy the 
equation E X  = 0, which is equivalent to 

j=1 k=O b=O 

Let pn denote the expectation of X with respect to the (conditional) 
probability measure P,, where Pn(A) = P ( A  I T 2 n). Then we have 
pn = E [ X ;  T 2 n]/P(T 2 n) and, by (9.1.15), 

€ 0 0  00 
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In life insurance mathematics, the quantity pn is called the net premium 
reserve at time n after policy issue. It can be interpreted as the expectation 
of the difference between the present value of future benefit payments and the 
present value of future premiums at time n, provided that T > n. 

Note that (9.1,16) gives 

c 
pn + On = /In+lVpi+n + C bj,n+lvqj,i+n 

where pi+,, = ~ i + ~ ( l ) .  This recursion formula is useful for numerical 
computation of the net premium reserves pn. Moreover, it implies that the 
premium Pn can be decomposed into two components: 

(9.1.17) 
j=1 

c 
Pn = pn+lV - pn + C(bj,n+l- pn+l)vqj,i+n = P", + P; > (9.1.181 

j=1 

where Pn = p,,+lw - p n  is the savings premium which increments the net 
premium reserve, and 

I 
l~:, = C(bj ,n+l -  Pn+l)Vqj,i+n (9.1.19) 

j=1 

is the risk premium which insures the net mount  of risk for one year. Using 
this notation, the insurer's overall loss X given by (9.1.15) can be represented 
in the following form, provided that h, PI, .  . . are net premiums. 

Lemma 9.1.1 Assume that EX = 0. Then 

k=O 

where 
0 i f T 5 k - 1 ,  

yk = { -& -k ( b J , k + l  - Pk+l)'u i f T  = k, 
-5; i f f T z k + l .  

Proof The decomposition (9.1.18) of P, gives 

(9.1.20) 

T 
= bJ,T+lVT+' + clo - PT+lV T+l - C/3;?J5 

k=O 
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Thus, (9.1.20) follows since p~ = E X  = 0. 0 

Kote that the random variable Yk appearing in (9.1.20) is the insurer’s 10~s 
in year k+ 1, evaluated at time k. Moreover, it turns out that the partial sums 
x,, = EE=o Yk form a martingale. Consider the filtration {Fn} with Ffl the 
smallest o-algebra containing the events ( J  = j ,  T = k}, for all j = 1, . . . , e, 
k = O , l ,  ..., n. 

Lemma 9.1.2 If EX = 0, then {Xn} as a martingde with respect to {Fn}. 

Proof Since X, is F,,-measurable, we have 

E(Xn+l I Fn) = E(Xn 1 Fn) + E (Yn+l I 3n) = xn + E(K+l 1 Fn) * 

Furthermore, E (Y,+l I Fn) = I(T 2 n + l)E (Yn+l 1 T 2 n + 1) and 

E(Yn+1 I T 2 n+ 1) 
= E ((-K+i + (bJ.n+a - P ~ + ~ ) v ) I ( T  = n + 1) I T 2 n + 1) 

-Pi+,P(T 2 n+ 2 I T n+ 1) 
E ( (b~ ,n+2  - p n t 2 ) v V  = 71 + 1) 1 T L n + 1) - Pi+l  = 

= o  
where the last equation follows from (9.1.19). Thus, E(Xn+l 1 Fa) = Xn. (7 

The next result is called Hattendorfl’s theorem. It shows how to compute 
the variance of the insurer’s overall loss X. Interestingly, the yearly losses 
YO, Y1,. . . are uncorrelated, but generally not independent. 

Theorem 9.1.2 Let EX = 0 .  Then for arbitrary k, n = 0: 1, . . ., 

and 
oc 

var x = c vZkVar Yk . 

(9.1.21) 

(9.1.22) 
k=O 

Proof It suffices to show that (9.1.21) is true because, by (9.1.20), equation 
(9.1.21) yields (9.1.22). However, we showed in Lemma 9.1.2 that Y, = 
X n  - Xn-l, where {Xn} is a martingale. Thus, the second part of (9.1.21) 
follows from (9.1.13). The first part of (9.1.21) is directly obtained from the 
definition of Yk. 0 
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9.1.5 Convergence Results 

If the filtration IFn} is not further specified, we simply speak of martingales, 
submartingales, supermartingales and stopping times without reference to the 
filtration. A useful tool is the following submartingale convergence theowm. 

Theorem 9.1.3 Let {X,,,n 2 0) be a submartingale and assume that 

SUP E (Xn)+ < 00. 
n>O 

(9.1.23) 

Then there exists a random variable X, such that, with probability 1, 

lim X, = X, 
n-wo 

and E IX, I < 00. If, additionally, 

supEX; < 00 
nZ0 

(9.1.24) 

(9.1.23) 

then 
E X &  < 0 0 ,  lim EIXn-XmI=O. (gel. 26) 

We first show an auxiliary result which will be used in the proof of 
Theorem 9.1.3. For arbitrary fixed real numbers a,b E R with a < b, we 
consider the number of upcrossings of the interval (a, b) by the sample paths 
of {Xn}. Namely, we put 

71300 

70 = 0 ,  
1-1 = min{n : n 2 I ,& 5 a}, 
r2 = min{n : n > q,X,  2 b } ,  

and call U,(a, b) = max{rn : ~2~ I n} the number of upcrossings up to time 
n. With this notation we can derive the upcrossing inequality for discrete-time 
submartingales. 

Lemma 9.1.3 For each ra 2 1, 

(9.1.27) 
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Proof Note that the number of upcrossings of (a, b) by { X n }  is identical with 
the number of upcrossings of ( 0 , b  - a) by {XL}, where X; = (Xn - a)+. 
Furthermore, {XL} is again a submartingale which follows from Jensen's 
inequality for conditional expectations. We leave it to the reader to show 
this. Thus, without loss of generality we can assume that a = 0 and that 
{Xn} is nonnegative with XO = 0. Then, it remains to show that 

EUn(O,b) 5 b-'EXn. (9.1.28) 

With the notation 

1, if T,,, < e' 5 T,,,+~ and m odd, I 0, if T~ < i 5 T,,,+~ and ~n even, Vi = 

we have bU,(O, b) 5 CE2 q,(Xi - &-I) and 

(5% = 1) = u ({Trn < 2) \ {Tm+l < a.}) - 
r n E l N ,  odd 

Hence 

since {qi = 1) E Fi-1. Thus, 

n .  

where in the last but one inequality we used that {Xn} is a* submartingale, 
0 

Proof of Theorem 9.1.3 Note first that Xn + 00 is not possible because 
of (9.1.23). Let A C 51 be the set of those rc) E 51 such that the limit 
limn+oo Xn(w) does not exist. Then, we have 

that is E(Xi I Fj-1) - Xi-1 2 0. 

where Aa,b = {liminfj+w Xj < a < b < limsupj+, Xj} c {Um(a,b) = m}. 
Thus, (9.1.23) and (9.1.27) imply that P(Aa,b) = 0 and consequently P(A) = 
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0, i.e. (9.1.24) is proved. Integrability of X, follows from Fatou's lemma. In 
order to prove (9.1.26), we note that by Fatou's lemma 

EX: = E(liminfX:) 1. liminfEX: 5 supEX; 
n-mo n20 n+cn 

Thus, condition (9.1.25) implies EX&, < 00. Furthermore, since (9.1.24) 
implies limn+, P(IXn - X,[ > E )  = 0 for each E > 0: we have 

1/2 + 2 ~ u p ( E , ~ i ) ' / ~ ( E X & ) ' / ~  n +EX&) 
5 2E. 

This completes the proof of Theorem 9.1.3. 0 

9.1.6 Optional Sampling Theorems 

The next few results are known as optional sampling theorems and can be 
seen aa extensions of the fairness property (9.1.1). 

Theorem 9.1.4 Let (Xn) be a martingale and T Q bovnded stopping time. 
Then EX, = EXo. 

Proof Let T be bounded by no. Then, by (9.1.10) we have Xi = E(Xno I Fi) 
for i 5 no and consequently 

i=O i=O 

Unless we make additional assumptions, the boundedness of stopping time 
T is essential for the validity of E X, = E ,YO. With an appropriate finiteness 
condition, the equality also holds for T not necessarily bounded. 
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Theorem 9.1.5 Let {X,) be a martingale and T a finite stopping time 
fulfilling 

EIXTI < 00 (9.1.29) 

and 

Then E X, = E X o .  

fim E[Xk;r > k] = o .  
k-rm 

(9.1.30) 

Proof Note that Tk = min{r,k} is a bounded stopping time for each 
k E IEj. Thus, by Theorem 9.1.4, EX0 = EX,. Hence, using the dominated 
convergence theorem, (9.1.29) and (9.1.30) give 

EX0 = lim EX,, = lim E[XT;r I k]+ lim E[Xk;T > k] 
k-bm k - + w  k-+w 

0 = EX, .  

We mention still another set of somewhat stronger conditions under which 
EX, = EX0 is true. 

Theorem 9.1.6 Let {Xn} be a martingale and r a stopping time filfilling 

E T < W  (9.1.31) 

and, for Some constant c < W, 

for all 7i E IN. Then EX, = EXo. 

Proof In view of Theorem 9.1.5 it suffices to show that (9.1.29) and (9.1.30) are 
satisfied. Using the obvious identity XT = X O  + C E o ( X k + l  - X,) I (T > k), 
the triangle inequality and the monotone convergence theorem give 

00 

E I X T I  = E 1x0 + C(Xk+1 - -X~)I(T > k)l 
k=O 

W 

5 E I.uOl + C E flxk+l  - xk 1; > k] 

+ cEr ,  
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where (9.1.32) is used in the last inequality. Thus, by (9.1.31), (9.1.29) follows. 
Furthermore, using (9.1.32) repeatedly, we have 

IE [x,; T > k]) 5 
5 E [ I X O ( ; T > ~ ] + & [ T ; T > ~ ]  

and (9.1.30) follows from (9.1.31) and the dominated convergence theorem. 0 

Theorem 9.1.6 can be used to prove Wald’s identity (6.3.5) for stopping 
times. 

Corollary 9.1.1 Consider a random walk {Sn} with Sn = ZH, y Z ,  where 
Y1 , Y2, . . . are independent and identically distributed mndom variables with 
E 11’1 < 00. If 7 is a stopping tame with respect to the filtration {3:} and if 
Er < 00, then 

EST =ErEY. (9.1.33) 

Proof Applying Theorem 9.1.6 to the martingale {X,,}, X n  = Sn -nEY, we 
have to show that condition (9.1.32) is fulfilled. Note that 

€3 [ I x k l ;  T > k] 5 E [I&]; T > k] + &[k; T > k] 

E (IXn+1- X ~ I  I 3;) = E (~yn+l- EYI  I 7:) 
E(IYn+l t I 39 + IEYl I 2EP-I , I 

i.e. (9.1.32) holds. Consequently, Theorem 9.1.6 gives the equalities 0 = 
EX0 =EX,  =ESr -ETEY- I3 

From the proofs of Theorems 9.1.4-9.1.6 it is easily seen that analogous 
results are also d i d  for sub- and supermartingales. If {X,} is a submartingale 
(supermartingale), then 

EX, 2 (<)EXo, (9.1.34) 

provided the conditions of one of the Theorems 9.1.49.1.6 are fulfilled. 
Moreover, Theorem 9.1.4 can be generalized in the following way. 

Theorem 9.1.7 Let {X,} be a submartingale and r a stopping time such 
that P(T 5 no) = 1 for some E IN. Then, for each 2 > 0,  

E[X, ;X,>z ]rE[Xn, ;Xr>z] .  (9.1.35) 

Proof We have 

E[Xr;XT > z ]  = 2 E  
k=O 
no 

I CE 
k=O 
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where the last inequality follows from (9.1.11). 0 

Example The optional sampling theorem in the form of inequality (9.1.34) 
can be used to give another proof of a somewhat weaker version of the 
exponential bound derived in Theorem 4.5.2 for the tail function of compound 
distributions. Let Ul, Uz, . . . be nonnegative, independent and identically 
distributed with distribution Fu and let N be an IN-valued random variable 
with probability function {pk} which is independent of U1, UZ,  . . .. Consider 
the compound distribution F = C&pkFCk of cj”=, Uj and assume that, 
for some 0 < 8 < 1, 

P ( N  > m +  1 I N  > n) 5 8 ,  n E IN, (9.1.36) 

that is the probability function {pk} satisfies condition (4.5.13), i.e. Tn+l 5 
Orn for n 2 1, where rn = cznpk. Furthermore, assume that 

ffaF, (7) = e-l (9.1.37) 

has the solution 7 > 0. We will show that 

For each n E IN, define 

(9.1.39) 

where S, = Ul + . . . + Un. Then, Xn+l = Zn+lXn for n = 1,2, .  . ., where 

eYun+l if N > n, 
if N 5 n. zn={ 0 

Consider the filtration {Fn}, where 3n is the a-algebra generated by the 
random variables I ( N  = 0), ..., B(N = n),& ,..., Un+;. Note that by 
(9.1.36) we have P ( N  > la + 1 1 Fn) 5 8,  and hence by (9.1.37): 

E (Zn+l I Fn) = E (e?un+aP(N > n + 1) I Fn) = 

= E(erUn+2)P(N > TZ + 1 I F n )  = 8 - l P ( N  > n + 1 1 Fn) 5 1 .  

Thus E(Xn+1 I Fn) = E(Zn+1Xn I F n )  = E(Zn+1 I Fn)Xn 5 Xn, that 
is {Xn,n E IN} is an {Fn}-supermartingale. For each 2 > 0, consider the 
{Fn}-Stopping time T = min{i : S,+l > z}. We leave it to the reader to check 
that T fulfils the conditions of Theorem 9.1.5. We then apply (9.1.34) to the 
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supermartingale {X,} using the fact that 
00 a2 

X, = 1 I(T = k)Xk = C I(. = ~ ) I ( N  > k)e7'&+1 
k=O k=O 

Thus, (9.1.34) gives (1 - p,,)P1 = E (e7u11(N > 0)) = EX0 2 EX, 2 
e7"P(zg1  C'j > z), and hence the exponential bound (9.1.38). 

9.1.7 Doob's Inequality 

We now deal with Doob's inequality for sub- and supermartingales. 
Theorem 9.1.8 (a) If {X,} is  a nonnegative submartingale, then 

P max Xk 2 x , x > O , r a ~ E .  (9.1.40) 
(Osk<n 

(b) If {Xn} w a nonnegatiwe supmartingale, then 

, s>O,aEIN.  (9.1.41) P ( m a x X k 2 x ) < -  E XO 
O s k s n  X 

Proof Assume that {Xn} is a submartingale. Let A = {mW<k<,,Xk - -  2 x}. 
Then .4 = -40 U . . . U A, is the s u m  of the disjoint events 

A0 = { X o  2 X} E Fo, 
A k  = {xo<X,x1<X ,..., X&-1<X,Xk?Z}EFk, 1 s k < n .  

In view of the submartingale property, we have E [X,; Ak] 1 E [xk; A,] 2 
zP(Ak).  Summing over 6 = 0, .  . . , n, we see that x k  2 0 implies EX, 2 
E[X,;A], and so statement (a) follows. The proof of statement (b) is 

D 

Remark Doob's inequality (9.1.41) can be used to give a simpler proof 
for the exponential bound (9.1.38). Define the filtration {Fn} and the 
supermartingale {X,} as in the example of Section 9.1.6. Then (9.1.41) gives 

analogous and is left to the reader. 
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9.1.8 The Doob-Meyer Decomposition 

We are now in a position to generalize the decomposition property for the 
sequence {Wn} of cumulative claim amounts as discussed in Section 9.1.1. 
Note that {Wn} is an {.FF}-submartingale. We call a sequence {X,,n E IN} 
of random variables increasing from zero if X o  = 0 and P(n2=o{Xn 5 
Xn+l}) = 1. The reader should prove that each increasing sequence {Xn} 
adapted to a filtration {Fn} is a submartingale. Two sequences {Xn} and 
{Xk} are coined indistinguishable if P(ngo{Xn = Xk}) = 1. The following 
result is the well-known Doob-Meyer decomposition for submartingales. 

Theorem 9.1.9 Let {&} be a submartingale with respect to aptrotion { 3 n } .  
Then there exists an {3,}-martingale { Mn} and an {3n}-predictable sequence 
{ K} which is increasing from zero and such that Xn  = Xo + Mn + G; for all 
n E IN. This decomposition is  unique modulo indistinguishability. Moreover, 
a version of {V,} is given by 

n 

I/, = C E (Xk - Xk-1 1 Fk-1) 7 n 2 1 , (9.1.42) 
k= 1 

which itself is called the compensator. 

Proof Let Vn be the random variable given by (9.1.42) and define Mn = 
Xn - Xo - Vn for all TZ = 1,2,. . .; h& = Vo = 0. Then 

n+ 3 
= E (Xn+1 I 373) - XO - (Xk - Xk-1 I 3 k - 1 )  

k=l 
n 

= Xn - XO - C E (X, - Xk-1 3 k - 1 )  = Mn, 
&=I 

i.e. {Mn}  is an {Fn}-martingaJe. By definition, (9.1.42) implies that V, is 
measurable with respect to Fn-l, for each n = 1,2, .... This means that 
{Vn} is {F,}-predictable. Since {Xn} is an {Fn}-submartingale, we have 
E (&+I - Xn 1 F n )  = E (Xn+l I 3 n )  - X, 2 0 and consequently 

n+l n 

k=l k=l 

i.e. { V n }  is increasing from zero. Suppose that there exists another decomposi- 
tion (Id;}, {VA} of { X n }  with the same properties. Then, Mk+Vi = M n  +Vn 
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for each n E lK. This means that the {Fn}-martingale {&In - MA,n E PI} is 
{Fn}-predictable. Hence 

Mn+1 - MA+i = E (Mn+1 - ML+I I Fn) = Mn - MA , 
which shows that Mn - MA = 0 for all n E IN, since hfo - A46 = 0. 

0 

The Doob-Meyer decomposition for submartingales, given in Theo- 
rem 9.1.9, can be used when defining the concept of a fair premium for the 
sequence {Zn} of aggregate ciaims considered in Section 9.1.1. However, we 
no longer assume that the risks ZI , ZZ, . . . are independent. Consider the sub- 
martingale {Wn}, Wn = Cg, Z,, of cumulative claim amounts. Then by 
(9.1.42), the conditional increment E(Z, 1 F,$l) is a fair premium to be 
paid for the aggregate claim over the interval (n - l,n], in the sense that 
{Mn} given by n/r, = CL,(Z, - E(Z, I FEl)) is a martingale and where 
3: = {0,0}. The sequence {Vn} with 

Consequently, Vn - V’ = 0 for all n E M. 

n 

Vn = C E (zi I FE~) (9.1.43) 
kl 

is called the (cumulative) net premium process. 
.4nalogous to Theorem 9.1.9, a Doob-Meyer decomposition can also be 

proved for supermartingales. The reader can easily provide a proof if he uses 
the fact that { -Xn} is a submartingale when {Xn} is a supermartingale. 

Bibliographical Notes. The introduction to martingale theory presented 
in this section is standard. For further details we refer to textbooks like 
Karr (1993) or Williams (1991). The exposition of Section 9.1.4 follows 
Gerber (1995). A continuous-time version of Hattendorff’s theorem can be 
found, for example, in Wolthuis (1987). In risk theory, the usefulness of 
martingales was discovered in Gerber (1973); see also De Vylder (1977) and 
Gerber (1975). Scheike (1992) introduced the notion of the net premium 
process defined in (9.1.43). The idea of applying an optional sampling theorem 
for supermartingales to derive the exponential bound (9.1.38) for the tail 
function of compound distributions was also used in Gerber (1994). The proof 
of this result via Doob’s inequality as mentioned in Section 9.1.7 seems to be 
new. 

9.2 CHANGE OF THE PROBABILITY MEASURE 

In this section we study concepts related to the likelihood ratio martingale 
which has been introduced in Example 7 of Section 9.1.3. Apart from 
examples, we show how to use the subsequent results in risk theory. 
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0.2.1 The Likelihood Ratio Martingale 

We start from a sequence of random variables Yl , Yz, . . . defined on a 
measurable space (Q,F) ,  with filtration {Fz}. Put FT = {8,n}. For the 
underlying probability measure, we have to choose between P and F. Under 
P, the sequence {Y,} consists of independent and identically distributed 
random variables with common density f(z), while under F the sequence 
{Y,} consists of independent and identically distributed random variables 
with common density f(z). We assume that f(z) > 0 if and only if f(z) > 0. 
Define the Zikelihood ratdo function 

and let 
Xo= 1, x n = l ( Y ~ , - . . , Y n )  (9.2.1) 

for n 2 1. We have that 

0 the sequence {Xn}, considered on (fl,F,P), is an (3:)-martingale, 
0 for all A E F:, 

(9.2.2) 

E X n  = 1. 

The martingale property of {Xn} was already noticed in Section 9.1.3. To 
prove (9.2.2), it suffices to consider events of the form A = {k; E B1,. . . , Yn E 
Bn} which generate 3: and where B1 , . . . , B, E B(R). Then 

t ( t l~ i .* - ,~ /n) f (Y~)  ---f (yn)dyn- . .dyl  

Xn(w)P(b)  = E [Xn; A ] .  = L  
Hence (9.2.2) holds and it is immediate that EX, = P(n) = 1. 

The likelihood wtio martingale {Xn} defined in (9.2.1) is a special case of 
the following model. We start from a sequence of random variables Y1, Yz, . . . 
defined on a measurable space ( S t ,  F), whose filtration {Fz} is given. Again 
there are two candidates for the underlying probability measure P and P. 
However, this time we assume nothing about the independence of YI,  Yz, . . .. 
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In accordance with (9.2.2) we assume that, for each n E IN, there exists an 
Fr-measurable, nonnegative random variable X, such that 

P(A)  = / X,(w)P(dw) , A E Fz (9.2.3) 
J A  

Theorem 9.2.1 On the probubaltty space (n,F,P) the sequence (Xn} given 
by (9.2.3) is an {3~}-martdngtale with mean EXn = 1. 

Proof Since 3; C F'lay+l, it is clear that (9.2.3) implies E[X,+l;A] = 
E [Xn; A] for all A E 3:. Together with the assumed F:-measurability of X,, 
this gives E(X,+l I 3;) = X, because, by the definition of the conditional 
expectation E (X,+I I F:): we have E [E(Xn+I I 3;); A] = E [Xn+l; 4. 
Consequently, E [E (X,+, I Fz); A] = E [X,; A] for all A E 3:. F'urthermore, 

0 

Note that we can rewrite (9.2.3) in terms of the restrictions of the 
probability measures P and P to the a-algebra 3:, denoted by P n  and P n ,  
respectively. Then (9.2.3) reads 

(9.2.3) obviously implies that EX, = 1 for all n E IN. 

n 

Pn(A> = IA x n ( w ) p n ( b )  , A E F;. (9.2.4) 

This assumption is justified by the Radon-Nikodym theorem, which says that 
(9.2.4) holds if and only if P,(A) = 0 whenever P,(A) = 0, for all A E 3,'. 
Thus, X, is called the Rudon-Nikodym ders'vatave of P, with respect to P, 
and is denoted by X, (w)  = (&,)/(dP,)(w). In particular, if the densities 
fn(yl_t.. . , y,) and Jn(y1,. . . , pn) of the random vector (Y1, . . . , Yn) under P, 
and P, exist, respectively, then with B,-probability 1 

I . ,  = 

9.2.2 Kolmogorov's 

We now consider the 

(9.2.5) 

Extension Theorem 

following converse question. Suppose we have a 
probability space (St,F,P) with filtration {Fn} and where 3 = Fm, the 
smallest a-algebra consisting of all events from U~=,F,. Let {X,} be a 
sequence of nonnegative random variables on (52,3,P) forming an {Fn}- 
martingale with EX, = 1. By P, we denote the restriction of P to 3, 
and, for each n E IN, we define the set function P, : 3, + [0,1] by 

It is straightforward to check that Pa is a probability measure on (0,3,). 
The question is whether there exists a probability measure P on (0,3) such 
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that the restriction of fi to 3, is Pn, for all n E IN. An answer to this question 
is given by Kolmogorou '3 extension theorem. The discrete-time version of this 
theorem is stated for R = Rm, the set of all sequences go,gl, ... of real 
numbers. On this set R the o-algebra 3 is defined in the following way. Let 
G,, be the family of those subsets of Roo which are finite unions of sets of the 
form BO x B1 x . . ., where Bk E B(R) for all k 5 n and Bk = R for all n > k. 
Put F = B(Rw), where B(Rm) = 

Theorem 9.2.2 Suppose that, for each n 2 0: there exists a probability 
measure Pn on (R"", B(Rn+')) and suppse that the family {P,} fuZfils the 
consistency condition 

G,). 

P,+l(Bo x . . . x B, x R) = Pn(B0 x . . . x B,) , = 0,1, .  . . . (9.2.7) 

Then there exists a uniquely determined probabilaty measure, P say, on 
(RW, B(R")) such that for all n = 0, 1,. . . and Bo,. . . ,Bn E B(R), 

P(B0 x . . . x B, x R") = Pn(Bo x . . . x B,,). (9.2.8) 

The proofof Theorem 9.2.2 is omitted and can be found, for example, in Shiry- 
ayev (1984). The probability space (a, 3, P) = (R", B(R"), P) considered 
in Theorem 9.2.2 is called a canonical probability space. 

Corollary 9.2.1 Let {Xn,n E IN} be a nonnegat:zte martingale on (R", 
B(Rm),P) with respect to the filtrution (3,) given by 3, = o(0,). Assume 
that EX,, = 1. Then there exists a uniquely determined probability measure 
P on (Rm,B(Rm)) such that 

*(A)  = P,(A) , (9.2.9) 

for (31 n E IN, A E Fn, where P, is given by (9.2.6). 

Proof For each n = 0, 1,. . ., we put 

Pn(B0 x a .  - xB,) = Pn(B0 x . .  . x B n  xRm) 9 BO . . . ) B ,  E B(1R). (9.2.10) 

Then the family {P,} of probability measures defined in (9.2.10) fulfils (9.2.7) 
since Bo x . . . x B, x R" E F n  and consequently 

P,+l(Bo x . . . x B, x R) = Xn+i(iJ)P(b) 

E (xn+1 I F n ) ( w ) p ( b )  = /' 
In view of Theorem 9.2.2, t,his completes the proof. 

xn(a )P(dw)  
= L o x . . . x B n x R m  Box ... XR, xlR= 

= P,(B* x . . . x B,) . 
0 
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Remark In particular, Theorem 9.2.2 implies the existence of a "global" 
distribution P of a sequence YO, Y1, . . . of independent and identically 
distributed random variables. Indeed, let F be the common distribution of 
the Y,. Then, the family {Pn} of probability measures given by 

n 

P,(Bo x . .. x B,) = n F ( B i ) ,  Bo,. .. ,B, E D(R), (9.2.11) 
i=O 

satisfies the consistency condition (9.2.7). In an analogous fashion, 
Section 7.1.2 contains the notion of a Markov chain using a consistent family of 
finitedimensional distributions. Again, in Sections 8.1.1 and 8.4.1 continuous- 
time hlarkov processes have been introduced in the same way. 

9.2.3 

Let F be a distribution on R and let P be the probability measure on the 
measurable space (Rm,B(Rm)) as given by (9.2.8) and (9.2.11). Furthermore, 
let 1'0, Yl, . . . be a sequence of independent and identically distributed random 
variables on (ELo, D(R"), P) with the common distribution F. Assume that 
(Rm,B(Rm),P) is the canonical probability space of {Yn}, i.e. Yn(w) = y, 
for all n = 0,1,. , .; w = (yo,yl, .  . .). Assume that E Y  < 0 and consider 
the random walk {S,} with S, = C$,yi. As shown in Example 1 of 
Section 9.1.3, {S,} is an {FL}-supermartingale. Example 3 of Section 9.1.3 
shows that the sequence {Xn, n E IN} with 

Exponential Martingales for Random Walks 

n 
X , = e x p ( y C X ) ,  n=0,1, ..., (9.2.12) 

i=l 

is an {F,Y}-rnartingale on (ROC, B(Ro), P) provided the equation 

r j lF(8)  = 1 (9.2.13) 

admits a positive solution y. Corollary 9.2.1 now implies that there exists 
a well-defined probability measure P on (R",B(R")) given by (9.2.6) and 
(9.2.9). Furthermore, the sequence { X n ,  ra E IN} 

n 

x* = e x p ( - r C Y i ) ,  n = O,l,. .., 
i= 1 

(9.2.14) 

is an {.Fz}-martingaJe on (Rw,B(Ro),P). This follows from the fact that, 
under P, the random variables I;, Yz, . . . are independent and identically 
distributed with distribution function &z), where p(z) = F-,(z) and 

(9.2.15) 
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is the associated distribution to F, for all s E R such that & F ( s )  < 9p. 
By E we denote the expectation taken with respect to P. Note that E Y > 0 

because I?, k' = J-", zerz dF(s) = &(Fl)(-y-) and r iZ~(s)  is strictly increasing 
at y. The random walk {S,} therefore tends to --oo under P, but under P it 
tends to cc; see also Theorem 6.3.1. The stopping time 

Td((u) = inf{n : S,, > u} (9.2.16) 

is thus finite with $'-probability 1. 
Since {x,} given by (9.2.14) is a martingale on (Rw,B(Roo),P), the 

change of measure P I+ P defined in (9.2.6) and (9.2.9) can be iterated. 
For each n E lN, let 

P,(A) = Xn(w)P(du), A E Fz. (9.2.17) 

Then Corollary 9.2.1 implies that there exists a uniquely determined 
probability measure P on (Rw,B(ROC)) such that P(A)  = P,(A) for all 
n E Ih', A E Fz. However, in view of (9.2.14) and (9.2.17), we have 

- 
P = P .  (9.2.18) 

In what follows, we need a variant of the optional sampling theorems as 
stated in Section 9.1.6: if {X,} is a martingale and T a stopping time, then 
E (X, 1 FT) = X,,, for each n E IN, where 

FT = { A :  { T =  a } n A  E F,, for ail n E lN} (9.2.19) 

is the o-algebra consisting of all events prior to the stopping time T. To show 
this, it suffices to note that, for A E F,, we have 

E [Xn; A n {T  5 n}] = E [X,; A n {T 5 n)] . (9.2.20) 

We recommend the reader to prove this property as an exercise. 

Theorem 9.2.3 Let Td(21) be the stoppirag time given by (9.2.16). If A c 
{Td(l)) < oo} and A E F$(u), then 

(9.2.21) 

Proof Let n E IN be fixed and consider the event A fl (Td((21) 5 n} E F,'. 
Then, by (9.2.17) and (9.2.18) we have 

n 
~ ( ~ n { T d ( u )  ~ n } )  = E [ e x p ( - y C ~ , ) ; ~ n { T d ( u )  ~ n } ] .  

i=l 
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Since {exp ( -TC~=~ I")} is a martingale under P, (9.2.20) gives 

399 

Letting 71 tend to m, the proof is completed by an appeal to the monotone 
convergence theorem. 0 

9.2.4 Finite-Horizon Ruin Probabilities 

Consider the discrete-time risk process introduced in Section 5.1. Let u 2 0 be 
the initial risk reserve, and YI, Yz, . . . the net payouts encountered at  epochs 
1: 2, . . . with distribution F. Assume that (9.2.13) has the solution y > 0. Ruin 
occurs if the cumulative net payout exceeds the initial risk reserve at some 
epoch n = 1,2, .  . .. We want to compute the ruin function @(u) = P(Td(26) < 
m), where Td(U)  is the ruin time defined in (9.2.16). If we restrict ourselves 
to a finite time horizon, then we ask for the ruin until time n and we need 
to compute the finite-horizon min function $(u; n) = P(Td(1L) n). We can 
apply Theorem 9.2.3 to the events A = {T,-J(u) < 00) and -4 = {Td(U)  5 n} to 
obtain representations for the ruin functions $(u) and $(u; n), respectively. 

Theorem 9.2.4 For u 2 0 and n = 1,2, . . ., 

Proof In view of Theorem 9.2.3, we have to comment only on formula (9.2.22). 
Since under P the event {Td(U)  < 00) has probability 1, Theorem 9.2.3 gives 

'd (U) 

$(.> = e-yue [e-T(Ci=l yi-') ; {Td((tl) < 

0 
- e - ? u ~  [e-Y(Ci=i rd(') yi -u - 

Note that Theorem 9.2.4 can be generalized in the following way. Let s E R 
be such that pjzF(s) < cc and put X, = exp(-sCy=L=l yi + nlogkF(s)). 
Then {X,} is an {Fz}-martingale on (R", B(Rw), I"")), where P(') is the 
probability measure under which YI , Y2, . . . axe independent and identically 
distributed with the common distribution function Fs(z) given by (9.2.15). 
Moreover, for ear& A E F$(ul such that A C {Td(U) < 001, we have 

Td(u) 

P(A) = E (") [exp(-s k:, + T ~ ( u )  loglirF(s)) ; A] (9.2.24) 
i=l  



400 STOCHASTIC PR.OCESSES FOR INSURANCE AND FINANCE 

provided that P'"'(Td(U) < 00) = 1, where E(.5) denotes expectation with 
respect to P('). Proofs of these properties can be provided by arguments 
similar to those used in Section 9.2.3. Details are left to the reader. 

The computation of the finite-horizon ruin probabilities is a notoriously 
difficult problem, even in the compound Poisson model. Contrarily, exponen- 
tial bounds for the ruin probability P(Td(u) < n) are easier. Let x(s) = 
logmF(s) and take y > 0 the solution to x(y) = 0. If x(s0) < 00 for some 
SO > y, then ~ ( s )  is differentiable in (0, SO). We leave it to the reader to show 
that x(s) is convex in R, even strictly convex in (0, SO). Let 2 > 0, and s = sz 
the solution to x(')(s) = z-l. 

Theorem 9.2.5 Let 2 > 0. If x(')(y) < z-l, then zx(sz) - s, < 0 and 

p(Td(u) 5 m) 5 exp ((zx(sz) - Sz).) (9.2.25) 

for all u 2 0. If z-l 5 x(')(y), then s, > 0 and, for all u 2 0, 

P(Td(Uj < 00) - P(Td(t&) 5 2%) 5 e-'='. (9.2.26) 

Proof Suppose that x(')(y) < z-l. Since AF(s) is strictly convex in (O,SO), 
it follows that f h g ) ( s )  is strictly increasing in (0, SO) and hence x(s2) > 0 for 
s2 > y. Now, from (9.2.24) we get 

p(Td(u) 5 226) = E(50' [exP(Td(u)x(sz) - S ~ T ~ ( U ) ) ;  Td(u) 5 X u ]  

5 exp ( ( zx ( s z )  - 0). 
For 0 < 2-l I x(')(y), we have 0 < s5 5 r and consequently ~ ( s , )  5 0. 
Thus, (9.2.24) gives 

9.2.5 Simulation of Ruin Probabilities 

Consider the discretetime risk process generated by a random walk, as 
in Section 9.2.3. We collect a few remarks on how to use the change-of- 
measure theory presented above in the approximation to the ruin probability 
@(u;n) via simulation. The simplest approach is to simulate I independent 
replications of the random walk until ruin occurs. In each replication we stop 
the experiment at n, unless ruin occurs before n, in which case we stop at 
the ruin epoch. As an estimator 4 for @(u;n) we take the ratio 4 = L / l  of 
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the number L of replications in which ruin occurred until n, over the total 
number 1 of runs. Since L has the binomial distribution Bin(1, $(u; n)), 

E ( L / I )  = $(u; n) , VW (L/1) = l - ' ~ ( ~ ;  n ) ( l -  $(u; 71)). (9.2.27) 

In mathematical statistics, an estimator fulfilling the first equality in (9.2.27) 
is called unbiased. However, we cannot expect to be a good estimator since 
typically $(u; n) is very small. To reach a prescribed relative accuracy a with 
probability 1 - p :  we must run a certain minimum number 1 of replications 
such that the relative error 16 - @(u; n)l/q$(u; n) satisfies 

(9.2.28) 

Let E~ be determined from P (121 > E*) = p, where 2 has the standard normal 
distribution N(0 , l ) .  The central limit theorem gives 

> ep) = p .  (9.2.29) lim P( I4 - @(u; 41 
Jl-'$(u; n)(l - +(u; n)) I-bm 

From the Z-sigma law of normal distributions, the value of p is close to 0.05 
if E* = 2. Hence, for all sufficiently large 1, the probability 

1 p( 16 - @(w7I)l , ,J 1-191.(u; n)(l - $(u; n)) 
3(u;  n) @(u; n) 

is close to 0.05 and consequently a,,,, = 2Jl-l+(u; n)(l  - $(u; n))/$(u; n). 
Thus, for all sufficiently large u 2 0, 

where in the last relation the Cramkr-Lundberg estimate (6.5.29) has been 
used. This shows that the number of replications 1 has to be at least 
proportional to ey' and so the number of required replcations grows very 
fast with u. 

Let P(') be the probability measure on (Rw , B(Rm)) defined analogously 
to P, but by the martingale {exp (s Cr'l E;) , n E W} as considered in 
Example 3 of Section 9.1.3 and in Section 9.2.4. For the special case when 
s = 7: we have P(r) = P. In an attempt to lower the number of replications 
while keeping a given precision, we simulate the random walk under the 
probability measure P(') for some properly chosen s for which r j l . ~ ( s )  < 00. 

We then use (9.2.24) to estimate the ruin probability +(u; n). In the particular 
case s = 3, we proceed as follows. Relation (9.2.23) shows that it suffices to 
estimate the expectation E [exp(-y T d ( u )  1;); ~ d ( u )  5 n]. The crucial point 
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is that, under PT the stopping time T ~ ( u )  is finite with probability 1; see 
Section 9.2.3. For each Simulation run we compute a realization of the random 
variable 

(9.2.30) 

Thus for 1 independent replications we obtain the values 21, ZZ,  . . . , Y com- 
puted from (9.2.30). We now use 4 T ( z ~ ,  . . . , z ~ )  = ci=l zd/l as an estimate 
for 1/I(u;nj. It is clear that E& = t,b(u;n), showing that the estimator 4, 
is again unbiased. If we denote by D2 the variance with respect to P, then 
D2& c Vard because 

1 

I D2& = E (22) - ($(u; n))2 

< +(w a) - (*(w 
where the third equality follows from the definition of E. Thus, simulation 
under P leads to an estimator for +(u;n), with a reduced uoriance. 

Bibliographical Notes. The family of distribution functions F, defined in 
(9.2.15) generates a family of associated distributions. A detailed account of 
such families was given in Section 2.3; see also Asmussen (1987). Formulae like 
(9.2.23) appear in Asmussen (1982), Siegmund (1975) and von Bahr (1974). 
In the theory of Monte Carlo simulations, the proper choice of an underlying 
probability measure is called importonce sampling. The early ideas for 
solving such problems go back to Siegmund (1976), who considered the 
simulation of probabilities occurring in sequential tests. In Lehtonen and 
Nyrhinen (1992a) importance sampling is studied for random walks; see also 
Lehtonen and Nyrhinen (1992b). For further papers discussing importance 
sampling in connection with stochastic simulation, see, for example, Asmussen 
and Rubinsteiri (1995) and Glynn and Iglehart (1989). More details on Monte 
Carlo simulations can be found, for example, in Crane and Lemoine (1977), 
Fishman (1996) and Ross (1997a). 



CHAPTER 10 

Martingale Techniques I1 

10.1 CONTINUOUS-TIME MARTINGALES 

The theory of continuous-time martingales is deeper and often requires lengthy 
proofs that will not always be presented in full detail and generality. The aim 
of this section is to outline and discuss some selected aspects of continuous- 
time martingales and to study their applications in risk theory and other 
branches of insurance and financial mathematics. 

10.1.1 Stochastic Processes and Filtrations 

Under the notion of a stochastic process we understand a collection of random 
variables { X ( t ) ,  t E 7) on a common probability space (R,T,P). Here 7 
is an ordered space of parameters. Typically in this book 7 c R and in 
particular 7 = N, Z, El+ or 7 = R. However, in a few places we will feel the 
need for more general parameter spaces like sets of stopping times or families 
of subsets. Formally, a stochastic process is a mapping X : 7 x R +  R, but in 
general we do not require the measurability of this mapping. If 7 is a subset 
of R and X is measurable with respect to the product-n-algebra B ( 7 )  8 F, 
then we say the stochastic process { X ( t ) , t  E 7) is measuruble. 

In this section we always assume that 7 = R+. Then the set 7 of 
parameters plays the role of time and so we speak about continuow-time 
stochastic processes. For each fixed w E 0, the function t I+ X ( t ,  w) is called a 
sample path or trujectoFy; however, we usually drop the dependence on w E R. 
In general, sample paths can be quite irregular. We will mostly deal with 
processes having sample paths belonging to one of the following two spaces: 

0 the space of continuous functions g : nt, + R denoted by C(&), 
0 the space of right-continuous functions g : EL+ -+ R with left-hand limits 

Note that the process { X ( t ) }  is measurable if the sample paths of { X ( t ) }  are 
from I)(&); see, for example, Lemma 2.1.1 in Last and Brandt (1995). In 
this book we say that a stochastic process with sample paths from D(lR+) 

denoted by D(lR+). 
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is c(ldliigig, which is the abbreviated French name of this property. In the 
literature, one uuually makes the somewhat weaker assumption that only 
almost all sample paths are from D(lR+). However, in most cases relevant 
in insurance mathematics, one can consider a canonical probability space. 
In particular, one can restrict R to the set Ro C R such that Ro = 

Let t 2 0. By the fadstory of { X ( t ) }  up to tame t we mean the smallest 
o-algebra FF containing the events {w  : (X(t1,  w), . . . , X(t, ,  w)) E B }  for all 
Bore1 sets B E B(R"), for all n = 1 ,2 , .  . . and arbitrary sequences t l ,  t z ,  . . . , t, 
with 0 5 tl 5 t 2  5 . . . 5 t ,  5 t. Note that for 0 5 t 5 t' 
3: c 3, 
F? c F?, 
X ( t )  is measurable with respect to Fix. 

The family of o-algebras {3F} is called the history of the process { X ( t ) } .  
Similarly to the discretetime case (see Section 9.1.2) we also say that {FF} 
is the filtration generated by { X ( t ) } .  This is a special c a e  of the following 
definition. An arbitrary family {3t, t  E 7) of o-algebras such that 7 c R 
and Ft C 3 ,  Ft C 3 t 1  for all t, t' E 7 with t 5 t' is called a filtration. We say 
that the process { X ( t ) ,  t E 7) is adapted to the filtration {Ft, t E 7) if X ( t )  
is measurable with respect to Ft, for all t E 7. 

{w : X ( . , w )  E D(R+)}. 

10.1.2 Stopping Times 

A random variable T taking values in R+ U (00) is said to be a stopping time 
with respect to a filtration {Ft, t 2 0) (or equivalently an {Ft}-stopping time) 
if the event {T 5 t} belongs to Ft, for all t 2 0. We define .Tt+ = n,,oFt+t+c. 
Note that Ft+ is a a-algebra because the intersection of any family of 0- 

algebras is a a-algebra. If Ft+ = Ft for all t E R+, we say that the filtration 
{Tt, t 2 0) is right-continuous. In this case we have t.he following equivalent 
definition of a stopping time. 

Lemma 10.1.1 The random variable T is an {3t+}-stopping time if and 
only if {T < t} E 3 t  for. all t 2 0. In particular, zf {3t} is a right-continuous 
filtration, then T is an {&}-stopping time if and only if {T  < t }  E Ft. for a11 
t 2 0 .  

Proof If T is an {Ft+}-stopping time, then {T < t} E 3t since { T  < t} = 
Urz1 {T 5 t - n-'} E 3 t .  Conversely suppose that the random variable T has 
the property that {T < t} E 3 t  for all t 2 0. Then {T 5 t} = nr=,{T < 

0 

Throughout the present section we assume that the stochastic process 
{ X ( t ) , t  2 0) is chdlhg. Let B E B(R) and define the first entrance time 

t + n-'} E &+. The second part of the statement is now obvious. 



MARTINGALE TECIINIQL'ES I1 405 

rB of { X ( t ) }  to the set B by 

p = { inf{t : X ( t )  E B} if ~ ( t )  E B for some t 2 0, 

In contrast to the discretetime case considered in Section 9.1.2, the question 
whether rB is a stopping time is not obvious. A positive answer can only be 
given under additional assumptions, for example on B or on the filtration 
{ 3 t } .  We now discuss this problem in more detail for sets of the form 
B = (u,co) and B = [u, 00): where u E R. Let r(u) = inf{t 2 0 : X ( t )  > u }  
denote the first entrance time of { X ( t ) }  to the open interval (u,00), where 
we put i d 0  = 00 as usual. For the interval [u, 00) it is more convenient to 
consider the modified first entrance tame 

00 otherwise. 

r*(u) = inf { t  2 0 : X ( t  - 0) 2 u or X ( t )  2 u }  . (10.1.1) 

Theorem 10.1.1 Let u E R. If the process { X ( t ) }  is adapted to a filtration 
{Ft} ,  then r(u) is an {F'+}-stopping time and ?(ti) is on {&}-stopping 
time. In particular, i f  {Ft} is right-continuous then ~ ( u )  is an {&}-stopping 
time too. 

Proof Since the trajectories of { X ( t ) }  belong to D(R+), we have 

{d.) t }  = u {X(d > 4 E 3 t  (10.1.2) 
QEQl 

for each t 2 0, where $t is the set of all rational numbers in [ O , t ) .  Hence 
r(u) is an {Ft+}-stopping time by the result of Lemma 10.1.1. Furthermore, 
{r*(u) 5 t }  = nnEm { ~ ( u  - n-') < t }  u { X ( t )  2 u}. Thus, (10.1.2) implies 

0 

Remarks 1. The proof of Theorem 10.1.1 can easily be extended in order 
to show that the first entrance time T~ to an arbitrary open set B is an 
{Ft+}-stopping time. Moreover, it turns out that rB is a stopping time for 
each Bore1 set B E S(&) provided that some additional conditions are 
fulfilled. In connection with this we need the following concept. We say that the 
probability space (Q, F, P) is complete if for each subset A c 0 for which an 
event A' E 3 exists with A c A' and P(A') = 0, we have A E F. We now say 
that the filtration {FL1 t 2 0) is complete if the probability space is complete 
and { A  E F : P(A) = 0) c 30. If the filtration {Ft} is right-continuous and 
complete, {Ft} is said to fulfil the usual conditions. Furthermore, if {Ft} fulfils 
the usual conditions and if { X ( t ) }  is adapted to {Ft}, then T~ is an (3tt)-  
stopping time for each B E S(R+). A proof of this statement can be found, 
for example, in Dellacherie (1972), p. 51. We mention, however, that in some 
cases it can be difficult to show that a given filtration is right-continuous. 

that {T*(u) 5 t }  E 3t for each t 2 0. 
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c 
I 

I .(U) = t  

.I- 
Figure 10.1.1 Two paths coinciding till time t 

2. Theorem 10.1.1 indicates that the first entrance time T(U) is not always 
a stopping time, unless the considered filtration is right-continuous. An 
example where this problem appears can easily be found if the underlying 
probability space is large enough. Consider the process {X(t)} on the 
canonical probability space (n ,F,  P) with It = D(R+) and F = B(D(R+)) .  
Then, { ~ ( u )  5 t }  FF for each f > 0, i.e. ~ ( u )  is not a stopping time with 
respect to the history {Ff} of { X ( t ) } .  Indeed, the two sample paths given 
in Figure 10.1.1 show that from the knowledge of the process { X ( t ) }  up to 
time t it is not possible to recognize whether ~ ( u )  5 t or ~ ( u )  > t .  

3. .4n important characteristic of the claim surplus process { S ( t ) }  introduced 
in Section 5.1.4 is the time of ruin for a given initial risk reserve u 2 0, 
i.e. the first entrance time of {S( t ) }  to the open interval (u,oo). However, 
in this case the measurability problem mentioned above does not appear if 
we consider {S( t ) }  on its canonical probability space. This means that we 
restrict R = D(R+) to the set Ro C R of those functions from R which 
have only finitely many jumps in each bounded interval and which decrease 
linearly between the jumps; see also Figure 5.1.1. We leave it to the reader 
to show as an exercise that on this smaller probabiiity space the ruin time 
~ ( u )  = min { t  2 o : S(t )  > u} is an (3:)-stopping time. 

10.1.3 Martingales, Sub- and Supermartingales 

Suppose that the stochastic process { X ( t ) ,  t E 7) is adapted to {Ft, t E 7) 
and that E IX(t)I < oc, for all t E 7. We say that { X ( t ) }  is an {Ft}-marti'ngale 
if with probability 1 

E(S(t + h) I Ft) = X ( t ) ,  (10.1.3) 
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for all t ,  t + h E 7 with h 2 0. Similarly, { X ( t ) }  is called a sttbrnartingale if 

E ( X ( t  + h) 1 Ft) 2 X ( t ) ,  (10.1.4) 

and a supermartinqak if 

E ( X ( t  + h) I Fd I X ( t )  9 (10.1.5) 

for all t , t + h  E 7 with h 2 0. 
The definition (10.1.3) for continuous-time martingales entails a property 

for the discrete version. If { X ( t ) , t  2 0) is an (.Ft}-martingale and 0 5 
to < t~ < . . ., then { X ( t , ) . a  E IN} is an {.Fti,}-martingale in discrete time, 
i.e. (9.1.7) holds with X ,  = X ( t , )  and 3-n = Fin. 
Examples 1. Consider the cumulative arrival process { X ( t ) ,  t 2 0 )  
introduced in Section 5.2.2 for the compound Poisson model with charac- 
teristics (A,Fu), where X ( t )  = Cz;” V,. If E U  < 00, then the process 
{ X ’ ( t ) , t  1 0) with X ’ ( t )  = X ( t )  - tAEU is a martingale with respect to 
the filtration {FF}. This is a special case of the next example. 
2. Let { X ( t ) ,  t 2 0) be a process with stationary and independent increments. 
IfEIX(1)I < 00, thentheprocess{X‘(t),t2O}withX’(t) =X(t ) - tEX(1)  
is a martingale with respect to the filtration {FF}. We leave the proof 
of this fact to the reader. We only remark that it sufEces to show that 
E ( X ’ ( t  + h) I X’( t l ) ,  ... ,X ’ ( tn ) ,X ’ ( t ) )  = X ’ ( t )  whenever 0 5 t i  < t 2  < 

3. Consider the claim surplus process {S(t), t 2 0 )  with S(t)  = Cz;’ Uj - Pt 
for the compound Poisson model, with arrival rate A, premium rate 3 and 
claim size distribution Fu. Note that, by formula (5.2.7) in Corollary 5.2.1: 
we have 

Eess(t) = etg(s), 8 E R ,  (10.1.6) 

where g(s)  = A(hu(s) - 1) - j3s. Now we use this result to show that the 
process {X ( t ) ,  t 2 0 )  with S ( t )  = ess(t)-9(s)t is a martingale with respect to 
the filtration {F:), where s E R is fixed. For t ,  h 2 0 we have 

. . < t n  C t < t + h- 

E ( x ( t  + h) I ~ f ‘ )  = E (esS(t+h)-g(s)(‘+‘) I F:) 
- - 
- - eSS(t)-9(s)tE (esS(h)-9(s)h) , 

esS(t)-9(s)tE (es(s(t~h)-s(t))-g(s)h I F t )  

where the last equation follows from the fact that {S( t ) }  has independent and 
stationary increments, and which is known from Corollary 5.2.1. F’rom (10.1.6) 
we have E (esS(h)-g(s)h) = 1 and consequently E ( X ( t  + h) I F;) = X ( t ) .  
4. The current example indicates the close relationship between martingales 
and the concept of the infinitesimal generator in the theory of Markov 
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processes; see also Section 11.1.3. Consider a continuous-time homogeneous 
Markov process {Z(t) ,  t 2 0) with finite state space E = {1,2, ..., l }  and 
intensity matrix Q. Then, for each vector 6 = ( b l ,  . . . , b f )  E R‘, the process 
{ X ( t ) , t  2 0) with 

is an {Ft)-martingale, where the integral in (10.1.7) is defined pathwise. In 
order to demonstrate this fact, write for t ,  h 2 0 

E ( X ( t  + h) 1 3:) = E ( X ( t  + h) I Z(t)) 
t+h 

= X ( t )  + E (bz(t+h) - b q t )  - 4 (QbT>qW, dw I z(t)) I 

Because {Z( t ) )  is homogeneous we have 

E ( b q h )  I Z(0) = i )  - bi = E ((QbT)zcW) I Z(0) = i) dv (10.1.8) I” 
since E ($(QbT)qw, dw I Z(0) = i) = J;E((QbT)z(,) I Z(0) = i)dv. 
However, recalling from Theorem 8.1.4 that the matrix transition function 
( P ( v ) , v  2 0) of (Z(t) , t  2 0 )  is given by P(v )  = exp(Qv), we have 

E (bZ(h) I Z(0) = i) = e,exp(Qh)bT 

E ((QbT)z(.) I z(0) = i) = eiexp(Qv)QbT, 

(10.1.9) 

(10.1.10) 
and 

where ei is the l-dimensional (row) vector with all components equal to 0 
but the i-th equal to 1. Using (10.1.9) and (10.1.10) we see that (10.1.8) is 
equivalent to 

ei exp(Qh)bT - bi = ei exp(Qv)QbT dv . / d h  (10.1.1 1) 

The latter can be verified by differentiation and by using Lemma 8.1.2. So 
far, we have shown that the process { X ( t ) , t  2 0) given by (10.1.7) is an 



MARTINGALE TECHNIQUES I1 409 

{Ff)-martingale. Note that (10.1.7) is a special case of Dynkirr's fornulo for 
Markov processes with general state space; see also (11.1.17). This martingale 
technique yields a versatile approach to the concept of infinitesimal generators 
for Markov processes. For example, the following converse statement is true. 
Suppose for t,he moment that Q' is an arbitrary t x-t matrix, i.e. not necessarily 
the intensity mat.rix of the hlarkov process {Z( t ) } .  bloreover, assume that the 
process { X ' ( t ) }  with 

S'(t') = bz(l )  - bj - (Q'bT)z(", dv, t 2 0 (10.1.12) I" 
is an {Ft}-martingale for each vector b E Rf and for each initial state 
Z(0) = i of {Z( t ) } ,  Then, analogously to (lO.l . l l) ,  we have 

eiP(h)bT - bi = l - - e ,  exp(Qv)Q'bT dv. (1 0.1.13) 

On the other hand, using Theorem 8.1.2 we see that 

eiP(h)bT - eibT T = e,Qb h 
lim 
h-+O 

for all a' = 1,. . . , t and b E R'. This means that &' must be equal to the 
intensity matrix Q of {Z(t)} .  In Section 11.1.3 we will return to questions of 
this type in a more general setting. 
5. This example shows how stochastic integrals with respect to martingdes 
can be used to create new martingales. In an attempt to avoid technical 
difficulties, we make rather restrictive assumptions on the (deterministic) 
integrated function f and on the martingale { X ( t ) }  with respect to which 
we integrate. Let the process { X ( t ) , t  2 0) be cadkg and such that, with 
probability 1, the trajectories of { X ( t ) }  have locally bounded variation. Then 
for each continuous function f : R+ + R and t 2 0 the stochastic integral 
X, ( t )  = s," f (v)  dX(v) is defined pathwise as a Riemann-Stieltjes integral, 
i.e. for each i~ E 0 and t ,  h 2 0, 

X j ( ~ , t +  h) - X f ( ~ , t )  = 

Note that the integrated process { X f ( t ) ,  t 2 0) is an {Fix)-martingale 
whenever { X ( t ) }  is an {FF}-martingale. Indeed, the random variable X , ( t )  
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L FF-measurable, since it is the limit of Fp-measurable random variables. 
Mhermore,  for t ,  h 5 0 we have 

E (Xi@ + h) I .Fly) = 

If { X ( t ) }  is a martingale, then 

f(v) dX(w) + E (fib f(v) dX(v) 1 3:) . 
0 t 

The reader should prove t.hat for fixed t: h 2 0 the sequence { Zn} with 

is unifomzly integrabze, that is 

(10.1.14) 

We can conclude that in this case E($+hf(2r)dX(w) I FF) = 0 and 
consequently E ( X f ( t  + h) I Fp) = X f ( t ) .  For f which are random and 
for { X ( t ) }  with trajectories of unbounded variation, the theory of stochastic 
integrals is much more complicated; see Section 13.1.1. 
6. For two {Ft})-martingales { X ( t ) }  and { Y ( t ) } ,  the process { X ( t )  + Y ( t ) }  is 
also an {Ft}-martingale. The proof of this fact is left to the reader. 
7. If the random variable Z is measurable with respect to TO for some filtration 
{&,t _> 0}, and if E ( Z J  < 00, then the process (Y( t>}  defined by Y ( t )  2 
is an {Ft}-martingde. Moreover if { X ( t ) }  is another {Ft}-martingale, then 
the process { Z X ( t ) ,  t 1 0) is an {&}-martingale, provided E(ZX(0)) = 0. 
We leave the proofs of these simple properties to tho reader. 

10.1.4 

In the risk model introduced in Section 5.1.4 we assumed that the premium 
income is a linear function of time. This reflects the situation that pricing of 
insurance products is sometimes evaluated on a basis where no interest is taken 
into account. However, if the return of the company's investments is included 
into the balance, then a deterministic (linear) income process is no longer an 
appropriate model, as the return is affected over time by random changes of 
market values of assets and inflation. For that reason, one also considers risk 
models with a stochastic income process { X ( t ) ) .  In Section 13.2 we discuss this 
question in detail assuming that { X ( t ) }  is a diffusion process. An important 

Brownian Motion and Related Processes 
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special case is given when the (scheduled) deterministic income ,Ot up to time 
t is perturbed by a Brownian motion {W( t ) , t  2 0}, i.e. X ( t )  = Pt + W ( t ) ,  
where the stochastic process { lV( t ) ,  t 2 0) is called a 02-Brownian motion 
if . W(0)  = 0, 
0 {W( t ) }  has stationary and independent increments, 
0 W ( t )  is N(0, cr2t)-distributed for each t 2 0, 
0 { W ( t ) }  has all sample paths from C(R+). 
It is a nontrivial question to show that the notion of Brownian motion is not 
empty, that is to show that there exists a stochastic process satisfying these 
four conditions. The positive answer to this question was given by Norbert 
Wiener in 1923. Note that the condition W(0)  = 0 is merely a normalization 
rather than a basic requirement. It was shown later that the paths of the 
Brownian motion have curious properties. For example, with probability 1, 
all the paths are nowhere differentiable, or they pass through 0 infinitely 
often in every neighbourhood of zero. Besides this, all the sample paths have 
unbounded variation on the interval [O, t ]  for each t > 0. If Q = 1, then {W( t ) }  
is called a standard Brownian motion. We say that { X ( t ) }  is a 02-Brownian 
motion with drafi if X ( t )  = W ( t )  + pt for some p E R, where {W(t)} is 
a 02-Brownian motion. For short, we say that ( X ( t ) }  is a (p,a2)-Brownian 
motion. 

The following result shows that the 02-Brownian motion is a martingale 
and gives two further martingales related to Brownian motion. 

Theorem 10.1.2 Let { W ( t ) }  be a a2-Brownian motion. The following 
processes are martingales with respect to the filtration { 3tw} : 

( 4  {Wt)), 
(b) {W2( t )  - 02t} ,  
(c) {exp(sW(t) - 0 2 s 2 t / 2 ) }  for  each f i e d  8 E R. 
Proof Statement (a) directly follows from the property of processes 
with stationary and independent increments mentioned in Example ’2 of 
Section 10.1.3. To show (b), note that for t ,  h 2 0 we hab-e 

E (W2(t + h) - a2(t  + h) I FT) = E ( (W(t  + h) - W’(t))’ 
+ 2 ( W ( t  + h) - W ( t ) ) W ( t )  + W2( t )  I FY) - 02(t + h) 

= W ( t )  -cr2t. 

Similarly, for t ,  h 2 0, 

sW‘(t+h)-azs2(t+h)/2 W - E; e~(W(t+h)-Wft ) ) )  esW(t)--o*ssl(t+h)/2. E (e I6 1 -  ( 

Since E (es(W(t+h)-W(t))) = eo2szh/2 we get statement (c). 0 
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Let { X ( t ) ,  t 2 0) be a stochastic process which is cadlhg and adapted to a 
filtration {&}. We say that { X ( t ) ,  t 2 0 )  is a homogeneous Morkou process 
with respect to {Ft}  if, with probability 1, 

P ( X ( t  + h) E B I Ft) = P ( X ( t  + h) E B I X ( t ) )  

for all t ,h  2 0 and B E f?(R). The case that { X ( t ) }  is Markov with respect 
to its history (3:) is discussed in more detail in Chapter 11. Furthermore, 
we say that { X ( t ) ,  t 2 0) is a strong Murkov process if, with probability 1, 

P ( X ( T  + h) E B I FT) = P ( X ( 7  + h) E B 1 X ( T ) )  

on {T < co} for each {Ft}-stopping time 7. It can be proved that most 
processes with independent stationary increments (including Brownian motion 
and the claim surplus process in the Poisson compound model) are strong 
Markov processes with respect to their history; see Breiman (1992). 

For many results on martingales given in the literature, a right-continu- 
ous filtration is required. For example, such an assumption is needed in order 
to prove that the first entrance time to an open set is a stopping time; see 
Section 10.1.2. It turns out that. if { X ( t ) ,  t 2 0) is a strong Markov process 
with respect to a complete filtration {Ft} ,  then this complete filtration is right- 
continuous; see Proposition 7.7 of Karatzas and Shreve (1991). However, for 
our purposes the notion of a complete filtration is not very useful; see, for 
example, the remark at the end of Section 10.2.6. 

Another result, due to Bremaud (1981), Theorem A2T26, states that if 
{ X ( t ) ,  t 2 0 )  is a stochastic process defined on a probability space (0,3,P) 
such that, for all t 2 0 and all LJ E s1, there exists a strictly positive real 
number ~ ( t , w )  for which 

X ( t  + h,w) = X ( t , w )  if h E [ O , ~ ( t , w ) ) ,  (10.1.15) 

then the history (Fp, t 2 0) is right-continuous. A stochastic process with 
property (10.1.15) is called a pure jump process. 

10.1.5 Uniform Integrability 

The introduction on continuous-time martingales closes with a discussion of 
some further related results. We extend the definition of uniform integrability 
that has been mentioned in (10.1.14) for sequences of random variables. The 
concept can be generalized to any collection of random variables, that is to a 
stochastic process { X ( t ) ,  t E 7) with a general space 7 of parameters. We 
say that { X ( t ) ,  t E 7) is uniformly integrable if EIX(t ) l  < 00 for all t E 7 
and if 

lim (supE(IX(t)l; IX(t)[ > zj) = 0 .  (10.1.16) 
+-ma t€T 

The following is a characterization of uniform integrability. 
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Theorem 10.1.3 The stochastic process {X(t),t E 7) is  uniformly integrable 
af and only if the following two conditions hold: 

(b) for every E > 0 there ezists a 6 > 0 such that for every t E 7 and A E F, 
P(A) < S implies E [IX(t)l; A] < E.  

Proof To show sficiency of conditions (a) and (b) it suffices to prove that 
(10.1.16) holds. Note that xP(IX(t)l > 5) 5 EIX(t)l for all t E 7 and 
2 > 0. Hence suptETP((X(t)( > z) 5 2-l suptEr E IX(t)l < b for each S > 0 
provided that 2 > 0 is large enough. Thus, for each E > 0, 

(a> SUPtETE IX(t)l < 00, 

This gives (10.1.16), since E > 0 can be chosen arbitrarily small. Assume now 
that {X(t), t E 7) is uniformly integrable. Then for each 2 large enough, 

SUPE IX(t)I 5 SUP {E [ Int>I;  IX(t>I > 4 + < 00 ? 
t€7- t€T 

i.e. condition (a) is fulfilled. Now, for e > 0 given, choose 2 > 0 such that 

supE[IX(t)l; IX(t)l > 4 < . 
t E 7  

Then, for each S > 0 such that 6 < z-'e/2 and for each A E F with P(A) < 6, 
we have E (IX(t)l; A] 5 E [IX(t)l; IX(t)l > z] + zP(A) 5 E.  This shows that 

The relevance of uniform integrability in the realm of convergence of random 

condition (b) is fulfilled. 0 

variables becomes clear in the next theorem. 

Theorem 10.1.4 Let to, t l ,  . . . be an arbitmry sequence of parameters tn E 7 
and consider the sequence X, Xo, XI, .  . . of random variables with Xn = X(t,) 
and E IXnl < 00 for each n E IN. If limn-too Xn = X with probability 1, then 
the following statements are equivalent: 
(a) { X n ,  n E lN} is unifonnlg integrable, 
(b) E 1x1 < 
Proof Suppose that limn+w X, = X with probability 1 and note that then 
limn.+m P(IXn - XI > E )  = 0 for each E > 0. Furthermore, for each E > 0 we 
have 

and limn+w E IX;, - XI = 0. 
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Let {Xn, n E IN} be uniformly integrable. Then the second term of the last 
expression tends to zero by Theorem 10.1.3 choosing A = { IX,-Xl > E}. The 
third term also tends to zero since supnEINEIXnl < 00 by Theorem 10.1.3 
and therefore E X  < 00 by Fatou's lemma. Thus, (b) holds because E > 0 can 
be chosen arbitrarily small. Assume now that (b) holds. Then 

Fix E > 0 and choose no E IN such that E [IX, - XI; 41 5 E [ X n  - XI 5 ~ / 2  
for all n 2 no and A E F. Now, choose 6 > 0 such that P(A) < 6 implies 

Thus, for each E > 0 there exists 6 > 0 such that 

whenever P(A) < 6. By Theorem 10.1.3, this and (10.1.17) imply that 
0 {Xn, n E IN} is uniformly integrable. 

Corollary 10.1.1 Let X ,  XO, XI:. . . be random uariables such that E IXn( < 
0;) for each n E IN and limn+m X,, = X with probability 1 .  if { X n ,  n E IN} 
is uniformly antegrable, then E 1x1 < 00 and limn+= EX, = E X .  

Proof Since IEXn - EX1 5 EIX, - XI, the statement is an immediate 
consequence of Theorem 10.1.4. 0 
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time martingales we refer to the books mentioned above and to Dellacherie 
and Meyer (1982), Elliot (1982) and Liptser and Shiryaev (1977). The 
first quantitative results for Brownian motion are due to Bachelier (1900), 
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this class of stochastic processes began from Wiener (1923,1924). Basic 
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Breiman (1992), Ito and McKean (1974) and Karatzas and Shreve (1991). 
The characterization of uniform integrability stated in Section 10.1.5 follows 
the approach of Karr (1993) and Williams (1991). 
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10.2 SOME FUNDAMENTAL RESULTS 

In this section, we state and prove some fundamental results for continuous- 
time martingales that will prove to be highly useful when studying more 
specific martingales that appear in insurance and financial mathematics. The 
main idea in the proofs of all these results is to draw on the discrete-time 
theory by considering a continuous-time martingale at a sequence of discrete 
time instants. 

Let {Ft} be an arbitrary but fixed filtration. Unless otherwise stated, 
stochastic processes are always assumed to be adapted t.0 this filtration and 
stopping times refer to { 3 t ) .  If not needed, we will not refer to the filtration 
explicitly. Contrary to common practice in continuous-time martingales, 
sample paths of stochastic processes considered in this section are d l & g ,  
not just right-continuous functions. 

10.2.1 Doob's Inequality 

The following result is a counterpart. of Doob's inequality (9.1.40) given in 
Section 9.1.7 for discrete-time submartingales. Armed with this inequalky, 
one can easily derive exponential (Lundberg-type) upper bounds for infinite- 
horizon ruin probabilities in the compound Poisson model. 

Theorem 10.2.1 Let {X(t)} be a submartingale. Then for each z > 0 and 

(10.2.1) 

Proof Without loss of generality, we assume that for each t 2 0 the random 
variable X ( t )  is nonnegative. Indeed, for z 2 0 we have 

sup X(w) 2 5 = P sup ( X ( v ) ) +  2 x) (0sm ) L s w  
and the stochastic process { X ' ( t ) , t  2 0 )  with X'( t )  = ( X ( t ) ) +  is again a 
submartingale. This follows easily from Jensen's inequality for conditional 
expectations. Let B be a finite subset of [0, t] such that 0 6 B and t 6 B. 
Then, (9.1.40) gives the inequality 

zP(maxX(v) 5) 5 E X ( t ) .  (10.2.2) 
vEB 

Considering an increasing sequence B1, Bz , . . . of finite sets with union 
([O, t) n &) u {t), we can replace the set B in (10.2.2) by this union. The 

Examples 1. For s E R fixed, consider the martingale {eaS(t)-tg(s), t 2 0 )  
of Example 3 in Section 10.1.3. Here { S ( t ) }  is the claim surplus process for 

right-continuity of {X(t)} then implies (10.2.1). 
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the compound Poisson model with arrival rate A, premium rate P and claim 
size distribution Fu, while g(s )  = t-’ logEess(t). Choose s = -y > 0 such that 
g(y )  = 0, i.e. -y is the adjustment coefficient for this model. In Section 10.1.3 
it was shown that {Ee7S(t)) is an {3f}-martingale. Since EeYs@) = 1 and 

S(v)  2 z} = - e7s(u) > - eTt}, the bound 

for all z 2 0 follows from Doob’s inequality (10.2.1). Let t + 00 to get 
P ( s ~ p , ~ ~ S ( . v )  2 z) 5 e-T2. Note that a stronger version of this Lundberg 
inequality has already been derived in Corollary 5.4.1 but using a more 
complex argument. 
2. Let {W(t)}  be a standard Brownian motion and consider the (-p:l)- 
Brownian motion { X ( t ) }  with negative drift, where X ( t )  = W ( t )  - pt; p > 0. 
In Theorem 10.1.2 we showed that, for s E R fixed, {es(X(t)~~1)-sat~2,  t 2 0) 
is an {.Fy}-martingale. Putting s = 2p we see that {e2fix(t) is a martingale 

Doob’s inequality (10.2.1) yields a bound 
- and since  up^^^^^ X(w) 2 z is equivalent to  SUP^<^,<^ e2fix z u, > e2”r, again - -  

(10.2.3) 

for all 2 2 0. Later, in Section 10.3.1, we will prove that even equality holds 
in (10.2.3), so that P(supt,o - X ( t )  >, z) = e-2@2 for all z >, 0. 

10.2.2 Convergence Results 

The next theorem is usualIy called the submartingale convergence theorem and 
is a consequence of Theorem 9.1.3. 

Theorem 10.2.2 Let ( X ( t ) ,  t 2 0) be a submartingale and assume that 

SUPE ( X ( t ) ) +  C 03. 
t>o 

(10.2.4) 

Then there ezists a random variable X(0o) such that, with probability 1, 

lim X ( t )  = X ( o 0 )  
t-100 

and E (X(00)l < 00. I,, ~dditionally,  

supEX2(t)  < 03, 
t2o 

(10.2.5) 

(10.2.6) 

then 
EX2(oo)<oo, limEIX(t)-X(co)l=O. (10.2.7) 

t-tm 
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Proof Let { t k }  be a strictly increasing sequence of positive numbers such 
that t k  + 00. Because {Xk} with Xk = X ( t k )  is a submartingale in 
discrete time, Theorem 9.1.3 guarantees the existence of an integrable random 
variable x(00) such that limk,, X(&) + X(m). Let now { t i }  be any other 
increasing sequence such that ti + 00. By the same Theorem 9.1.3 there 
exists a random variable Y such that limk,,X(ti) -+ Y. Let {vk} be the 
increasing sequence such that { t k }  U { t i }  = { v t } .  Because limk+3C) X(UI;) 
exists we must have Y = X(m). But this proves X ( t )  + x(00). The 
rest. of the theorem follows from Theorem 9.1.3. 0 

10.2.3 Optional Sampling Theorems 

Consider an arbitrary filtration {&}, a stochastic process { X ( t ) }  and a 
stopping time T.  Define Xr : 0 + R by 

X ( T ( W ) , W )  if T ( W )  < 00, 

if T ( U )  = 00, x r ( W )  = { x (10.2.8) 

where X is a certain random variable. We put X = x(00) = limt,,X(t) 
if this limit is well-defined as, for example, in the submartingale case of 
Theorem 10.2.2. It is generally not obvious that X r  is a random variable. 
However, for processes with right.-continuous sample paths, it is easy to give 
a positive answer to this question. 

We first construct a standard discrete approximation to the stopping time 
T.  For n = 1,2,. . ., define the random variable T(*) by 

if k2-n < 
if T = 00. 

+ 5 ( IC  + 112-n for some k = 0, I , .  . . , 

(10.2.9) 
= {z 

Then for k2-” 5 t < (k + 1>2-” we have 

(dn) 5 t }  = {dn) 5 k2-n} = {T 5 k2-n} E 3k2-n c & (10.2.10) 

and hence the random variables dn) are stopping times. Moreover, with 
probability 1, we have T ( ~ )  2 d2) 2 . . . JI T. 
Theorem 10.2.3 If T < 00 or X ( o 0 )  exists then X, G a mndom variable. 

Proof Since { X ( t ) }  is assumed to be cAdl&g, we have X, = limn+ca Xr(”). 
Thus it suffices to prove that Xrtn, is measurable. However, for each Bore1 set 
B E WR), 

{X+, E B} = (X(0O) E B,dR)  = 00) 
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Let t 2 0 be fixed. If T is a stopping time, then also the random variable 
t A T = min{t,T) is a stopping time, as the reader can easily show. The 
following theorem is concerned with the "stopped" version {X(t A T ) ,  t 2 0) 
of the stochastic process { X ( t ) } .  We first deal with an auxiliary result. 

Lemma 10.2.1 ~f { ~ ( t ) )  is a submartingale, then the sequence ~ ( 4 )  A 
t ) ,  X ( d 2 )  A t ) ,  . . . is uniformly integrable for each t 2 0 .  

Proof Let Y = X(T(") A t). Note that P((Y1 < 00) = 1. Indeed, 
apply Doob's inequality (10.2.1) to the submartingale {IX(t)l,t 2 0) to find 
P(IY1 1 4 I P(~UPO5,,,IW~)l 1 z) I 5- E I X (t ) 1 and, consequently, 
l i i s+m E'(lYI 2 2) = 0. Since 

E I X ( + ) A ~ ) ~ I  c ~ I ~ ( ~ A t ) I + ~ i l i ( t ) / < a , ,  
{k:(k+1)2-" < f }  

it remains to show that (10.1.16) is fulfilled. By the result of Theorem 9.1.7, 

6 s u p E [ I X ( t ) l ; X ( ~ ( ~ )  ~ t )  > 4 5 supE [IX(t)l;Y 2 4 
n>l nl.1 

= E[IX(t)l;Y 2 4 .  
Furthermore, limx-,m E [IX(t)l; Y 2 51 = 0 since E IX(t)I < 00 and IY I < 00 

with probability 1. 0 

Theorem 10.2.4 Let {X(t)} be a martingale and T a stopping time. Then 
adso the stochastac process {S(T A t ) ,  t 2 0) is a martingale. 

Proof We have to prove that 

EIX(7At)l < 00 (10.2.11) 

for each t 2.0 and that 

E [X (T  A t ) ;  A] = E [X(T A v); A] (10.2.12) 

for all 0 5 u < t and A E Fv. As in the proof of Theorem 9.1.7, we can show 
that 

E [X(dn) A t); A] = E [X(T(")  A u ) ;  A ] .  (10.2.13) 
On the other hand, by Lemma 10.2.1 the sequences {X(T(")  Av), n 2 1) and 
{ X (T(") A t )  , n 2 1) are uniformly integrable, and since { X ( t ) }  is chdlAg we 
have limn+= X(dn) A t )  = X(T  A t) and limn+m X(T(") A u )  = X(T A v ) .  By 

0 Corollary 10.1.1, both (10.2.11) and (10.2.12) hold. 
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We remark that Theorem 10.2.4 on stopped martingales can easily be 
extended to submartingales. It suffices to replace (10.2.13) by 

to conclude that for all 0 5 w < t and A E 3,! 

E [ ~ X ( T  A t);  A] 2 E [X(T  A v); A] .  (10.2.14) 

We turn to continuous-time versions of the optional samplang theorems as 
derived in Section 9.1.6 for discrete-time martingales. In the same way as in 
Section 9.2.3 the reader can show that the family of events FT consisting of 
those A E F for which A n  {T 5 t }  E Ft for every t 2 0 is a a-algebra. We call 
F7 the n-algebra of events prior to the stopping time T .  Rote that formally 
there is a difference between this definition and the definition of F7 given in 
(9.2.19) for the discrete-time case. However, in the latter case we can use both 
approaches. 

Theorem 10.2.5 Let { X ( t ) }  be 0 martingale and T an arbdtmry stopping 
time. Then, for each t 2 0, 

E ( X ( t )  I FT) = X ( T  A t )  . (10.2.15) 

Proof Let d") be given by (10.2.9). It then follows that E ( X ( t )  1 F+)) = 
X(T" A t ) ,  as can be shown by the reader. Now, since FT C F+), we have 

E ( X ( t )  I Fr) = E ( E ( X ( t )  I FT(n)) I FT) = E (X(T(~)  A t )  I 
By Lemma 10.2.1, the sequence { X ( d " )  A t ) ,  n 2 1) is uniformly integrable. 
But { X ( t ) }  is &dl& and so Corollaxy 10.1.1 shows that 

E ( X ( t )  IFT )=  lim E ( X ( d n ) A t )  I ~ ~ ) = E ( X ( T A ~ ) ~ ~ ~ ) = X ( T A ~ ) ,  
n+oc 

which completes the proof. 0 

Theorem 10.2.6 If { X ( t ) }  is a martingale and T a bounded stopping time, 
then 

EX(7) = EX(0). (10.2.16) 

Proof Putting A = R and s = 0, (10.2.16) is an immediate consequence of 
U 

The following result is a continuous-time counterpart of Theorem 9.1.5. 

Theorem 10.2.7 Let { X ( t ) }  be a martingale and T a finite stopping tame 
such that E ! X ( T ) ~  < 00 and limt--toc E [ / X ( t ) ( ;  T > t ]  = 0. Then 

E X ( T )  = E X ( 0 ) .  (10.2.17) 

(10.2.12) if we choose t 2 0 such that P(T 5 t) = 1. 
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Proof Apply Theorem 10.2.6 to the bounded stopping time r A t ,  where t 2 0 
to obtain E X ( T  A t )  = E X ( 0 ) .  By the dominated convergence theorem, 

E X ( 0 )  = lim E X ( T  A t )  
t+m 

= lim E [ ~ ( T ) ; T < ~ ] +  lim E [ X ( t ) ; ~ > t l = l Z X ( j - ) .  
t4m t+W 

10.2.4 The Doob-Meyer Decomposition 

Our next result provides a continuowtime analogue to the Doob-Meyer 
decomposition which was derived in Section 9.1.8 for discrete-time submar- 
tingales. We employ the concept of a uniformly integrable family of random 
variables from Section 10.1.5, with 7 the family of all {Ft}-stopping times. 
We say that the submartingale { X ( t ) }  belongs to the class DL if for each 
t 2 0, the family { X ( t  A T ) ,  T E 7) is uniformly integrable. Examples of such 
submartingales can be found as follows. Let { X ( t ) }  be a right-continuous 
submartingale. Then { X ( t ) }  belongs to the class DL if { X ( t ) }  is a martingale 
or if { X ( t ) }  is bounded from below. The reader is invited t<o show this as an 
exercise. 

The DoobMeyer decomposition stated below is unique up to indistin- 
guishability where we say that the stochastic processes { X ( t ) , t  E 7) and 
{ X ' ( t ) , t  E 7) are indistinguishable if they are defined on the same proba- 
bility space (fl,.F,P) and if there exists .4 E .F such that {w : X ( t , w )  # 
X'( t ,  w) for some t E 7) c A and P(A)  = 0. 

The aim of the Doob-Ivfeyer decomposition is to represent the 
submartingale { X ( t ) }  in the following way: X ( t )  = X ( 0 )  + M(t) + A ( t )  for 
all t 2 0 where 

0 { M ( t ) }  is a martingale with respect to the filtration {&}, 
0 { A ( t ) }  is an increasing process, that is, for each LJ E R, the sample path 

{A(w ,  t ) , t  2 0) is a nondecreasing function and A(0) = 0, where as usual 
we assume that { A ( t ) }  is adapted to {.Ft}. 

Kote that every right-continuous nondecreasing function a : nL, + R+ with 
a(0) = 0 determines a Bore1 measure m, on B(&) by nta([O,t])  = a( t )  for 
all t 2 0. For each measurable function g : R+ + R we define the integral 

r 
6 g(v) da(v) by 

prokided that the integral on the right-hand side exists. 

Theorem 10.2.8 Let {Ft }  be right-continuous, and let { X ( t ) }  be a 
submartingale of class DL. Then: 
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(a) there exists an increasing process { A ( t ) }  and a martingale { M ( t ) }  fdfilZing 
for all t 2 0 

X ( t )  = X ( 0 )  + M ( t )  + A(t)  (10.2.18) 

and, for all nonnegatave right-continuow martingales { Y ( t ) }  and r E 7, 

Y(v)dA(v) = E ( Y ( t A T ) . q ( t A r ) ) ,  
t h ~  t A r  

E 1 Y(v-)dA(v) = E 
(102.19) 

(b) up to indistinguishability, there exists only one right-continuous increasing 
process {A(t) ,  t 2 0) which satzhfies (10.2.18) and (10.2.19). 

The proof of Theorem 10.2.8 goes beyond the scope of this book. It can be 
found, €or example, in Ikeda and Watanabe (1989), Theorem 6.12. 

10.2.5 Kolmogorov's Extension Theorem 

In this section we discuss a variant of Kolmogorov's dension theorem for the 
continuous-time case. As a canonical model we take fl = R[o'oo) to be the 
set of all functions i~ : EL+ + R. A filtration on fl is introduced as follows. 
Let At, ,..., t , (Bi , .  . . , Bn) = {W E fl : i J ( t 1 )  E B i , .  . . ,u(tn) E Bn}, where 
ti 5 . . . 5 t,, B1,. . . , Bn E B(R). We call At ),..., t ,  (&,. . . , Bn) a cglindrical 
set. Define now Ft to be the smallest a-algebra containing all cylindrical set.s 
A t  ,,..., tn(B1,. . . ,Bn) such that tl 5 . . . 5 tn  5 t. Let the a-algebra. F of all 
events in fl be given by 3 = o(Ut,o 3 t ) .  

Theorem 10.2.9 Suppose that, for each n 1 1 and for all tl 5 . . . 5 tn,  
there is Q prohbility rneosure on (Rn,B(Rn)) for which the family 
{Pt,,...,t,,} satisfies the following consistency condition: 

p t ,  ...., t,,tn+l (BI x * .  * x Bn x R) = 81, ..., t ,  (BI x . * - x (10.2.20) 

for all n 2 1, tl 5 .. . 5 tn and B1,. . . ,B ,  E B(R). Then there exists Q 

uniquely determined probability measure, P sag, on (fl, 3) such that 

(10.2.21) 

for all n 2 1, ti 

The proof of Theorem 10.2.9 is omitted and can be found, for example, in 
Shiryayev (1984). The probability space (fl,3,P) with the filtration { 3 t }  
and the stochastic process X(t ,w)  = w ( t )  considered in Theorem 10.2.9 is 
called a canonical probabildty space for { X ( t ) } .  In the following corollary we 
assume that { X ( t ) )  and {&} axe given by this canonical model. 

. . . 5 tn  and B1,. . . , Bn E B(R). 
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Corollary 10.2.1 Let { X ( t ) ,  t 2 0 )  be a nonnegative {Ft}-martangale such 
that EX(0) = 1 and, for each t 2 0, let P t  be the probcbdity memure on 
Ft defined by Pt(A) = E[X(t);A]. Then there exists a unique probability 
measure P on (f2,F) such that, for 011 A E Ft and t 2 0,  

P(A) = i j t ( A ) .  (10.2.22) 

The proof is similar to the proof of Corollary 9.2.1 and is therefore omitted. 

10.2.6 

The change of the probability measure considered in Section 9.2 turned out 
to be useful when studying ruin probabilities of discrete-time risk processes 
as shown in Section 9.2.4. Here is a continuous-time version of this concept. 

Consider an arbitrary probability space (f2,3, P) and an arbitrary filtration 
{&} on it. Put .Fw = u(Ut>&). Let { M ( t ) }  be a positive {&}-martingale. 
Without loss of generality we assume that EM(0) = 1. Let t 2 0 be fixed. 
Then, as in Corollary 10.2.1, we can define a new probability measure Pt on 
the u-algebra Ft by 

Change of the Probability Measure 

P*(A)  = E [ M  ( t ) ;  A ] ,  A E Ft . (10.2.23) 

t ,  I Z  2 0, then Ft = P t + h  on F ~ .  ZTI particular, for Lemma 10.2.2 (a) 
A E 3 t  

E [ M ( t ) ;  .4] = E [ M ( t  + h); A] . 
(b) Assume th0t there exists a probability measure P on Fm such th0t P = Pt 
on Ft for all t 2 0 .  Let r be a stopptng time 0nd .A c { r  < 00) such that 
-4 E 3;. Then 

P(A)  = E [M(T); A]. (10.2.24) 

Proof (a) By conditioning on Ft we have 

E [ M ( t  + h); A] = 
= E [M(t ) ;  A ] .  

E(E [ M ( t  + h); A] I Ft) = E [E ( M ( t  + h) I Ft); -41 

(b) Recall that A n  {T 5 t} E Ft. Thus, by (a), 

Hence, from Theorem 10.2.5 we conclude that 

P ( A  n {T 5 t } )  = E (E [M( t ) ;  A n {T 5 t}] I FT) 
= E [ E ( M ( t )  I =F,);iln{T 5 t}] = E [ l l . f ( ~ A t ) ; A n { ~  5 t } ]  
= E[nii(T);4n{T<t}].  
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Thus, the assertion follows from the monotone convergence theorem. 0 

Later on, we will need the conditional expectation Et(Y I G) under P t :  
where Y is FT-measurable, 6 C F7 and r is either deterministic or a stopping 
time bounded by t .  If T is unbounded we consider the conditional expectation 
E ( Y  I G)  under P, where we have to assume that the measure P on Fm 
exists. For clarity of notation we sometimes write E zx) instead of E , and P, 
instead of P. 

Theorem 10.2.10 Let t 5 00. Consider the random variable M, defined in 
(10.2.8). Let Y be an .FT-rneasurable random variable such that Y is integrable 
under Pt. If r 5 t ,  then 

(10.2.25) 

In partacular, for t ,  h 2 0,  

Proof Let 2 be a bounded G-measurable random variable. Note that (10.2.24) 
implies 

E,(YZ) = E(hf7YZ)  = E(E(n/i,YZ I G))  

where we used the fact that E (M7Y I G)Z/E (A& I G )  is G-measurable. 0 

Most of the results derived in Section 9.2.3 hold in the continuous-time case 
as well. For instance, for each t 5 w, {M(v)-',O 5 v < t }  is a martingale 
under P,. Indeed, (10.2.26) implies 

for all t 2 v + h 2 v. Moreover, (10.2.24) implies that 

& t ( M ( O ) - ' )  = E ( M ( O ) - ' M ( O ) )  = 1 
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and the martingale {M(v) - ’ ,O 5 v < t} can be used to change the measure 
P t .  It then readily follows that, on Ft, 

(10.2.28) 

Let {S ( t ) }  be a stochastic process, as for example the claim surplus process 
introduced in Section 5.1.4 and assume that P exists. We then interpret 
{S( t ) }  as a generalized surplus process. Assume that there exists an Rd-valued 
process {T(t)}  for which {iM(t)} given by M ( t )  = exp{s[S(t) - g(T(t))]} is 
a martingale for same s E R and for some measurable function g : Rd 4 R; 
d 2 1. Without loss of generality, we assume that g is chosen in such a way that 
EiLf(0) = 1. Furthermore, assume that the probability space on which the 
processes {S( t )}  and {T( t ) }  are defined is small enough such that the first 
entrance time T(U)  = inf{t 2 0 : S( t )  > u} is a stopping time and S,,,), 
T7(u) are well-defined random variables. Consider the “ruin probabilities” 
q(u;r) = P(.(u> 5 r) and +(u) = P(~(pl) < 00). By changing the measure 
P and using (10.2.28), Lemma 10.2.2b applied to P and to the “changed 

measure” (P) = P gives 
N 

+(u; x) = [e-ss(r(u))+au+g(T(r(u))); T(u> < - Xle-8~. (10.2.29) 

Furthermore, 

.+(.I = E [e-~S(~(u))+s~+gt~(s(u))); T(u) < - mle-8~. (10.2.30) 

The latter formula is in particular useful if s is chosen in such a way that ruin 
occurs almost surely under the measure @, in which case 

+(u)  = 6 (e-ss(T(u))+Su+g(T(r(u))))e-su. (10.2.31) 

If s > 0, an upper bound for the ruin probability Q(u) follows easily: 

< 8 (edT(r(u))))e-au . 

However, in most cases the hard problem will be to find an estimate for 

Remarks 1. If T(U) is not a stopping time, we have to replace T(U) by 
the modified first entrance time T*(u)  = inf{t 2 0  : S(t-) 2 u or S( t )  2 u} 
of {S( t ) }  to the interval [ u , ~ ) .  Recall that T*(u) is always a stopping 
time by Theorem 10.1.1. Also ruin probabilities are modified to @*(u;z) = 
P(T*(u) 5 z) and +*(u) = P(T*(u) < 00). In many cases these modified 
ruin probabilities are equal to the ruin probabilities +(u; 2)  and @(u) related 
with the “usual” ruin time ~ ( p l ) .  In particular, when the claim surplus process 

E,(T(r(u)I)* 
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{S(t))  is that of the compound Poisson model it is not difficult to show that 
P(T*(u) 5 z) = P(T(u) 5 z) and consequently P(.*(u) < 00) = P(T(u) < 
oo) for all u,x 2 0. 
2. Using Theorem 10.2.9 with Corollary 10.2.1, one can give sufficient 
conditions that ensure that the probability measure P considered in this 
section exists. The following situation will repeatedly occur in Chapters 11 
and 12. Assume that the stochastic process { (S( t ) ,  T ( t ) ) ,  t 2 0) is defined on 
its canonical probability space (0, T ,  P), where R is a certain (Borel) subset of 
the set of all right-continuous functions w : Ft+ + Rd+' with left-hand limits 
and T = B(R) is the Borel 0-algebra on 0. Furthermore, assume that {3t} 
is the (uncompleted) history of { ( S ( t ) , T ( t ) ) } .  Then, T = .Fm = a(Ut>o.Ft). 
Theorem 10.2.9 ensures that the probability measures P t  can be extended to 
a probability measure P on Fa. 
3. Xote that this argument does not work if the filtration {Ft} is complete. 
We will observe in Theorem 11.3.1 that in fact P and P may be singular on 
Tx ,  i.e. there exists a set -4 E T, such that P(-4) = 1 = 1 - P(A).  If TO is 
complete then A E TO and P ( A )  = P(A) = 1 because P and P are equivalent 
probability measures on TO. Hence the P t  cannot be extended to 3,. 

Bibliographical Notes. For some of the results presented in this section, 
the proofs are only sketched and the reader can find them in a number 
of textbooks, for example, in Dellacherie and Meyer (1982), Ethier and 
Kurtz (1986) and Karatzas and Shreve (1991). 

10.3 RUIN PROBABILITIES AND MARTINGALES 

That the computation of finitehorizon ruin probabilities is a difficult task 
was already illustrated in Section 5.6, and in Section 9.2.4 for the discrete- 
time risk process. In Theorem 9.2.5 we were able to derive a bound on the 
ruin probability P ( T d ( U )  5 z). We now use an optional sampling theorem for 
continuous-time martingales to prove an analogous result for the finitehorizon 
ruin probability P(T(u) 5 z) in the compound Poisson model. The martingale 
approach will also lead to similar bounds for level-crossing probabilities of 
additive processes. As a special case, we show that the supremum of Brownian 
motion with negative drift is exponentially distributed. 

10.3.1 

In this section we suppose that the stochastic process { X ( t ) ,  t 2 0) satisfies 
the following conditions: 

Ruin Probabilities for Additive Processes 

0 X ( 0 )  = 0, 
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0 { X ( t ) ,  t 2 0) has independent and stationary increments, 
0 there exists some SO > 0 such that Eesox(t) < 00 for all t 2 0, 
0 EX(t) = -pt for some p > 0 and all t 2 0, 
0 a,(t) = E;eSX(') is a right-continuous function at 0, for each s E (0,so) and 

The above conditions define the class of additive processes with negative drift. 
We say that { X ' ( t ) ,  t E 7) is a wersion of the stochastic process { X ( t ) ,  t E 7) 
if both processes are defined on the same probability space (St,3,P) and 
P(X(t) # X ' ( t ) )  = 0 for each t E 7. From this definition we immediately 
conclude that each version { X ' ( t ) }  of { X ( t ) }  has the same finite-dimensional 
distributions as { X ( t ) } .  It is known (see, for example, Breiman (1992), 
Chapter 14.4) that an additive process { X ( t ) }  always has a version which 
is chdlhg. In the same way one can show that there is a version of {X(t)} 
with left-continuous sample paths having right-hand limits. That a,(t) is a 
continuous function of the variable t 2 0 can be proved by the reader. 

Note that both the claim surplus process in the compound Poisson model 
with p < 1 and the (-p,n2)-Bromian motion with negative drift fulfil the 
five conditions stated above and so axe additive processes. 

Lemma 10.3.1 There ezists a function g : R+ + R such that for a21 t E R+, 

E esX(t) = et9(s). (10.3.1) 

Proof Recall that a,(t) = Eesx(t) is a continuous function of the variable t .  
Since { X ( t ) }  has independent and stationary increments, the function a, ( t )  
fulfils the functional equation a,(t + h) = a,(t)a,(h) for all t , h  2 0. As the 
only continuous solution to this equation is as@) = et9(s) for some constant 

U 

For the claim surplus process in the compound Poisson model g(s) = 
A(7jlu(s) - 1) - Bs,  by formula (5.2.1) in Corollary 5.2.1. For the (-p,n2)- 
Brownian motion with negative dr i i  we have Ees-y(t) = exp(t(-pa+ (~7 )~ /2 ) )  
and consequently g(s) = -ps +   US)^/^. 
Lemma 10.3.2 The following process { M ( t ) }  is an {Ft}-rnartinpale, where 

~ $ ( t )  = e*x(t)--lg(~) , t 2 0. (10.3.2) 

The proof of Lemma 10.3.2 is analogous to the proof given in Example 3 of 
Section 10.1.3 and is therefore omitted. 

Consider t.he modified first entrance time T*(u) of { X ( t ) }  to the set [u. m) 
- see (10.1.1) for definition - and let T(U) = inf{t 2 0 : X ( t )  > u} .  We 
showed in Theorem 10.1.1 that ~ ' ( u )  is a stopping time. Recall also that for 
all u,2 2 0 

B(T* (U)  5 Z) = P(T(2L) 5 Z) (10.3.3) 

some so > 0. 

s E [O,SO)t  

g(s) the lemma is proved. 
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and in particular 
P(T*(U)  < 00) = P ( T ( U )  < 00) (10.3.4) 

if { X ( t ) }  is the claim surplus process in the compound Poisson model; see 
Remark 1 in Section 10.2.6. We leave it to the reader to show that (10.3.3) 
and (10.3.4) also hold if { X ( t ) }  is the (-p,02)-Brownian motion. 

Now assume that { X ( t ) }  is c d h g  and apply Theorem 10.2.6 to the 
stopped martingale { M ( t  A T*) , t  1 0 } ,  where { M ( t ) }  is given by (10.3.2) 
and T* = T"(u). Then (10.2.16) gives 

= E [ M ( t  A T*) ;T"  5 t ]  + E [hf(t A T* ) ;T*  > t ]  . (10.3.5) 

F'rom (10.3.3) we can directly draw a few interesting results. Using (10.3.3) the 
first of them gives explicit formulae for the ruin probability $(u) = P(T < 00) 
and for the Laplace-Stieltjes transform of T = T ( U )  when { X ( t ) }  is the 
( -p,  $)-Brownian motion with negative drift. Put 

y = sup{s > 0, g(s) 5 0) .  (10.3.6) 

Then we have 7 = 2p/02 and g(y) = 0. Note that, according to the 
terminology of Chapter 6, y is called the adjustment w @ c i e n t  if there exists 
SO > 0 such that g(s0) = 0. Clearly, in this case we have 7 = SO. 

Theorem 10.3.1 Let { X ( t ) )  be the ( - p ,  02)-Brownian motion with negatiwe 
drift. Then, 

$(a) = e-7" (10.3.7) 

and 

Proof Note that { X ( t ) }  has continuous trajectories and that consequently 
X ( T )  = u. Then, applying (10.3.5) to the martingale ( M ( t ) }  given by (10.3.2) 
and using (10.3.3), we obtain 
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which is an integrable bounc$2and hence by the dominated convergence 
theorem, limt-rooE[e8X(t)-t~u l 2 - P s ) ; ~  > t]  = 0. Thus, letting t + 00, 

(10.3.9) implies 
(10.3.10) 

e-su = E [e-r(u a 2  8 P - w ) ; ~  < 001 . 

Now setting s = 7 we get (10.3.7). It remains to show (10.3.8). Turn once 
more to equation (10.3.10) and take s = g- ' (s ' ) ,  where 0 5 s' = g(s)  = 
-p.s + (os>'/2. Then the inverse function 9-' (s') of g(8 )  is well-defined in the 

0 interval ( p / a 2 , c u ) ,  where g-l(s') = c r 2 ( p  + d m ) .  

10.3.2 Finite-Horizon Ruin Probabilities 

We begin with a formula for the finite-horizon ruin probabilities of a Brownian 
motion with drift. 

Theorem 10.3.2 Let u 2 0 be &ed. Let ( X ( t ) }  be fhe (-p,a')-Brownian 
motion with negative drift and let ~ ( 9 . 6 )  = inf(t 2 0, X ( t )  > u). Then, for all 
2 10, 

and 
exp (- (u - 1 ~ x 1 ~  (10.3.12) 

d 9.6 
--P(7(u) 5 2) = - dx 0- 202s 

(10.3.12) 

where @ ( x )  denotes the distribution function of the standard normal distribu- 
tion. 

Proof In view of (10.3.8) and the uniqueness property of Laplace transforms 
it stlffices to show that 

This can be done by using, for example, the fact that the Laplace transform 
of 

k 
h(z)  = - 

is given by 

e-'"h(x) dx = exp(-k&), s > 0 ,  J, 
see the table of Laplace transforms in Korn and Korn (1968), for exa.mple. 0 

In the proof of Theorem 10.3.1 the continuity of the trajectories of ( X ( t ) }  
has been crucial. Within the class of additive processes this is only possible for 
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{ X ( t ) }  being a Brownian motion with negative dr i i .  However, if we are using 
(10.3.5) for additive processes with jumps, then we can get upper bounds of 
the Lundberg-type for the probability P(T* 5 2) .  Equation (10.3.5) implies 
that 

1 1 E (M(x A T * )  I T* 5 ~)P(T* 5 x) 
- - E (e8X(T*)-T1d8) 1 7* 5 Z)P(T*  5 5) 

and since X ( T * )  2 u, we have 1 2 E(esu-T'9(s) I T+ 5 ~)P(T*  5 z). Hence 

Let x + 00, then 

@*(u) = P(T* < 00) I edSu supeffg('). 
V Z O  

Note that (10.3.14) implies that, with probability 1, 

(10.3.14) 

supX(t) < co . 
t yo 

We try to make the bound in (10.3.14) as sharp 

(10.3.15) 

as possible, at least in 
the asymptotic sense. We therefore choose s as large as possible under the 
restriction that eV9(4 < 00, i.e. we choose s = 7, where 7 is defined in 
(10.3.6). But this th& yields the Lundberg bound v ( u )  5 e--7u for all 2 0. 

We now investigate the finite-horizon w i n  function +(u; x) = P(T(u) 5 z) 
in the compound Poisson model. So, the claim surplus process { X ( t ) }  is given 
by X ( t )  = S(t )  = EL',"' L'i - fi t ,  where X is the arrival rate, /I the premium 
ra.te and Fu the claim size distribution. c'sing (10.3.3), from (10.3.13) we have 
@(u; 5) I e-su SUPO<v<z ev9(s), where in this case g(s) = X(hu(s) - 1) - Ps. 
For y 2 0, consider the function fy(s) = s - yg(s) and let 

(10.3.16) 

If @'(7) < 00 let 90 = (g(')(?))- '  = ( X & U ( ~ )  -,!I)-'. We call yo the critical 
value. The following results are called finite-horizon Lundberg inequahties. 

Theorem 10.3.3 For all u,y 2 0, 

+(u; yu) 5 e-7uu (10.3.17) 

(10.3.18) 
where 7 v  = supolslr fy(s). Moreover, if Aty(s) < 00 for some s > 7 then 

ond 79 = 7. If9 > yo then yy = 7 and 
7' > 7. 

= ?*O = y. I f y  < yo then rV > 
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Proof Suppose first that 7 < s, i.e. g(s)  2 0. Setting x = yu, by (10.3.13) 
we have $(u;uy) 5 e-sueYu9(s) = e-u(s--yg(s)) for all u 2 0. If s 5 y, then 
g(s) 5 0 and by (10.3.13) we have @(u;uy) 5 e-su for all u 2 0. Hence 
+(a; yu) 5 e-umin(s+39(s)) for all 11 2 0 which yields (10.3.17). In order to 
show (10.3.18) we need a finer estimation procedure. Let t’ > 2 and consider 
the bounded stopping time t‘ A T * .  Then, as with (10.3.5), we get 

1 = 
= 
E M(z’ A T * )  2 E ( M  (2‘ A T * )  I 2 < T* 5 2’) P(z < T* 5 2’) 
E (hf(.r*) 1 z < T* 5 d) P(z < T* <, z’) . 

Thus 1 2 eSUE (e-”9(S) I x < T* 5 z’)P(z < T* 5 5’) and hence, by (10.3.3), 
P(z < T 5 x’) 5 e-su S U ~ ~ < ~ < ~ ,  - ev9(s). Let z’ + 00 to get 

~,/,(u) - @(u; t) = P(Z < T < 00) 5 e-” s ~ p e “ g ( ~ ) .  
V>Z 

For x = yu this gives 

Since g(s) 5 0 if and only if s 5 y we obtain (10.3.18). Assume now that 
there is an s > y such that Av(s) < oc. Then rhg)(y) < 00. Note that 
fF’(s) = 1 -yg(l)(s) and fr’(s) = -~g(~)(s), showing that f,(s) is a concave 
function. Moreover, fv (0)  = 0 and f,(y) = 7. Thus it follows that T~ 2 y and 

yY 2 y. If y = yo then &)(7) = 0, i.e. fvo(s) 5 fal,(y) = y and yvo = = 7 
follows. If y < yo then fj”(7) > 0. Thus there exists .Y > y such that fv (s )  > 7. 
This gives yv > 7. If y > yo then ff’(y) < 0. Thus there exists s < y for 

0 which f,(s) > 7. This gives 7’ > 7. 

Corollary 10.3.1 Assume thot there is an s > 7 such that oSac;(s) < 00. Then 
u - ~ T ( u )  4 yo in probabdaty on the set { ~ ( u )  < 00},  0s ti + 00. 

Proof Let E > 0 such that 7 i z ~ i ( y ~ ~ - ~ )  < 00 and 7 i z u ( ~ ~ ~ + ~ )  < 00. This will be 
the case for B small enough. Recall that min{yvo-E~yvo+e} > y. Then 
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10.3.3 

We need the notion of a reversed martingale. Let 7 C R be an arbitrary but 
fixed subset of the real line, and consider a family of a-algebras {F[,t  E 7) 
such that 

0 F; c F for all t E 7, 
0 c for all t , h  E 7< 
We call {F;,t E 7) a reversed fiZtration. Let { X * ( t ) ,  t E 7) be a stochastic 
process with left-continuous trajectories, adapted to {F;} and such that 
G(X*(t)l < 00 for each t E 7. We say that { X ' ( t ) ,  t E 7) is a reversed 
martingale if, for all t ,  h E 7, 

E ( X * ( t )  I y+h) = X * ( t  + h) - (10.3.19) 

Similarly, { X * ( t ) }  is a reversed submartingale if in (10.3.19) we replace = by 
3. Note that {IX*(t) i}  is a reversed submartingale if { X * ( t ) }  is a reversed 
martingale. 

411 results of this section are valid for right-continuous processes. However, 
as we will later apply an optional sampling theorem in reversed time, the 
subsequent formulations are for left-continuous processes. 

Lemma 10.3.3 Let to 2 0 be &ed and let { X * ( t ) , t  ,> t o }  be a reversed 
martingale. Then there esists a mndom variable X'(o0)  such that, with 
probability 1, 

lim X * ( t )  = X*(m). (10.3.20) 

Proof Analysing the proof of Theorem 10.2.2 we see that it suffices to show 
the following. For all t o  5 a I b and increasing sequences { t i }  converging to 
infinity with t i  = t o  one has 

P(U,(a,b) = m) = 0 (10.3.21) 

where U,(a,b) = limn-tooUn(a,b) and V,(a,b) denotes the number of 
upcrossings of (a ,b)  by the reversed martingale { X * ( $ ) : j  = 0, ..., n}. 
Indeed, if we apply Lemma 9.1.3 to the martingale { X 3 , j  = 0,. . .,n} with 
Xj = X*(n - j ) ,  then (9.1.27) implies 

Law of Large Numbers for Additive Processes 

t+a, 

that is EW,(a,b) = lim,,,EU,(a,b) < 00 and therefore (10.3.21) holds. 

In the rest of this section we deal with the process {X*(t), t > 0) defined 

This proves the lemma. 0 

X * ( t )  = X ( t ) / t  , (10.3.22) 
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where { X ( t ) ,  t 2 0) is assumed to be an additive process with left-continuous 
trajectories. Furthermore, the reversed filtration {Ft} is chosen by taking 
F; to be the smallest a-algebra of subsets of R containing the events 
{w : (X( t l ,w) ,  ..., X(t, ,u))  E B }  for all Borel sets B E B(Rn), for all 
ot = 1,2,. . . and arbitrary sequences t1, t 2 , .  . . , tn  with t 5 t l  5 t2 5 . . .. 
Lemma 10.3.4 Let { X ( t ) :  t 2 0) be a stochastic process with left-continuous 
tmjectora'es. Assume that { X ( t )  } has stationary and independent increments 
such that EIX(1)I < DO. Then 

(10.3.23) 

for all t ,  h 1 0 and for each sequence tl , t z ,  . . , of nonnegative red numbers 

Proof Use the fact that {X ' ( t ) , t  2 0) with X ' ( t )  = X ( t )  - t E X ( 1 )  is a 
martingale. Then, proceeding similarly as in the proof of Lemma 10.2.1, it is 
not difficult to show that the sequence X ( t , ) ,  X(t2) ,  . . . is uniformly integrable. 
Now, (10.3.23) follows from a well-known convergence theorem for conditional 

0 

lim E (X(t,) I X ( t  + h))  = E ( X ( t )  1 X ( t  + h)) , 
n-w 

such that tn 5 t and tn f t .  

expectations; see, for example, Liptser and Shiryayev (1977), p.16. 

Lemma 10.3.5 If 0 < 2' 5 t,  then 

(10.3.24) 

Proof Let B E B(IR+) be a Borel set and suppose that v = E t  for some 
m,n E IN with m 5 n. Note that the random variables 

kt (k  - 1)t 
x k = X ( , )  - x ( y ) !  k = l ,  . . . ,  n ,  

are independent and identically distributed. Thus, 

E ( F l ( X ( t )  E 8)) 

This shows (10.3.24) for v = nat/n. Now for arbitrary PI < t ,  let wk = 
(m&/nk)t f v. Since the trajectories of {x(t)} are left-continuous with 
probability 1, we have X(vh)  + X(v). By Lemma 10.3.4 we also have 
E (X(vk )  I X ( t ) )  + E ( X ( v )  I X ( t ) ) .  Thus, equation (10.3.24) holds for all 
v < t. 0 
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Lemma 10.3.6 The process { X * ( t ) ,  t > 0) defined in (10.3.22) is  a reversed 
martingale. 

Proof We first show that for 0 < v < t = t l  5 t2 5 . . . 5 t,, 

x(v) s ( t l ) ,  . . . , X ( t , ) )  = E (a I X ( t ) )  . 
E ( T  I V 

Indeed, since the process { X ( t ) }  has independent increments, the random 
vector ( X ( v ) , X ( t l ) )  is independent of X(t2)  - X ( t l ) ,  . . . ,X(t,) - X ( t , - l )  
and hence 

= E (T I X ( t l ) ?  X ( t 2 )  - X ( t , ) ,  . . . , X( t , )  - x ( t m - i ) )  

Now the statement follows from Lemma 10.3.5. 0 

Summarizing the results of Lemmas 10.3.3 to 10.3.6, we arrive at the 
following strong law of Zarge numbers for additive processes. 

Theorem 10.3.4 Let { X ( t ) ,  t 2 0) be an additive process with left-continuow 
trajectories. Then, with probability 1 ,  

Proof From Lemmas 10.3.3 and 10.3.6 we have 

x ( t )  lim - = X*(oo) ,  
t+m t 

(10.3.25) 

(10.3.26) 

for some random variable X*(oo). However, applying the usual law of 
large numbers to the sequence X ( l ) , X ( 2 )  - X ( l ) , . .  . of independent and 
ident.ically distributed random variables, we have limn+m n-’X(n)  = -p 

0 with probability 1. This and (10.3.26) gives (10.3.25). 

10.3.4 An Identity for Finite-Horizon Ruin Probabilities 

The aim of this section is to derive an identity for finite-horizon ruin 
probabilities in terms of the aggregate claim amount. We consider the claim 
surplus process { S ( t ) }  with S ( t )  = Cz:’ I;* - fit in the compound Poisson 
model with arrival rate A, premium rate 19 and claim size distribution Fu. A s  
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usually, let T ( U )  = min{t : S(t )  > u} be the ruin time and, as in Section 10.3.2, 
consider the finite-horizon ruin function $(u; z) = P(T(u) 5 z). Let {Y(t), t 2 
0) with 

N l t - 0 )  

Y ( t ) =  c'ua,  t > o ,  
i=l 

(10.3.27) 

denote the left-continuous version of {Cz;'Ui;t 3 0) and consider the last 
time ro = sup{v : 2' 5 2, S(v) 2 ti} in the interval fO,z] where the claim 
surplus is above level u. We put 70 = 0 if S(v) < u for all v E [0, x). With these 
notations we can formulate the following representation formula for $(u; z); 
see also Theorem 5.6.2. 

Theorem 10.3.5 For all u 2 0 and x > 0, 

Y(X) = Y ( v )  u 
1 -'Ic,(wx) = E ( 1 -  -)+ +E [lo v ( p 1 + p v ) 2  dv; S(Z) 5 4 .  

(10.3.28) 
In particular, for u = 0 

(10.3.29) 

The proof of Theorem 10.3.5 relies on the notion of a reversed martingale as 
introduced in Section 10.3.3. Suppose first that p1 > 0 and put 

0 < t 5 z . (10.3.30) 
Y ( v )  u X * ( t )  = - 

Let (FF, 0 < t 5 z} be the filtration generated by the (time-reversed) process 
{ X ( t ) ,  0 5 t < z}, where 

X ( t )  = X*(z  - t ) ,  (10.3.31) 

i.e. the a-algebra FF is generated by the events { X * ( t l )  E BI, . . . , X * ( t , )  E 
B,,}, where x - 1 5 t l  < .. . < t ,  5 z, B1,. ..,Bn are Bore1 sets and 
n = 1,2, .  . .. In this case the process { X ( t ) ,  t E [O,x)} is chllag. 

Lemma 10.3.7 Let u > 0 .  Then the process { X ( t ) , t  E [O,x)} given by  
(10.3.30) and (10.3.31) i s  an {FF}-rnartingale. 

Proof By Lemma 10.3.6, { Y ( t ) / t ,  0 < t 5 z} is a reversed martingale. 
By Example 5 in Section 10.1.3 applied to the continuous function f(v) = 
v/(u + Dv) we see that {J,"v(u + Pv)-'d(Y(v)/v), 0 < t 5 z} is a 
reversed maxtingale. But then by Examples 6 and 7 in Section 10.1.3 also 
{Y(z)(u + Ox)-' - Lzv(u + f l~) -~d(Y(v) /v) ,  0 < t 5 z} is a reversed 
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martingale. This proves the lemma, since by an integration by parts we obtain 
that 

Proof of Theorem 10.3.5. Consider the process (l(S(x-) 5 u)X( t ) ,O 5 
t < x} which is an (FF)-martingale by the results of Lemma 10.3.7 and 
Example 7 in Section 10.1.3. Note that r - T' can be seen as the modified 
first entrance time of this process to the set [u, m). Since x - 7' is an {F$}- 
stopping time by the result of Theorem 10.1.1, using Theorem 10.2.6 we have 

= Y(v )  u 
dv; S(X-)  5 u] . (10.3.32) 

On the other hand, we have 

p(T(u) > X) = p(s(Z) 5 u,~ '  = 0 )  = P(s(Z) 5 U) - P(S(z) 5 U,T' > 0)  

and, since Y(T') = u + Pro for T O  > 0, 

= P(S(x) 5 u,P > 0 ) .  

Thus, for u > 0, (10.3.28) follows from (10.3.32). The verification of formula 
(10.3.29) by letting u 4 0 in (10.3.28) is left to the reader. 

Corollary 10.3.2 For all u 2 0 and x > 0, 

$(u; 5) 5 1 - E (1 - -) Y(X> = E (min{ 1, ~ y ( Z )  >). (10.3.33) u + P x  + u + p x  

Proof The inequality (10.3.33) immediately follows from (10.3.28). 0 

Bibliographical Notes. Section 10.3.1 on additive processes is in the spirit 
of Grandell (1991a). Inequality (10.3.17) was first proved in Adwedson (1955), 
and (10.3.18) in CramCr (1955). A stronger version of Corollary 10.3.1 
can be found in Segerdahl (1955). The martingale proof of (10.3.17) 
goes back to Gerber (1973) and (10.3.18) to Grandell (1991a); see also 
Grandell (1991b). Further bounds for finite-horizon ruin probabilities can be 
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found in Centeno (1997). Formula (10.3.29) for the finite-horizon ruin function 
$(O,z) is attributed to H. Cram&. Formula (10.3.28) for the finite-horizon 
ruin function $(u,z)  with an arbitrary initial risk reserve u 2 0 has been 
derived in Delbaen and Haezendonck (1985); see also Aven and Jensen (1997) 
and Schmidli (1996) for some ramifications of the proof. In hl0ller (1996), 
martingale techniques have been used for analysing prospective events in risk 
theory, in cases with random time horizon. 



CHAPTER 11 

Piecewise Deterministic Markov 
Processes 

We now extend the concept of Markov processes from the case of denumerable 
many states to a possibly uncountable state space. Special emphasis is 
put on piecewise deterministic Markov processes (PDMP). Of course, the 
denumerable state space remains a special case. Typical illustrations from 
insurance are included in this and the next chapter. 

We assume that the stochastic processes ( X ( t ) , t  2 0) considered in the 
present chapter are Whg, i.e. their sample paths belong to the set D(Ft+) of 
right-continuous functions g : lR+ + E with left-hand limits, where E denotes 
the state space of { X ( t ) } .  

11.1 MARKOV PROCESSES WITH CONTINUOUS 
STATE SPACE 

In order to avoid technical difficulties, we only consider the case of a 6nite- 
dimensional state space E. More precisely, we assume that E = Rd for some 
d 2 1 or that E consists of possibly disconnected components in Rd, as 
given in Section 11.2. Let B(E)  denote the o-algebra of Bore1 sets in E, and 
M ( E )  the family of all real-valued measurable functions on E. Further, let 
1C&(E) C M ( E )  be the subfamily of all bounded functions from M(E) with, 
for each g E &(E), its supremum nom 11g11 = supzEE 1g(z)1 . 

11.1.1 I’ransition Kernels 

In Chapter 8, we defined Markov processes on a denumerable state space E 
by a probability function and a family of stochastic matrices, describing the 
probability of being in a finite set of states. Now, in the case of an uncountable 
state space E, we have to consider more general subsets of E. 

Let P(E) denote the set of all probability meaSureS on B(E) .  A function 
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P : R+ x E x B( E) + [ O i l ]  is said to be a transition kernel if the following 
four conditions are fulfilled for all h, h l ,  112 2 0, t E E ,  B E B(E):  

P(h, 2: a )  E P(E) > (1 1.1 .l)  

(11.1.2) 

(11.1.3) 

(11.1.4) 

Condition (11.1.4) corresponds to the Chapman-Kolmogorov equation (8.1.1). 
At this moment we refrain from requiring a continuity property of P ,  that 
would correspond to (8.1.2). 

Definition 11.1.1 An E-valued stochastic process { X ( t ) , t  2 0 )  is called a 
(homogeneous) Markov process if there exists a transition kernel P and a 
probability measure a E P(E) such that 

P(X(0) E Bo, X( t1 )  E B1,. . ., X(t,) E Bn) 

P(tn - tn-1, Xn-1, b n )  . . . P(t17 20, dZt)a(dxo) i 
= LoL ,* -*L  

for all n = O , l ,  ~. ., Bo, B1,. . . B, E B(E) ,  to = 0 5 ti 5 . . . 1. t ,&. 

The probability measure a is called an initial distribution and we interpret 
P(h, 5, B)  as the probability that, in time h, the stochastic process { X ( t ) }  
moves from state x to a state in B. 

In Sections 7.1.3 and 8.1.3 we were able to construct a Miarkov chain and 
a Markov process with finite state space from the initial distribution and 
from the transition probabilities and the transition intensities, respectively. 
For Markov processes with continuous state space such a general construction 
principle is not always possible. However, using a continuous-time version of 
Kolmogorov's extension theorem (see Theorem 10.2.9) one can show that, in 
the case E = Rd, there exists a Markov process { X ( t ) )  such that a is its 
initial distribution and P its transition kernel, whatever the pair (a, P) .  Kote 
that this existence theorem remains valid if E is a complete separable metric 
space (see, for example, Ethier and Kurtz (1986)). 

Andogously to Theorem 8.1.1, we have the following conditional independ- 
ence property. 

Theorem 11.1.1 Let ( X ( t ) , t  2 0 )  be an E-valued stochastic process. Then, 
{ X ( t ) }  i s  a Markov process if and only if there exists a transition kernel 
P = {P(h ,  2, B)}  such that for all t ,  h 2 0, B E B(E)  

P ( X ( t  + h) E B I FF) = P(h,  X ( t ) ,  B )  , (1 1.1.5) 
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or equivalently for all t ,  h 2 0, g E A!&(E) 

(1 1.1.6) 

The proof of Theorem 11.1.1 is omitted. The sufficiency part follows 
immediately from Definition 11.1.1. A proof of the necessity part can be found 
in Chapter 4 of Ether and Kurka (1986). 

In Section 10.1.4, we introduced the notion of a Markov process with respect 
to an arbitrary filtration. Theorem 11.1.1 shows that each Markov process of 
that type is a Markov process in the sense of Definition 11.1.1. Consistent with 
the concept in Section 10.1.4, we d the { X ( t ) }  a strong Markow process with 
respect to its history (F:}, if with probability 1 

P ( X ( T  + h) E B I F:) = P(h, X ( T ) ,  B )  (1 1.1.7) 

on {T < oo}, for all h 2 0, B E D(E) and for each {F'}-stopping time T. 

11.1.2 The InBnitesirnal Generator 

Our main goal will be to construct martingales from a given Markov process. 
We will do this by subtracting the infinitesimal drift from the process, 
which generalizes the idea from Example 4 of Section 10.1.3. For this 
purpose we define the infinitesimal generator of a transition kernel which is a 
generalization of the notion of an intensity matrix introduced in Section 8.1.1 
for Markov processes with discrete state space. Let { T ( h ) ,  h 2 0) be a family 
of mappings from kfb(E)  to &(El.  Then, { T ( h ) }  is called a contraction 
semigroup on Mb(E)  if 

T(0) = I, (1 1.1.8) 

IIT(h)gil I 11911 (11.1.10) 

for all h, hl ,  hz 2 0 and 9 E k&(E), where I denotes the identity mapping. 

Lemma 11.1.1 Assume that { X ( t ) }  h an E-valued Markou process with 
transition kernel P = {P(h,;t ,  B ) } .  Let 

for any g E hft,(E). Then { T ( h ) }  is a contraction semagroup on h&(E). 
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Proof First note that T(O)g(z) = g ( z )  by (11.1.2) for all 2 E 6 9 E Afb(E), 
i.e. T(0) = I. For hl,h2 2 0 we have by (11.1.4) 

Wl + hz)g(z)  = J g ( ! / ) W 1  + ha, 2, dy) 

= Jg(ar )  /P(h?,z,dy)P(hi,z,dz) 

= J T(h2>9(Z)P(hl, 2, dz) = T(hl)T(hz)g(z) 

and (11.1.9) follows. Note that IT(h)g(z)l 5 J Ilgl(P(h,z,dy) = 11g11, where 
0 we used (11.1.1) in the equality. This gives (11.1.10). 

Consider a contraction semigroup { T ( h ) }  and define 

Ag = limh-’(T(h)g - g )  (1 1.1.12) 
h/O 

for each function g E &(E) for which this limit exists in the supremum 
norm and belongs to hfb(E). Let D ( A )  C Mb(E) denote the set of d l  
functions from Mb(E) which have these two properties. Then, the mapping 
A : D ( A )  + hfb(E) given by (11.1.12) is called the infinitesimal generator of 
{T(h) } .  The set D ( A )  is called the domaan of A .  For the semigroup given in 
(11.1.11) we find 

Ag(z) = limh-lE (g (X(h) )  - g ( z )  I X(0)  = z) 
hlO 

( 11.1.13) 

for all functions g E ’D( A ) .  
For a mapping B : (a ,b)  + &(E), where (a,b) C R is an arbitrary open 

interval, we defme the notions of the derivative and the Riemann integral in 
the usual way, considering convergence with respect to the supremum norm. 
We leave it to the reader to check that such an integral exists for right- 
continuous semigroups. In particular, let {T(h) ,  h > 0) be the contraction 
semigroup given in (11.1.11). If g E Mb(E) such that limhJoT(h)g = g then 
it is not difficult to show that the mapping h c) T(h)g  is right-continuous 
and the Etiemann integral s,” T(v + h)gdu exists for all t :  h 1 0. 

The nest theorem collects a number of important results for contraction 
semigroups. 

Theorem 11.1.2 Let { T ( h ) }  be a contraction semigroup and A its 
infinitesimal generator. Then the follocuang statements 
(a) I f g  E Mb(E) such that the mapping h I+ T ( h ) g  

hold: ~ 

is right-continuous at 
h = 0, then for t 2 0,  s,” T(v)gdv E D ( A )  and 

t 

T(t)g - g = A 1 T(v)g dv . 
0 

{ 11.1.14) 
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(b) I f g  E D ( A )  and t 2 0,  then T ( t ) g  E D ( A )  and 

(1 1.1.15) 
d+ 
dt - T ( t ) g  = A T ( t ) g  = T ( t ) A g  , 

where d+/d t  denotes the derivative from the right. 
(c) I f g  E D ( A )  and t 2 0,  then S , ’T(w)gdu E D ( A )  and 

t t t 
T ( t ) g  - g = A ]  T ( w ) g d w  = Jd  A T ( w ) g d w  = 1 T ( v ) A g d o .  (11.1.16) 

Proof (a) Since { T ( h ) }  is a contraction semigroup, it is not difficult to show 
that the mapping w I+ T ( w ) g  is right-continuous for all o 2 0. Moreover, the 
Riemann integral s,’ T(w + h)g  dw exists for all t ,  h 2 0. Let tr = t i /n.  Then 
limn+,(t/n) EL=, T ( t ? ) g  = s , ’T(w)gdv.  Since 

0 

rt 

we have T(h)  s , ’T(v)gdw = s,” T ( h ) T ( w ) g d w  = s,’ T(u + h ) g d v  which follows 
from the contraction property (11.1.10) of { T ( h ) } .  Thus, 

The right-continuity of u I+ T ( w ) g  implies that the right-hand side of the last 
equation tends to T ( t ) g  - g as h 4 0. 
(b) We have h - ’ ( T ( h ) T ( t ) g  - T ( t ) g )  = T ( t ) h - ’ ( T ( h ) g  - 9). Thus, (11.1.10) 
yields T ( t ) g  E D ( A )  and A T ( t ) g  = T ( t ) A g .  Moreover 

h-’(T(h + t ) g  - T ( t ) g )  = h-’(T(h) - I ) T ( t ) g  , 
which gives the right-hand derivative in (11.1.15). 
(c) The first part follows from (a) by noting that g E D ( A )  implies T ( h ) g  + g 
as h J. 0. The second part follows from (b) and from the fact that 

which can be proved as in the case of Riemann integrals of real-valued 
functions. 0 
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1 1.1.3 Dynkin’s Formula 

There is a close relationship between martingales and the infinitesimal 
generator as defined in (11.1.12). In particular, using Theorem 11.1.2 we 
can easily construct a class of martingales. This leads to the following 
generalization of Dynkin’s formula; see (10.1.7). 

Theorem 11.1.3 Assume that { X ( t ) }  i s  an E-valued Markov process with 
transition kernel P = {P(h,  z , B ) } .  Let { T ( h ) }  denote the semigroup defined 
in (11.1.11) and let A be its generator. Then, for each g E D ( A )  the stochastic 
process { M ( t ) ,  t 2 O} d~ an { . ~ ~ ~ } - r n a r t i n g a ~ e ,  where 

[ 11.1.17) 

Proof Recall that for each g E D(A),  we have Ag E Mt,(E) and therefore A g  
is measurable. Since { X ( t ) }  is cAdlag, the function A g ( X ( . , w ) )  is measurable 
as well. Thus, the Lebesgue integral s,’ A g ( X ( v , w ) )  du is well-defined for each 
w E fl because A g  is bounded. The assertion is now an easy consequence of 
Theorem 11.1.2. For t ,  h 2 0 we have 

t 

- 1 A g ( X ( v ) )  dtJ 

0 I’ 
= g ( X ( t ) )  - J’ A 9 ( X ( V ) )  do = I 1 . i ( t )  + g ( X ( 0 ) )  > 

= T ( h ) g ( X ( t ) )  - /” T ( v ) A g ( X ( t ) )  dv - A g ( X ( v ) )  du 

0 

where (11.1.16) has been used in the last but one equality. 0 

Examples 1. Let { N ( t ) }  be a Poisson process with intensity X and let the 
process { X ( t ) }  be defined by X ( t )  = N ( t )  - d for some c > 0. Then { X ( t ) }  
is a Markov process since it has stationary and independent increments; 
E = R. Furthermore, Theorem 5.2.1 implies that the transition kernel 
P = { P ( h , z ,  B ) }  of { X ( t ) }  is given by 

( 11.1.18) 
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Consider the semigroup { T ( h ) )  given in (11.1.11). Then, (11.1.18) implies that 
T ( h ) g ( z )  = ~ ~ o ( ( X h ) k / / k ! ) e - A h g ( r  + k - ch) for z E R and g E Mb(R). 
It follows readily that D(A) consists of all continuous bounded measurable 
functions which are differentiable from the left with a bounded left derivative 
and 

where we use the same notation for the left derivative as for the derivative 
itself. By Theorem 11.1.3, the process { M ( t ) }  with 

A g ( z )  = V g b  + 1) - 9 ( 4 >  - c g ( W  9 (1 1.11 19) 

1 

W t )  = g ( X ( t ) )  - 1 [ W X ( u )  + 11 - g ( X ( v ) ) )  - c g ( ' ) ( X ( v ) ) l  dv , 

is a martingale for each 9 E D(A). In particular, if A g  = 0 then g ( X ( t ) )  is a 
martingale. Therefore it is interesting to solve the equation 

0 

X ( g ( z  + 1) - g ( z ) )  - c g ( l ) ( z )  = 0 .  

A(es - 1) - cs = 0 

(1 1.1.20) 

Let us try the function g(z) = esz for some s E R. Then the condition 

(1 1.1.21) 

has to be fulfilled. Since the function g ' ( s )  = X(e6 - 1) -a is convex, (11.1.21) 
admits a (nontrivial) solution s # 0 if and only if A # c. Let SO denote this 
solution. If X = c then g ( s )  = z is a solution to (11.1.20). But Theorem 11.1.3 
cannot be applied because the functions g ( z )  = esx with s # 0 and g ( z )  = s 
are unbounded. However, from Examples 2 and 3 of Section 10.1.3, we see 
that the processes {exp(soX(t))} in the case X # c and { X ( t ) }  if X = c are 
{ Fp )-martingales. 
2. Assume {W( t ) }  is a standard Brownian motion. Let g be a bounded, 
twice continuously differentiable function such that g(2) E h&(R). Then it 
is not difEcult to see that g E D ( A )  and A g  = bg(* ) ,  where A is the 
infinitesimal generator of {W( t ) } .  To show this, one can use the fact that 
g ( z  + y) = g ( s )  + y g ( ' ) ( z )  + 4 y 2 g ( 2 ) ( z )  + y2r(y), where r(y) is a continuous 
bounded function converging to 0 as y -+ 0. 

11.1.4 The F'ull Generator 

We generalize the notion of the infinitesimal generator, keeping the same 
symbol A 85 before since no confusion is possible. 

The example considered in Section 11.1.3 shows that it would be desirable 
to also allow unbounded functions g in A g .  An auxiliary definition is that of 
a multaercalued linear operator. This is simply a set A C { ( g , 8 )  : g , 4  E M ( E ) }  
such that, if ( g i ,  8,) E A for i E {1,2} then also (a91 + bg2,a41 + b4z) E A 
for all a, 6 E R. The set D(A) = ( g  E M(E) : ( 9 ,  g )  E A for some 4 E M ( E ) )  
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is called the domain of the operator A. The multivalued operator A that 
consists of all pairs (g,fi) E M ( E )  x M ( E )  for which 

(1  1.1.22) 

becomes an (FF}-martingale, is called the f u Z Z  generator of the Markov 
process { X ( t ) } .  

Sometimes one requires that the process in (11.1.22) is only a local 
martingale. In that case, the set consisting of all pairs (g,fi) E M(E)  x M(E)  
with this weaker martingale property is called the &ended generator of 
{ X ( t ) } .  The concept of an extended generator will be studied in more detail 
in Chapter 13. 

Theorem 11.1.3 implies that the domain of the infinitesimal generator of a 
Markov process is always contained in the domain of its full generator. In the 
sequel, the generator will always mean the full generator. In what follows, we 
give criteria for a function g to be in the domain D(A)  of a generator A. We 
derive a formula showing how to obtain a function 8 such that (g,$) 6 A. 
The resulting martingale will then be used to determine ruin probabilities for 
risk models, that are more complex than those already studied in this book. 

Trying to simplify the notation, we will write Ag if we mean a function 8 
such that (g,8) E A. The reader should keep in mind that this fi is only one 
version of all functions g for which (g,g) E A. 

Bibliographical Notes. For a broader introduction to Markov processes 
with general state space and their infinitesimal and full generators, see Ethier 
and Kurtz (1986) and Rogers and Wiiiams (1994). 

11.2 CONSTRUCTION AND PROPERTIES OF PDMP 

The compound Poisson and the Sparre Andersen model are prime examples for 
stochast.ic processes having sample paths that are deterministic between claim 
arrival epochs. In the compound Poisson model, both the risk reserve process 
{R(t)} and the claim surplus process {S( t ) }  are even Markov processes. This 
is no longer true in the Sparre Andersen model. However, {R(t)} and {S( t ) }  
can be easily “hfarkovized” by considering the “age” of the actual inter- 
occurrence time at time t as a “supplementary variable”. Another possible 
supplementary variable is the (forward) residual inter-occurrcnce time up to 
the next claim arrival epoch. Even more general risk models can be forced 
within this hlarkovian framework, as will be seen later in this and the next 
chapter. These models include the following situations (see also Figure 11.2.1): 
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Figure 11.2.1 Possible modifications of the risk reserve process 

0 nonlinear deterministic paths between claim arrival epochs, 
0 additional jumps caused by reaching a boundary, 
0 claim arrival intensity and distribution of claim sizes depend on the actual 

value of the claim surplus or of a stochastic environmental process. 

The goal is to describe the evolution of such models by a Markov process 
{ X ( t ) }  whose trajectories have countably many jump epochs. The jump 
epochs and also the jump sizes are random in general. But, between the jump 
epochs, the trajectories are governed by a deterministic rule. 

We again assume that the state space E for the piecewise deterministic 
Markov process { X ( t ) }  to be constructed can be identified with a subset 
of some Euclidean space Rd. More specifically, let I be an arbitrary finite 
non-empty set and let {d,, v E I }  be a family of natural numbers. For each 
v E I ,  let C, be an open subset of Rdu. Put E = {(v, z )  : v E I ,  z E C,} 
and, as before, denote by B(E)  the c-algebra of Bore1 sets of E.  Thus I 
is the set of possible different external states of the process. For instance, 
in life insurance one could choose I = {"healthy", "sick", ''dead''}. C, is 
the state space of the process if the external state is v. This allows us to 
consider different state spaces in different external states. For simplicity, we 
only consider finite sets I even though the theory extends to infinite but 
countable I .  Then d = C,dy = 00, i.e. E is an infinite dimensional state 
space. In what follows, we use the notation X ( t )  = ( J ( t ) ,  Z(t) ) ,  where { J ( t ) }  
describes the external states of { X ( t ) }  and {Z ( t ) }  indicates the evolution of 
the external component. 

11.2.1 Behaviour between Jumps 

Between jumps, the process { X ( t ) }  follows a deterministic path, while the 
external component J ( t )  is fixed, J ( t )  = v, say. Starting at  some point 
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z E C,,, the development of the deterministic path is complete specified 
by its velocities at all points of C,,, i.e. through an appropriate function 
cy = (c1 , . . . , Cd,) : C, + Rd’ , called a vector fieZd. If a sufficiently smooth 
vector field is given, then for every z E C,, there exists a path tp,,(t, z) ,  called 
an integral curve, such that cp,,(O, z )  = z and (d/dt)cp,(t, z )  = c,,(cp,,(t, 2)). 

We need to assume that the function c,, satisfies enough regularity conditions 
to ensure the uniqueness of all integral curves, regardless of initial conditions. 
Sometimes it is convenient to  describe a vector field as a differential operator 
X given by X g ( z )  = EfL1 c ~ ( z )  (ag/azi)(z)  acting on differentiable functions 
g. If g is continuously differentiable, then for z ( t )  = q,,(t,z) we have 
(d/dt)g(z(t)) = z21 ci(z(t))(ag/&i)(z(t)) .  In other words, the integral 
curve {cp,,(t, z), t < t*(v, z ) } ,  where 

t * (v ,  z )  = sup{t > 0 : p,,(t, t )  exists and cpY(t, z )  E C,,} , 

is the solution to the differential equation 

(11.2.1) 
d 
dt -gCVu(t,Z)) = (Xg)(cpu(t,z)), cpv(O,z) = 2 . 

Denote by aC,, the boundary of C, and let 

YC,, = {Z E W,, : 2 = q~,,(t, z )  for some (t, z )  E IR+ x Cv) , 
r = { ( v , z )  E a E :  v E I , Z  E a*cy). 

U‘e will assume that (r, ,(t’(v:z),z) E r if t*(v ,z)  < 00. The set I‘ is called 
the active boundary of E. More transparently, I’ is the set of those boundary 
points of E, that can be readied from E via integral curves within finite time 
and t * ( v , z )  is the time needed to reach the boundary from the point (v ,z> .  
The condition cpv(t’(v,a),z) E 1: if t*(v,z) < 00 ensures that the integral 
curves cannot “disappear” inside E. 

Examples 1. For the compound Poisson model, consider the risk reserve 
process {R(t)} defined in (5.1.14). Then the deterministic paths between claim 
arrival epochs have the form cp(t, z )  = z + fit ; P > 0. Let g : R + R be 
differentiable. Since ( X g ) ( z  + at) = (d/dt)g(z + Dt )  = ,~?g(’)(z +- &), the 
operator X has the form X = @d/dz. Another choice is to use the integral 
curves cp’(t, ( z ,  h)) = ( z  + Pt, h + t )  where the state vector ( z ,  h) describes the 
actual risk reserve z and the time parameter h. For a differentiable function 
9’ : R x R + R we have 

d 
(X’g’)(z + Pt, h + t )  = z g ‘ ( z  + Pt,  h + t )  
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Thus we formally write that X‘ takes the form X = @(a/&) + (a/&). A 
more general case will be discussed in the next example. 
2. Let { X ( t ) }  be a PDMP with full generator A; see Section 11.2.2 for 
further details on the construction of {X(t)}. It is easy to incorporate 
an explicit time-dependence in the model. Note that the process { X ’ ( t ) } ,  
where X ’ ( t )  = ( X ( t ) , t )  is also a PDMP, now acting on E’ = E x R. Let 
z’ = (21 ,  . . . , zvdr h) E C, x R and let z‘ I+ g‘ (2 ’ )  E R be a differentiable 
function. For each h 2 0, denote the function C, 3 z c) g‘(z, h) by gh. Then 

(11.2.2) 

Hence formally we write X‘ = X + (a/ah), for the differential operator X‘ 
acting as in (11.2.2). We add a remark. Let A’ denote the full generator of 
( X ’ ( t ) }  and suppose that 9’ E D(A‘). Then, gn E D ( A )  for each h 2 0: where 
gh(z )  = g’(z, h). Moreover, a representative of (A’g’)(z,h) is given by 

(11.2.3) 

as can be shown by the reader. 

11.2.2 The Jump Mechanism 

To fully define a PDMP on ( E ,  B ( E ) ) ,  we need more than a family of vector 
fields {c, , Y E I } .  We also require a jump intensity, i.e. a measurable function 
X : E + &, and a transition kernel Q : ( E  u I‘) x B ( E )  + [0,1], i.e. Q(z, - )  
is a probability measure for all 2 E E u I’ and Q(.  , B )  is measurable for all 
B E B(E) .  Note that in actuarial terminology, the jump intensity X can be 
interpreted as a uforce of transition”, whereas Q(r , . )  is the “after jump” 
distribution of a jump from state z (if z E E )  or from the boundary point. z 

We construct a stochastic process { X ( t ) }  with (deterministic) initial state 
(if 2 E r). 

= (VOl 20) E E. Let 

Further, let (TI be a nonnegative random variable with distribution function 
F1 (t), and ( N l , Z , )  an E-valued random vector with conditional distribution 
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and let ok > o k - l  be a random variable such that P(uk S vk-1 + t I 
F$-l) = Fk(t).  Furthermore, let ( N k , Z k )  he an E-valued random vector 
with conditional distribution 

P ( ( N k , z k )  E' I~~-,,~k)=Q((PNb-~(~k-~k-lrZk-l),')~ 

If c&-i 5 t < ok, let x ( t )  = (Nk-l,(PNb--l(t - ok-l,Z&-l)). Denote by 
{N(t) , t  3 0 )  the counting process given by N(t) = xgl I(o, 5 t ) .  We 
assume for a,lI t E R+ that 

E N ( t )  < 00,  (11.2.4) 

so that limk+.m uk = 00 and the random variables X(t) are well-defined for 
each t 2 0 by the above construction. To construct a process with a random 
initial state X(O),  sample with respect to an arbitrary initial distribution a. 

We leave it to the reader to show that (11.2.4) holds if (a) the jump 
intensity X(z) is bounded and if one of the following conditions is fulfilled: 
(bl) t * ( t )  = rn for each z E E,  i.e. i' = 0, meaning that there are no active 
boundary points, or (b2) for some E > 0 we have Q(t,BE) = 1 for all 5 E l", 
where BE = {z E E : t * (s)  2 E } ,  i.e. the minimal distance between consecutive 
boundary hitting times is not smaller than 6. 

Theorem 11.2.1 The stochastic process { X ( t ) , t  2 0) defined above is a 
strong Markov process with respect to its history {3iy}. 

The proof of Theorem 11.2.1 is omitted since it goes beyond the scope of 
this book. It can be found in Davis (1984), p. 364. Since the behaviour 
of the trajectories of { X ( t ) }  between the jump epochs is governed by a 
deterministic rule, one says that {X(t)} is a piecewise detenndndstic Markou 
process (PDMP). 

11.2.3 

Our next step is to construct martingales associated with a PDMP { X ( t ) } .  
According to the definition of the full generator given in Section 11.1.4, we 
have to find a function in the domain D(A)  of the generator A of { X ( t ) } .  
This raises two problems: 

0 to fmd conditions for a measurable real-valued function 9 on E to belong 

The Generator of a PDMP 

to D(A) and 
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0 to determine a function A g  such that (9, Ag) E A. 
These problems are generally hard to solve. Fortunately, solutions are possible 
if we restrict ourselves to a subset of D ( A ) ,  amply sufficient for the insurance 
setup. Example 1 in Section 11.1.3 shows a clear way on how to find a 
function Ag for which (9 ,  Ag) E A. For { N ( t ) }  a Poisson process, the process 
{ X ( t ) }  with X ( t )  = N ( t )  - ct is easily shown to be a PDMP. Moreover, in 
Section 11.1.3 we showed that (9, Ag) E A if both the function g is bounded, 
measurable and differentiable from the left with a bounded derivative and if 
Ag is given by (11.1.19). The following theorem yields an extension which is 
crucial for many results derived further in the present chapter. Recall that 
a function g ( g )  is called absolutely continuous if there exists a Lebesgue 
integrable function f(y) such that g(y) = g(y0)  + s,", f(z) da. As usual in 
analysis, we use the identity JL f(z) dz = - s," f(z) dz. 

Theorem 11.2.2 Let { X ( t ) }  be a PDMP and let g* : E U I' + R be a 
measurable function satisbng the following wndations: 
(a) for each ( v , z )  E E ,  the function t e g*(v,cpv(t ,z))  is absoktelg 

(b) for each z on the boundary I' 
wntantrous on (0, t'(v, t)), 

r 
(11.2.5) 

(c) for each t 2 0,  

E ( c 19*(X(Oi)) - g*(X(ua-M) < 00 * (1 1.2.6) 

Then g E D ( A ) ,  where g denotes the restriction ofg' to E ,  and (9, Ag) E A ,  
where Ag is given by 

i:ai I t  

( A g ) ( x )  = ( X g ) b )  + X(z) /p1) - gb))Q(z,dy) - 
Proof Inserting (11.1.22) into (10.1.3), we have to show that 

(11.2.7) 

for all t ,  h 2 0. The above condition only makes sense if the random variable 
on the left-hand side of (11.2.8) is absolutely integrable. Our first attention 
goes to the verification of this integrability property. By Theorem 11.2.1, the 
left-hand side of (11.2.8) can be written in t.he form 

t+h 

E ( 9 ( W  + h) )  - S ( X ( t ) )  - J ( ( X g ) ( X ( v ) )  + X(X(v ) )  
t 
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We now condition on X(t) = x E E.  Then 

t+h 
/ I - /  

It therefore suffices to show that for each t 1 0 

If no jump takes place at time 21, then any integral curve of the differential 
operator X satisfying condition (a) yields ( X g ) ( X ( v ) )  = (d/dv)g(X(v)). 
Therefore 

and we need to show that 
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For notational convenience, assme X(0)  = 2, where 2 = ( v , z )  E E is 
an arbitrary (deterministic) initial state of { X ( t ) ) .  Let us first consider the 
expression E (g(X(a1 A t ) )  - g*(X((al A t) - 0))). Condition (11.2.5) implies 
that E [g(X(al A t ) )  - g"(X((Cr1 A t )  - 0)); q 2 t A t*(z)]  = 0. E'rom the 
construction of the PDMP { S ( t ) }  we have 

and 

Thus we find 

As the last expression is also valid for a random initial state, we. can drop 
the assumption X(0) = P.  The reader should show that, for each k 2 1, the 
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jump epoch Uk is an (FF}-stopping time. Moreover, from the strong Maxkov 
property of {X(t)} in Theorem 11.2.1, we conclude that 

E(E(g(X(Ok A t ) )  - g"(-X(Ok A t )  - 0) 1 F u ~ - ~ ) )  
E (g(X(~k A t ) )  - ~ * ( X ( Q  A t )  - 0)) 

= 

This yields 

Analogously, it follows that 
N ( t ) A n  

and by the monotone convergence theorem 
N[t\ 

t 

= E (/ NX(v)) ldy) - dX(v))IQ(X(t.*), d ~ )  dv) . 
0 

In particular, by (11.2.6), the random variable on the left-hand side of (11.2.9) 
is absolutely integrable. Hence (112.9) is valid and the assertion of the 
theorem has been proved. 0 

Note that in the proof of Theorem 11.2.2 we could not use the infinitesimal 
generator and (11.1.17) because we did not want to assume that g is bounded. 
Also, the finiteness condition in (11.2.6) is fulfilled when g is bounded. 
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In forthcoming applications of Theorem 11.2.2, we will frequently use the 
following method. Let { X ( t ) }  be a PDMP with generator A. We look for 
a measurable function g* satisfying the conditions of Theorem 11.2.2 and 
for which A g  = 0. The process { g ( X ( t ) )  - g ( X ( 0 ) )  : t 2 0) is then an 
{F~}-martingale; see (11.1.22). For the extended PDMP {X’ ( t ) } ,  we have 
the following easy consequence of Theorem 11.2.2. 

Corollary 11.2.1 Let { X ( t ) }  be a PDMP on the state space E with active 
boundary r. Consider the PDMP {X’ ( t ) }  with X‘(t)  = ( X ( t ) , t ) ,  acting on 
the state space E‘ = E x R with the active boundary I“ = I? x R. Let 
g* : E’ U r’ + IR be a measurable finction which satisfies the conditions of 
Theorem 11.2.2 with respect to the atended PDMP {X’( t ) } .  Then g E ’D(A’), 
where g denotes the restriction of g* to E’, and ( g ,  A’g) E A’, where A’g is 
given by 

(A’g)(z,t) = ( xg , ) ( z )+$(z , t )+Ws)  /E ( s t ( v ) - s t ( z ) )Q(z ,dy ) .  (11-2.10) 

Proof The jump intensity A(%, t) and the transition kernel Q ( ( z ,  t),d(y, t ) )  of 
the extended PDMP {X’( t ) }  are given by  

t )  = X(z) Q((2, % d b ,  t ) )  = Q(2, dy), (11.2.11) 

where A(%) and Q(z,dy) are the corresponding characteristics of { X ( t ) } .  By 
0 

Example Here is an application of Theorem 11.2.2 to nonhomogeneous 
Markov processes. In Section 8.4 we considered a class of nonhomogeneous 
Markov processes { X ( t ) )  with state space { 1, . . . , l )  and measurabIe matrix 
intensity function &(t) .  We took the function maxlsisp \qii(t)l to be integrable 
on every finite interval in R+. Under these assumptions, the number of 
all transitions of the process { X ( t ) }  in any finite interval is bounded and 
integrable. A crucial observation is that the extended process { ( X ( t ) ,  t)} is 
a homogeneous Markov process and moreover a PDMP with I = (1 , .  . . , t } ,  

From Theorem 11.2.2 we get the following extension of Dynkin’s formula 
derived in Section 10.1.3 for the homogeneous case; see (10.1.7). Let 9 : 
I x R+ + R+ be such that for each i E I the function g(i , t )  is absolutely 
continuous with respect to t. Then the process { M ( t ) }  with 

using (11.2.2), (11.2.10) follows from Theorem 11.2.2. 

cu = R, W v , t )  = - & / Q ” j ( t ) ,  &((V,t), (v’,t)) = qvu’ ( t ) /X (v ,% (v’ # 
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is an {Fc}-martingale, where g(t )  = (g(1, t), . . . , g(L, t)). Further martingales 
of the same type can be obtained as follows. Let i, j E I be fixed with i # j 
and consider the number N,, (t) of transitions of the nonhomogeneous Markov 
process { X ( t ) }  from i to j by time t; see also Section 8.4.3. The process ( X r ( t ) )  
defined by X ‘ ( t )  = ( X ( t ) , N j , ( t ) , t )  is again a PDMP whose characteristics 
can be easily specified. Consider the function 9’ : I x IN x R+ + R given by 
g’(i,n,t) = n which satisfies the conditions of Theorem 11.2.2. The process 
{A4i3(t)} defined by M i j ( t )  = Ni3(t)  - s,” I(X(v) = i)qi,(v)dv is an (3:)- 
martingale. Hence, for any locally integrable function a : lR+ + lR,+ 

E (i a(v)cW,.(c) I X(t) = i) = 1 a(v)pv(t,v)q,,(zl)du. 
t’ t‘ 

(11.2.12) 

In various applications, particularly in optimization problems, expectations 
of the form E (f” exp(- s , ’~(X(v) ,v)  dv) y(X(t),t) dt) have to be computed 
for some fixed time horizon to ,  where A(t) = exp(- so .(X(v), v) dzt) can be 
interpreted aa a discounting factor and y ( X ( t ) ,  t) as a cost function. For this 
purpose we need the next result. 

Theorem 11.2.3 Let {X(t)} be a PDMP with state space E and generator A. 
For to  > 0 f ied ,  let K : E x [0, to] + R+ and y : E x  [0, to] + R be measurable 
functions. Furthermoret consider the mectsurable functions g : E x R + R 
and gter : E + R, where the latter fvnctaon modekr terminal costs. Suppose 
that 
(a) g(s, t) fulfils the conditions of Corollary 11.2.1, 

(c) -(G t) + (Agt)(z) - ~ ( x ,  t)g(z, t) + ~(s, t )  = 0 for all t 5 t o .  
Then 

t 

t 

(b) ~ ( z ,  t o )  = Bter(Z) for all E E ,  
8s 
Bt (11.2.13) 

g ( X ( O ) , O )  = E ( / ( O e x ~ ( - J t ~ ( X ( v ) , v ) d ~ )  0 0 y(X(t),t)dt 

  ex^(-[ 4X(v),v) dv) gter(x(t0))) * (11.2-14) 

Pmof From (11.2.3) we have that the generator A’ of the extended PDMP 
{ X ‘ ( t ) } ,  where X r ( t )  = (X(t),t) is given by (A’g)(z,t) = (Agt)(s) + 
(O/&)g(z,t), where gt(s) = g(z,t). Thus Corollary 11.2.1 implies that the 
process { M ( t ) ,  t 2 0) with 



PIECEWISE DETEFWINISTIC MARKOV PROCESSES 455 

is a martingale. Kote that { M ( t ) }  is pathwise absolutely continuous by 
condition (a) of Theorem 11.2.2. Thus, in differential terms we can write 
dg(X(t),t) = dM(t) + ( ( a g / & ) ( X ( t ) , t )  + ( A g t ) ( X ( t ) ) )  dt. Then, for the 
function A(t )  = exp(- so ~ ( X ( v ) , v )  dv) we have t 

d(A(t>dx.(t), t ) )  = W ( d g ( X ( t ) ,  4 - K ( X ( t ) ,  t )  9 W W ,  t )  dt) 

= 4(t)(d:M(t) + ( g ( X ( t ) ,  t )  + ( A g t ) ( X ( t ) )  - n ( X ( t ) , t M X ( t ) , t ) )  dt) 
= - A ( t )  ( y ( X ( t ) ,  t )  dt - dAd(t)) , 

where we used (11.2.13) in the last equality. This yields 

see Example 5 in Section 10.1.3. The assertion follows. 

11.2.4 

Suppose that an insurance contract guarantees the insured an annuity 
payment at constant rate during sickness. However, there is an elimination 
period of length yo, by which we mean that the annuity payment only starts 
when the insured is sick for longer than yo units of time. Suppose that the 
insured can be in any one of three states: healthy (l), sick (2), dead (3). 
Transitions from state 1 are assumed to depend only on the age t of the 
insured, those from state 2 also depend on the duration of sickness at time t ,  
while state 3 is absorbing. Define the stochastic process { X ( t ) ,  t 2 0) by 

if the insured is healthy at t ,  
if the insured is sick at t for a period 9,  (11.2.15) 
if the insured is dead at  t. 

We assume that { X ( t ) }  is a PDMP, with I = {1,2,3}, CI = R, C2 = R2 and 
C3 = R. The active boundary I’ is the empty set. The transitions from one 
state to another are governed by the following transition intensities. Let X, i ( t )  
denote the transition intensity from state (1, t )  to state (2, ( t ,  0)) if i = 2 and 
to state (3,t) if i = 3. Further, h , i ( t , y )  is the transition intensity from state 
(2, ( t ,  y)) to state (it t ) ,  where y denotes the duration of sickness at time t .  
With the notation introduced in Section 11.2.2, we have 

An Application to Health Insurance 

(1, t )  
(2, ( t ,  9 ) )  { (3: 1) 

X ( t )  = 

X(l,t)Q((l ,t) ,(2,(t ,O))),  i f i  = 2, 

X(2, ( t ,  Y)) Q((2, (t, I/)), (1, t ) ) ,  
X(2, ( t ,  Y)) Q((2, ( t ,  Y)), (3, t))l 

Ali(t) = { W , t )  Q((1, t ) ,  (3, t ) ) ,  if i = 3, 

if i = 1, 
if 2 = 3. ~ 2 i ( t , y )  = { 
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Proof Due to the special structure of the PDMP { X ( t } }  defined in (11.2.15), 
0 

Suppose that, if the insured is in state 2, the insurance company pays an 
annuity at rate a(t,y) = I(y 2 yo) after the elimination period of length go. 
Thus, we use here the annuity rate as a monetary unit. Let 0 5 t < t o .  We are 
interested in the expected payment in the interval [t, to]  knowing the state at 
time t .  As before, the external state component of X ( t )  is denoted by J ( t ) .  
Clearly, if J ( t )  = 3 then there is no payment after 1 and therefore we have the 
expected payment j43(t) 0. We want to know the expected payments p l ( t )  
and pz(t, y) defmed by 

the statement immediately folIows from (11.2.7). 

p ~ ( t )  = E (/”” I ( J (v)  = 2,Y(v) 2 yo)dv 
t 

where Y(t) denotes the duration of sickness at time t .  
The current model is essentially different from the life insurance model in 

Section 8.4.3. There, the nonhomogeneous Markov process { X ( t ) }  could be 
extended to a homogeneous Markov process by simply adding the time t ,  
i.e. by replacing X ( t )  by X’(t)  = ( X ( t ) , t ) .  To get a homogeneous Markov 
process, we needed the additional state variable Y(s) to deal with the 
elimination period yo during which the insured does not get any annuity 
payment even though he is in state 2. Also, the current model discards the 
economic context originally present in the discounting. 

The derivation of the next result is similar to that of Theorem 11.2.3. 
However, we do not directly apply Theorem 11.2.3 to the presently studied 
PDMP { X ( t ) }  since the time variable t is already included into .X( t ) .  
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Theorem 11.2.4 Assume that the functions gI( t )  and g 2 ( t , p )  solve the 
following system of partial dafferential equations: 

a91 ~ ( t )  k2(t)g2(tr0) - ( X 1 2 ( t )  & ( t ) ) g i ( t )  = 0, (11.2.16) 

- ( X 2 1 ( t , ~ )  + X23(t181))g2(t,~) + I (Y  L go) = 0, (11.2.17) 

with boundary conditions g1 ( t o )  = & ( t o ,  y) = 0. I f f o r  z = (v, z) the function 

g(2) = g2(t,y) if v = 2, z = ( t ,  y) and t to 
g 1 ( t )  if v = 1 ,  2 = t 5 to 

( 0  otherwise 

satisfies cunditiom (a)-(c) of Theorem 11.2.2, then 

Eg(X(t)) = E (1‘ l ( J ( v )  = 2, Y ( v )  190) dv) . 

Proof Theorem 11.2.2 implies that the process { M ( t ) ,  t 2 0) with 

(1 1.2.18) 
t 

t 

JW(t) = g ( X ( t ) )  - g ( X ( 0 ) )  - 1 (Ag)(X(v) )  dv 
0 

is a martingale. Thus, in differential terms we have dg(X(t)) = dM(t) + 
(Ag)(X(t))dt. Using Lemma 11.2.1 and the system of partial differential 
equations (11.2.16)-(11.2.17), this leads to dg(X(t)) = d M ( t )  - I ( J ( t )  = 
2, Y ( t )  2 yo) dt. Integrate this equation over the interval [t, to] and use the 
fact that { M ( t ) }  is a martingale to obtain 

By the boundary conditions we have Eg(X( t0 ) )  = 0, and hence (11.2.18) 
0 follows. This hishes the proof of the theorem. 

Corollary 11.2.2 If the function y considered in Theorem 11.2.4 satisfies the 
conditions of Theorem 11.2.2 for every (degenerate) initial dastributaon of the 
P D M P  { X ( t  + s),s 10}, then g 1 ( t )  = p ~ ( t )  and g 2 ( t r y )  = p 2 ( t , y ) .  

Proof Conditioning 00 X ( t ) ,  the statement follows from Theorem 11.2.4. 0 

Theorem 11.2.4 and Corollary 11.2.2 show that we have to determine 
the functions g l ( t )  and gz(t ,y)  if we want to compute the conditional 
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expected payments pl(t) and p2(t ,y)  or the unconditional expected payment 
considered in (11.2.18). This then requires the solution to the system of partial 
differential equations (11.2.16)-(11.2.17). Under some regularity conditions 
on the transition intensities & ( t )  and &(t,y), this system admits a unique 
solution which is bounded on compact sets. For instance, this is the case 
if X i j  ( t?  y) are uniformly continuous on bounded intervals; see, for example, 
Chapter 1 of Forsyth (1906). 

In the rest of this section we assume that these regularity conditions hold 
well as the conditions of Corollary 11.2.2. The following approximation 

technique can then be invoked when solving the equations (11.2.16)-(11.2.17) 
numerically. 

Consider the sequence {on} of all consecutive instants when the external 
component { J ( t ) }  jumps and let N ( t )  denote the number of these jumps in 
the interval (0, t ] .  Start with g f ( t )  = g,"(t, y) = 0 for all t E [0, to] and define 
the functions gr(t) and g p ( t ,  y) recursively by 

$+'(t) = E(&(oAto,O)H(J(o) = 2 )  I J ( t )  = l ) ,  (11.2.19) 
92"+'(t,Y) = E((oVl!o-$IVYo) 

+ g?(o A t o )  ~ ( J ( I J )  = 1) I J ( t )  = 2,Y(t) = 9111.2.20) 

Here, 0 = Q N ( ~ ) + ~  denotes the next jump epoch of the external state 
component after t. It is easily seen by induction that g?(to) = g;(tO,g) = 0 
for all n 2 1. 

Theorem 11.2.5 L e t g l ( t )  andg2(t,y) be the solutions to (11.2.16)-(11.2.17). 
Then 

(1 1.2.21) 

Proof The reader should prove that the functions gp( t )  and gc(t,y), defined 
in (11.2.19) and (11.2.20), can be represented in the form 

At0 

gF(t) = E (4 I ( J ( v )  = 2,Y(v) 2 yo)dv I J ( t )  = l , N ( t )  = 0 ) ,  
(11.2.22) 

U , A t 0  

g a t ,  Y) = E (1 I (J (v )  = 2, Y(V) 2 Yo) dv I 
J ( t )  = 2,Y(t) = y , N ( t )  = 0) .  (11.2.23) 

By Corollary 11.2.2, the statement of the theorem then follows from the fact 
0 

In a simulation of the PDMP { X ( t ) } ,  estimates of g r ( t )  and $ ( t ,  y) can be 
directly computed from (11.2.19) and (11.2.20). An alternative is to use the 
following result. 

that { X ( t ) }  is Markov and that limn-,= on = inf{t : J ( t )  = 3). 
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Theorem 11.2.6 The functions g?(t) and g$(t,y) defined in (11.2.19) and 
(11.2.20) solve the following system of differential equations: 

- (A21 (t, 9) f A23 (t ,  Y))&+' ( t ,  3) -k l(g 2 Y O )  = 0 9 (11.2.25) 

with the boundary conditions g:+'(to) = g;+'(to,y) = 0 .  

The proof of this theorem is left to the reader. Notice that the system 
(11.2.24)-(11.2.25) has a simpler structure than the original system (11.2.16)- 
(11.2.17) since the equations (11.2.24)-(11.2.25) can be solved separately. 

Bibliographical Notes. The general class of PDMP was introduced 
in Davis (1984), where Theorem 11.2.3 was proved for the first time. 
For (partially) more specific classes of Markov processes with piecewise 
deterministic paths and for other related results, see also Dassios and 
Embrechts (1989), Davis (19!33), Embrechts and Schmidli (1994), fianken, 
Konig, Arndt and Schmidt (1982), Gnedenko and Kovalenko (1989), 
Miyazawa, Schassberger and Schmidt (1995) and Schassberger (1978). Notice 
in particular that Dassios and Embrechts (1989, p. 211) used Theorem 11.2.3 
to determine an optimal dividend barrier in the compound Poisson model. 
The representation of the permanent health insurance model considered in 
Section 11.2.4 in terms of a PDMP is due to Davis and Vellekoop (1995). 
They also showed that the solution to the system (11.2.16)-(11.2.17) can be 
found numerically. For an applica.tion of PDMP to disability insurance, see 
Moller and Zwiesler (1996). 

11.3 THE COMPOUND POISSON MODEL REVISITED 

We first reconsider the compound Poisson model of Section 5.3 and demon- 
strate on simple examples how the method of PDMP works in the context of 
risk theory. In this section, the net profit condition (5.3.2) is taken for granted 
and we look for new expressions for characteristics of the time of ruin. The 
extension to the usual economic environment is considered in Section 11.4, 
while in Chapter 12 a stochastic environmental process controls the risk model. 

11.3.1 Exponential Martingales via PDMP 
We again apply the method of PDhlP to get martingales related to the risk 
reserve process in the compound Poisson model, paving the road for more 
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general risk models considered in Chapter 12. 
Let {R( t ) }  with R(t )  = u + Pt - Cz((,) Vi be the risk reserve process in 

the compound Poisson model considered in Section 5.3. It is easy to see that 
{ (R( t ) ,  t ) }  is a PDMP with state space E = R2. The set I of external states 
consists of only one element and is therefore omitted. The characteristics of 
the PDMP { ( R ( t ) , t ) }  are given by 

and X(y,t) = A, & ( ( y , t ) , B ~  x B2) = I(t E Bz)Fu(y - B I ) ,  where y - B = 
{y - v : Y E B } ;  €Ii E B(R) for i = 1,2. The active boundary r is empty. 

We are interested in functions g E D(A) or more specifically functions that 
satisfy the conditions of Theorem 11.2.2. Condition (a) is fulfilled if and only if 
g is absolutely continuous. Condition (11.2.5) becomes trivial because r = 8. 
Suppose now that g satisfies (11.2.6). Then, by Theorem 11.2.2, 

By Theorem 11.1.3, we need to solve the equation A g  = 0 if we want to find 
a martingale of the form {g(R(t),t),t 2 0). 

If we would be interested in a martingale {g (R( t ) ) }  that does not explicitly 
depend on time, then the equation to solve would be 

P9(')(Y) + A(/" g(y - v) dFu(v) - dY)) = 0 -  (11.3.1) 

The latter equation is similar to (5.3.3). Indeed, if we put g(y) = 0 for all y < 0 
and g(y) = q(y) for y 2 0, then we recover (5.3.3). But the only absolutely 
continuous function g(g> satisfj4ng (11.3.1) with boundary condition g(y) = 0 
for y < 0 is the function g(y) = 0, as can be easily shown by the reader. 

We now try a function of the form g(y, t) = expf-sy - Bt), where we 
assume that *u(s) < 00. We will see in a moment that B has to depend on 
s, i.e. B = 13(s). Then the equation A g  = 0 yields 

0 

03 

-Psg(y, t) - B(s)g(y, t) + A (  / e-'(*-') dFU(v)e-'(')* - g(y, t)) = 0 
0 

or, because g(y,t) > 0, equivalently -9s - B ( s )  + A ( h ~ ( s )  - 1) = 0. Hence 

B ( s )  = X(hia,(S) - 1) - ps .  (1 1.3.2) 

Notice that this function was already considered in Section 5.4.1 in connection 
with the adjustment coefficient in the compound Poisson model. Moreover, the 
stochastic process { M ( t ) )  with 

M ( t )  = exp(-sR(t) - (A(7iz~(s)  - 1) - 8 s ) t )  (11.3.3) 
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has already been obtained in Example 3 of Section 10.1.3. Trying to apply 
Theorem 11.2.2 in an attempt to get a martingale, it still remains to verify 
that (11.2.6) holds for g ( y , t )  = exp(-sy - O(s) t ) ,  where O(s) is given by 
(11.3.2). This can be seen horn the following computation: 

i=l 

i= 1 j=1 

11.3.2 

In this section we consider the canonical probability space (O,F,P)  of the 
risk reserve process {R( t ) :  t 2 0) in the compound Poisson model, where R is 
the (Borel) subset of D(lR+) consisting of all possible sample paths of {R(t)},  
and 3 = B(fl>. Let {Ft}  be the (uncompleted) history of { R ( t ) ) .  

Recall that by T,, Un we denote the interoccurrence times and claim sizes, 
respectively, where in the compound Poisson model {Tn} is a sequence of 
independent random variables with common exponential distribution Exp(X), 
independent of the sequence {Un). The sequences Tn and Un are considered a~ 
random variables on the canonical probability space (Q, 3: P) of {R( t ) ) .  It is 
rather obvious that for each n E IN, the claim arrival epoch = 7'1 + . . . + Tn 
is an {Ft)-stopping time. 

Let s E IR be fixed such that fhv(s) < 00. Then, for the martingale 
{ M ( t ) :  t 2 0) given in (11.3.3) we consider the family of probability measures 

Change of the Probability Measure 
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{P!”’,t 2 0) defined as in (10.2.23), that is 

Pj”’(A) = E [h.l(t); -41 , A E .Ft . (11.3.4) 

&om Kolmogorov‘s extension theorem, see Remark 2 in Section 10.2.6, we 
get that there exists a “global” probability measure Pis) on ($1,3) such that 
the restriction of P(’) to .Ft is Pi”’. Let E(’) denote the expectation under 
P(s). 

Lemma 11.3.1 For all t 2 0 and A E 3 t ,  

and 
p(A) = E(s)[es(R(T)--U)+e(8)7; A] . (1 1.3.8) 

Proof Observe that (11.3.5) is an immediate consequence of the defining 
equations (11.3.3) and (11.3.4). Furthermore, using (10.2.28) we get (11.3.6). 
Formula (11.3.7) follows from Lexnma 10.2.2b. To show the validity of (11.3.8) 
we use (10.2.28) and apply Lemma 10.2.2b to the martingale {M-’( t ) ‘  t 3 0 )  

0 

The change of measure technique stated in Lemma 11.3.1, combined with 
the method of PDMP, is a powerful tool when investigating ruin probabilities. 
In the present chapter we illustrate this for the compound Poisson model, 
leaving further examples to Chapter 12. We show first that, under the 
measure P(‘), the proces.. { R ( t ) )  remains a risk reserve process in a compound 
Poisson model. For convenience, we denote the original probabdity measure 
by P(O) = P. 

Theorem 11.3.1 Let s E R such that Ijtu(s) < 00. Consider the probabddy 
space (0~3, ~ ( ‘ 1 ) .  men,  the foliowing statements are true: 
(a) Under the measure P(*), the process { R ( t ) }  i s  the risk reserve process 
an the compound Poisson model with premium rate ,3, claim am’val intensity 
A(@ = Ahu(s)  and claim size distribution F$)(s) = s: esY dFu(g)/&u(s). 
In particular, 

E(‘)R(l) - u = - 6 ( ’ ) ( s ) .  (1  1.3.9) 

given on the probability space ((1, F,P(’)) .  
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(b) If s' E R mch that &I(s') < 00 and s # s', then P(') and P(") are 
singular on F. 
Proof (a) Since the set of trajectories of the risk reserve process {R( t ) }  is the 
same under the measures P ( O )  and P('). it is clear that the premium rate is B 
under both measures. Let la E IN be fixed and let Bi,B: E B(R), 1 5 i 5 n. 
Notice that vn = Edl T, is an {&}-stopping time which is finite under P(O). 
Thus, from (11.3-7) we get that 

n 
P(S) ( n{Ti E B ~ ,  ui E B;}) 

i= 1 

and the first part of assertion (a) follows. The expression E('IR(1) - u = 
p - (X%u(s)) ( r i $ ) ( s ) / ~ u ( s ) )  = -8(l)(s) is now obtained from (5.2.8) 
because E (*)Ui = f? yes# dFU(g)/hU(s) = k;)(s)/r?au(s). In order to prove 
(b), observe that from (11.3.9) and from the law of large numbers for additive 
processes (see Theorem 10.3.4) it follows that 

') lim t-l(R(t) - u) = lim t-'(R(t-) - u) = -8(')(s)) = 1 , 
p( Loo t+m 

where { R ( t - ) }  is the left-continuous version of {R(t)}.  Thus, the measures 
P(') and P(*') are singular unless f?(l)(s) = 8(1)(s'). However, the latter can 
only happen if s = s' since 8(s) is strictly convex, which means that 8(')(s) is 

D 

Using Lemma 11.3.1 one can easily show that the ruin probabilities $(u)  

strictly increasing for all s > 0 where 8(s) is finite. 

and $(u; 2) can be expressed under the new measure P('). 

Theorem 11.3.2 For each s E R such that riZu(s) < 00, 

= E (~)[,sR(~(u))+e(s)r(U); r(u) < 0O]e-'u ( 1 1.3.10) 

(11.3.1 1) 
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The proof of this theorem is left to the reader. 
Formula (11.3.11) constitutes a continuous analogue to (9.2.23) and is useful 

to simulate ruin probabilities. Indeed, if the event {~(u) 5 z} has a large 
probability under P(‘), the right-hand side of (11.3.11) can be simulated 
efficiently and yields an estimator for $(u; z), see also Section 9.2.5. Equivalent 
representations for +(u) and +(u; 2) in terms of the claim surplus process were 
derived in (10.2.29) and (10.2.30). 

11.3.3 Cram&-Lundberg Approximation 

In this section we show how (11.3.10) can be used to recover the Cram&- 
Lundberg approximation $app(u) to $(u) given in (5.4.16). Assume that the 
adjustment coefficient 7 > 0 exists and rhc)(y) < 00. First note that (11.3.10) 
is not very useful for s # y because then the joint distribution of R(.r(u)) 
and ~ ( u )  is needed. However, we can get rid of the term involving r(u) by 
choosing an s such that 6(s) = 0, that is s = 7. Since the function 6(s) defined 
in (11.3.2) is convex, we have B(’)(- j )  > 0. From Theorem 11.3.1 we know that 
E(?)R(l) - u = --6(’)(7) < 0 and thus P“)(T(U) < .o) = 1. Using (11.3.10) 
this gives 

$(u) = e-yUE (?) exp(yR(.r(u))) . (1 1.3.12) 
Comparing (5.4.10) and (11.3.12) we still have to show that 

lim E(’)exp(~R(~(u)))  = (@ - Ap)(Arizc’(p) - /3)-’. 

Let g(u) = E(7)exp(~R(~(u) ) ) ,  T- = inf{t 2 0 : R(t) < u }  and F(y) = 
P(rl(u - R(.r-) 5 g). Notice that T- = ~ ( 0 )  and that F is the ladder-height 
distribution at the first descending ladder epoch .r- of {R(t)}. Moreover, 

U+OO 

d 

g(u) = E(’) (E(7)(eYR(r(u)) 1 7-,R(.r-)))  

- E(?) E(7)(eyR(r(u)) I T-?R(T-) )I (R(T-)  2 0)) 

+E(7) E(7)(eYR(T(U)) I T- ,R(T-) )I (R(T-)  < 0)) 
( - 

( 
= 1‘ g(u - y) dF(y) + /” er(u-Y) dF(y) . 

U 

Thus, the function g(u) satisfies the renewal equation 
11 

9(u) = .(u> + 1 9(u - Y) W Y )  7 

where z(u) = sum e7(u-Y) dF(g) = eyu sum e-rg dF(y).  Fbrthermore, we have 

im z(u) du = imLm eyfu-u) dF(y) du = lmiY er(u-Y) du dF(y) 
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where we used (5.3.11) in the last but one inequality. Thus, by Lemma 5.4.2, 
z(u)  is directly Riemann integrable. In order to apply Theorem 6.1.11 we 
h d y  need the expectation of the ladder height distribution F: 

E(7)(--R(~(0))) = E(o)[-R(T(0))e-YR(r(o));T(O) < w] 

where we used (5.3.18) in the second equality and the definition of y (see 
(5.4.3)) in the last equality. Thus, using Theorem 6.1.11 we obtain (5.4.10). 

11.3.4 

A rather useful way of modelling is to stop the risk reserve process {R( t ) }  at 
the time of ruin ~ ( u )  and to let it jump to a cemetery state. In other words, 
we consider the PDhlP { ( X ( t ) ,  t), t 2 0}, where 

A Stopped Risk Reserve Process 

(1 1.3.13) 

Here we have I = (0, l}, where 0 means that the process is in the cemetery 
state, CO = (-w,O) x R and CI = R2. Since the external state is uniquely 
determined by the continuous component of X ( t ) ,  we can and will simplify the 
notation by omitting the external state. The vector field of { ( X ( t ) ,  t)} is given 
by Xgb, t )  = P W y  2 O)(ag)(ay)(y, t )  + (ag)(at)(y, t ) .  The jump intensity is 
X(y,t) = l(y 2 0)X and the transition kernel is & ( ( y , t ) , B ~  x Bz) = I(t E 
B2)Fvb - B1) for &,B2 E wv. 

Notice that the introduction of the cemetery state within the stopped risk 
reserve process entitles us to apply Theorem 11.2.2 to an essentially broader 
class of test functions. Indeed, now a function g(y,t) fulfils condition (a) of 
Theorem 11.2.2 if and only if it is absolutely continuous in y on [O,w) and 
absolutely continuous in t. However, what is important, there is no need to 
assume that g(g:t) is continuous in y at y = 0, in contrast to the situation 
discussed in Section 11.3.1. hrthermore, the active boundary r is empty 
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and therefore condition (11.2.5) becomes trivial. Now, assuming (11.2.6) from 
Theorem 11.2.2, the generator of the PDMP {(X(t), t)} is given by 

We show how this representation formula for the generator of the PDMP 
{(X(t),t)} can be used to determine the probability $(u) = P(T(u)  = 00) of 
survival in infinite time. We will indeed prove that, under some conditions, 
the survival function $(u) in the compound Poisson model is the only solution 
to the integro-differential equation considered in Theorem 5.3.1. 

Theorem 11.3.3 Let { ( X ( t ) , t ) }  be the PDMP defined in (11.3.13) with 
generator A given in (11.3.14). Let g(y, t) be a function which satisfies the 
conditions of Theorem 11.2.2 for this PDMP. Then the following statements 
a n  true: 
(a) If g(y) = g(y,t) does not depend on t, then the only solution g(y) (up 
to a multiplicatave constant) to Ag = 0 such that g(0) > 0 and fprlfilling the 
hwndaq condition g(y) = 0 on ( - - o o , O )  is the suw‘wal function $(y). 
(b) Let z > 0 be fied. Let g(y, t) solve Ag = 0 in R x [O,z] with boundary 
condition g(y,z) = l(y 2 0). Then g(y,O) = P(T(~)  > 2). 
Proof (a) 
for y < 0. 

Assume that g(y) = g(y,t) does not depend on t and that g(y) = 0 
In view of (11.3.14), equation Ag = 0 reads then for y > 0 

(11.3.15) 

F’rom Theorem 5.3.1 we see that g(y) = q(y) is asolution to (11.3.15). Suppose 
that there is another solution g(y) to (11.3.15). Since g(0) > 0 and g(y) has 
to be absolutely continuous on [O,m), we have lim,sog(y) = g(0) > 0 = 
l h 8 ~ o J ~ g ( y  - v)dFv(v). Thus, (11.3.15) implies that g(l)(y) > 0 for all 
sufficiently small y > 0, i.e. g(y) is strictly increasing in a right neighbourhood 
of the origin. Let yo = inf{y > 0 : g(l)(y) I 0 )  and suppose yo < 00. The 
continuity of g(y) and (11.3.15) imply that g(’)(yo) 5 0. Then, using (11.3.15) 
we have 0 2 PX-’g(’)(yo) = g(g0) - #”’ g(y0 - u) dFu(v) and consequently 

which is a contradiction. Thus, g(y) is strictly increasing on the whole 
nonnegative halflie W, = [O:oo). Recall that by the net profit condition 
(5.3.2), R(t) + 00 as t + 00. Thus, the possibly infinite random variable 
R(T(u)) = limt+OOR(T(u) A t )  is well-defined. Since T ( U )  is a stopping 
time and since the stochastic process {g(R(t)),t 2 0) is a martingale by 
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Theorem 11.2.2, we get from Theorem 10.2.4 that {g(R(T(u) A t ) ) , t  3 0) 
is a martingale too. Using Theorem 10.2.5, we have g(u) = Eg(R(t))  = 
Eg(R(T(u)ht))  for each t 3 0. Thus: Theorem 10.2.2 implies that g(R(~(u))) 
is integrable. Since P(T(u) = oo) > 0 the latter is only possible if g is bounded. 
Moreover, since g is increasing, the limit g(m) = lim,,,g(y) exists and is 
finite. But then by the dominated convergence theorem 

g(u) = lim Eg(R(r(v)  A t ) )  = Eg(R(.r(u))) = g(oo)P(T(u) = 00) , 

where the last equality follows from the fact that g(R(T(u))) = 0, whenever 
~ ( u )  < 00. This finishes the proof of the first part of the theorem. 
(b) We are now interested in P(T(u) > z), where we assume that z > 0 is 
fixed. The equation to solve is then 

t+W 

As in the proof of part (a) it follows that { g ( R ( ~ ( u )  A t ) , t ) , t  2 0) is a 
martingale. By Theorem 10.2.4 the process {g(R(~(u) A x A t ) ,  2 A t ) ,  t 2 0) 
is a martingale too. Thus, using the boundary condition g(y,z) = l(y 2 0) 
in the second inequality, we finally get that g(u,O) = Eg(R(r(u) A z ) , ~ )  = 
P ( T ( U )  > 2). 0 

11.3.5 

In this section we study several characteristics of the ruin time ~ ( u ) ,  in 
particular the conditional expectation of ~ ( u )  provided T ( U )  is finite, and 
the Laplace-Stieltjes transform fT(ul(s) = E exp(-s.r(u)), s 5 0. Let qu,(u) = 
E J;Lu) e-wu dv and notice that then 

Characteristics of the Ruin Time 

q w ( u )  = &(l - fr(u)(w)), u 2 0, w > 0 .  ( 1 1.3.1 7) 

We first show how Theorem 11.2.3 can be applied to determine the 
Laplace transform t,, (9) = q,(u) e-8u du of 9w(u). The idea of using 
Theorem 11.2.3 is suggested by the fact that qw(u) can be represented in 
the form of equation (11.2.14). Namely, from the definition of qw(u) we 
immediately get 

00 

qw(u) = E 1 e-’T(T(u) > v)dv . (11.3.18) 

Since the risk reserve process ( R ( t ) }  in the compound Poisson model has 
independent and stationary increments, the reader can rewrite (11.3.18) to 
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obtain 
t o  

qw(u) = E (1 e-wwl(~(u)  > w) dv + e-Wtol(T(u) > to)qw(R(to))) 
0 

(11.3.19) 
for each to > 0. Now, putting 

d%r, 8) = dE/) = % L O)rlU,(Y) 9 (1 1.3.20) 

K(Y) v) = W, ~ ( 9 ,  v) = I(v L 0) and gter(9) = % 2 O ) P ~ ~ ( Y ) ,  we that 
(11.3.19) is identical with (11.2.14). Notice, however, that the function g(y,s) 
defined in (11.3.20) does not fulfil the conditions of Theorem 11.2.3 with 
respect to the PDMP {R( t ) }  since g(y,s) is not continuous at y = 0. Using 
the procedure of Section 11.3.4, we can get rid of this problem by replacing 
{ R ( t ) }  by the stopped risk reserve process defined in (11.3.13). Before we state 
Theorem 11.3.4, we formulate a technical lemma. 

Lemma 11.3.2 There exists a function g : R + R, which is absolutely 
continuow, bomded, positive and increasing on [0, 00) satisfging the integw- 
daffewntial equation 

8g('~(u)+X(jUg(u-v)d~U(V)-g(u)) -wg(u)+l = 0 ,  u 2 0 .  (11.3.21) 
0 

The proof of this lemma is omitted but can be found in Schmidli (1992). 

Theorem 11.3.4 For all s, w > 0, 

(11.3.22) 

where sw i s  the unique positive solution to the equation 

0s - X(1- i U ( S ) )  - w = 0.  (1 1.3.23) 

Proof Consider the stopped risk reserve process defined in (11.3.13). Becaw 
qw(u) can be represented in the form (11.2.14) corresponding to this PDMP, 
we are looking for a function g(u,s)  = g(u) for which g(u) = 0 for u < 0 
and that satisfies the conditions of Theorem 11.2.3. Specifically, (11.2.13) 
and (11.3.14) imply that g(u) should be a solution to equation (11.3.21). 
Since qw(u) is absolutely continuous, bounded, positive and increasing on 
[O,oo), it suffices to look for a function g(u) which shares these properties 
and satisfies (11.3.21). The existence of such a function is guaranteed by 
Lemma 11.3.2. Multiply (11.3.21) by e-'f/ and integrate over (0,m) to find 
that for f,, ( 8 )  = g(u)e-s* du, 

P(-g(O) + s2,(s)) - XL,(S)( l -  iu(s))  - 1.2,(s) + 8-l = 0 ,  
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See also the proof of Theorem 5.3.3. This gives 

B9(0) - s-l 
B S  - X( l  - iu(s))  - w 

L.,(s) = (1 1.3.24) 

Since g(u) should be bounded, i,(s) has to exist for all s > 0. The 
denominator in (11.3.24), however, has a unique positive root s, since the 
function 0, (s) = f is - A( 1 - cu (5)) -w is convex, negative at 0 and converges to 
00 as s + w. Hence Pg(0) = sil because otherwise e,(s,) would be infinite. 
With the choice ~ ( z , t )  = w, r(z,t) = P(z 2 0) and gter(z) = I(z 2 O>g(z), 
g(u) also fulfils conditions (a) and (b) of Theorem 11.2.3, because g(u) 
is bounded and absolutely continuous on [O,oo). Thus, by the result of 
Theorem 11.2.3, we get that 

r ( u ) A t o  

g(u) = E (1 e-,' ds + e-WtoI(r(u) > to)g(R(to))) (11.3.25) 

for each to > 0. Notice that, by letting to + 00, the second term in (11.3.25) 
disappears because g is bounded. This gives g(u) = qw(u). Now, (11.3.22) 

0 

follows from (11.3.24). 0 

Using the result of Theorem 11.3.4 we can express the conditional expected 
ruin time E ( ~ ( u )  I ~ ( u )  < 00) in terms of the ruin function @(u) = P(T(u) < 

Theorem 11.3.5 Assume that p c )  < 00. Then for each u 2 0 

0O)- 

Proof Let w > 0 and put T(u)e-wr(u) = 0 if ~ ( u )  = 00. By the monotone 
convergence theorem, we have 

1" E (lii T(u)e-wr(U))e-8U du 

Ee-,'(") is an analytic function for w > 0. In particular, E (T(u)e-wr(u)) = 
-(a)(&w)Ee-W'(U) and 
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Thus, using (11.3.17) or equivalently i,.(u)(w) = 1 - w77u;(u), we have 
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roo 
E [ ~ ( u ) ;  T (U)  < 0 0 ] e - ~ ~  du 

10 

where we used Theorem 11.3.4 and the implicit function theorem in the last 
equality. Indeed, from the implicit function theorem (see Theorems 17.1.1 
and 17.4.1 in Hille (1966)) we get that the function sw defined by (11.3.23) is 
twice continuously differentiable and Ps, (1) +XI, -0) (sW)&) - 1 = 0, which gives 
sc) = (P + XI, 71) ( s W ) ) - ' .  Moreover lim,p~ sw = SO = 0. By L'Hospital's rule 

and consequently 

Using L'Hospital's rule again, we get 

- A&' - 
2(P - XPV) * 

Putting the above together we find that 

Using (5.3.13) and (5.3.14), this gives 
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Since the right-hand side of the last equation is the Laplace transform of the 
0 right-hand side of (11.3.26), this proves the theorem. 

Corollary 11.3.1 If&’ < 00, then 

(11.3.27) 

Proof It suffices to put u = 0 in (11.3.26) since (5.3.11) gives (11.3.27). 0 

Corollary 11.3.2 If pgi < 00, then for each x > 0 

(11.3.28) 

Proof From Markov’s inequality we have 

P(z < ~ ( u )  < 00) = P ( T ( U ) ~ ( T ( U )  < 00) > z) 5 2-’E ( T ( ~ ) ~ ( T ( U )  < 00)). 
Now the assertion is an immediate consequence of Theorem 11.3.5. 0 

We remark that Theorem 11.3.5 and (5.3.8) imply that for the compound 
Poisson model with exponential claim size distribution Ekp(S), we have 
E ( ~ ( u )  I ~ ( u )  < 00) = (p  + Xu)(p(PS - for each u 2 0. 

Bibliographical Notes. The risk reserve process in the compound Poisson 
model was first treated its a PDMP in Dassios and Embrechts (1989). 
The results for the ruin time presented in Section 11.3.5, in particular 
Theorem 11.3.5 and Corollary 11.3.2, can be found in Schmidli (1996). 

11.4 COMPOUND POISSON MODEL IN AN 
ECONOMIC ENVIRONMENT 

11.4.1 Interest and Discounting 

When studying economic phenomena, the effects of interest and infiation have 
to be taken into account. By interest we mean that the capital increases in 
time due to investments as in money markets or riskless bonds. In Sections 7.3 
and 9.1.4 we considered the case of discrete-time interest or discounting. Then, 
in Section 8.1.3, we took up the idea of an instantaneous interest rate and 
showed how this can be obtained as a limit of the corresponding operations 
in discrete time. In the present section we consider the risk reserve process in 
the compound Poisson model in a continuous-time economic environment. 
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We first introduce the necessary notation. In case of inflation, a monetary 
unit at time 0 has the value e-’(t) at time t, where I : pti- -+ R+ is a certain 
function with I ( 0 )  = 0. We call e-r(t) a discounting factor. If I ( t )  is absolutely 
continuous, that is I ( t )  = so i(v) dv for some function i : R+ + R+, then 
i(t) is called the (instantaneous) inflation rate at time t. Interest is modelled 
by eB(*) as the value at time t of a monetary unit invested at time 0, where 
B : R+ + R+ is an increasing function with B(0) = 0. If B(t)  is absolutely 
continuous, then B(t)  = s,” 6(v) dv for some function 6 : El.+ + R+, and 6( t )  
is called the force of interest at time t or spot rate; see also Section 8.4.3. 

As a first illustration of the effects of inflation and interest, we treat a 
simple but useful example. Suppose that we have a risk reserve process with 
initial risk reserve X(0) at time t = 0 and with income rate z(t )  E R 
at time t 2 0 which can be deterministic or random. If we would ignore 
the economic environment, then the risk reserve X( t )  at time t would be 
given by X ( t )  = X ( 0 )  + $z(v)dv for t 2 0. However in the model 
with interest the income in the interval [v,w + dv) yields the risk reserve 
z(v)exp(B(t) - B(v) )  dv at time t. In this case the risk reserve X ( t )  at time 
t is given by X ( t )  = X(0)eB(t) + s,” z(v)eB(t)-B(u) dv. If we want to consider 
inflation and interest jointly, then we need to introduce the economic factor 

t 

e ( t )  = $(*)-B(t)- 

11.4.2 

In prior chapters, we assumed that the effects of interest and idation were 
cancelling out. We now introduce a more general class of risk reserve processes 
where this is no longer valid. Denote by er(t) the inflated monetary unit at 
time t, and by eB@) the value at time t of a unit invested at time 0. Suppose 
that the claim sizes have to be adjusted to inflation. Then the aggregate claim 
amount process { X ( t ) }  is given by X(t) = Cz:’ U,e‘(ui) for t 2 0, where oi 

denotes the arrival epoch of the ith claim, and U, its size at time 0. Keeping 
track of inflation, the premium rate also has to increase with inflation, i.e. the 
premium rate at time I! is assumed to be This leads to the following 
risk reserve process {R’( t )}  with 

A Discounted Risk Reserve Process 

Nit) 

R’(t) = u + ,Be’(’) dw - Uie’(Oi) , 

Usually the insurer has to invest the surplus. Then the resulting risk reserve 
process {R”(t)}  is given by 

/u’ i=l 

I’ 1=1 

N ( t )  
R”(t)  = &(t) + per(v)eB(t)-B(U) du - C Uie’(ci)eB(t)-B(c*) I 
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As the process {R”(t)}  is a bit clumsy to analyse, we consider its discounted 
version {R( t ) }  given by 

N ( t )  
R ( t )  = Rff(t)e-B(t) = u + /3e(w) du - Vie(aj)  , (11.4.1) 

where e(v)  = e’(V)-B(V). Notice that the event of ruin is the same for both 
processes {R( t ) }  and {Rf ’ ( t ) } .  

Assume as before that the claim arrival process is a compound Poisson 
process. MI stochastic processes considered in this section are defined on the 
canonical probability space of the claim arrival process. 

Recall that the function e ( t )  = er(f)-B(t) is deterministic. In a nondeter- 
ministic economic environment, { e ( t ) }  is a stochastic process. We then take 
{ e ( t ) }  independent of { N ( t ) }  and {Vi}  and condition on { e ( t ) } .  As a last 
constraint we assume that e( t )  is continuous. 

The process { X ( t ) }  with X ( t )  = (R( t ) , t )  is a PDMP. Here, I = {l}, 
C1 = R x R, X ( g , t )  = X and &((y,t),BI x B2) = l ( t  E Bz)Fu(y - BI) ,  
where the external state is omitted. Since the deterministic paths between 
claim arrival epochs have the form p(t, (y, h) )  = (y + s,”’h pe(w) dw, t + h) we 
have, for a differentiable function g(y, h), 

I” i= 1 

09 0s (Xg)(cp(t, (y,h))) = -&At, (Y, h) ) )  + w t  + h)&(cp(tl (9, h))) .  (11.4.2) 

Hence we find the following auxiliary martingale. 

Lemma 11.4.1 Let s E R be f i ed  and msume that h u ( s e ( t ) )  < 00 for  all 
t 2 0 .  Then the process { M ( t ) }  with 

t 
M ( t )  = exp(-sR(t) - 1 B(se(v))dv) (1 1.4.3) 

is a martingale, where the function B(s) is given by  (11.3.2). 

Proof Consider the PDMP { ( R ( t ) , t ) } .  Then, (11.4.2) implies that the 
equation Ag = 0 for a function g fulfilling the conditions of Theorem 11.2.2 
is 

00 

%Y,t) at + b ( t ) $ ( Y , t )  +A(/ 0 S(Y - e(t)w,t)dFr/(w) -gb , t ) )  = 0 .  

Trying a function of the form g ( y , t )  = u(t)e-8g, where a(t) is positive and 
differentiable, yields the equation 

a(’)(t)e-’P - pse( t )g(y , t )  + A(/ ese(t)”g(y,t) dFu(v> - g b ,  t ) )  = 0 ,  
00 

0 
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or equivalently a(')(t)  + O(se(t))a(t) = 0. The latter equation has the solution 
a(t)  = a(O)exp(-S,fO(se(v))dw), where we can assume that a(0) = 1. 
Condition (a) of Theorem 11.2.2 is fulfilled since g ( y , t )  = a(t)e-'" is 
absolutely continuous, (11.2.5) is trivial since I' = 61, and (11.2.6) follows 
as in the case of the martingale given in (11.3.3). By Theorem 11.2.2, the 

The ruin probability +(u) = P(inft>0 - R(t) < 0) can be estimated using the 

process given by (11.4.3) is a martingale. 

result of the next theorem. 
Theorem 11.4.1 liSe foZiowing statements are true: 
(a) If s 2 0 is &ed and riau(se(t)) < 00 for alf t 2 0, then 

t 
$(u) I e-su supexp(1 O(se(v)) dv) . 

t 20 
(11.4.4) 

(b) Let y = sup{s 2 0 : sup,>o s," O(se(w)) dw < 00). Then for all E > 0 - 
lim $(u)e(T-E)u = 0. 

u-bw 

Proof Using Lemma 11.4.1 and Theorem 10.2.4 we get that 
p rows  {M(T(u)  A t ) ,  t 2 0) is a martingale where ~ ( u )  = inf{t 
0). Thus, for each z 2 0 

e-su = E exp(-sR(T(u) A z) - 

2 E [ (  exp -sR(T(prj) - lT(u) O(se(v)) dw); T ( U )  

(11.4.5) 

the stopped 
2 0 : R(t)  < 

I x] 

2 E [exp(-ii(u)6(se(w))dv);T(u) 5 323 

2 o<t+ inf exp(- 1 B(se(v))dv)P(.r(u) 5 z), 
t 

where we used in the second inequality that R ( T ( ~ ) )  < 0. Let 5 + 00 to 
obtain (a). Further, (b) is trivial if 7 = 0. Now let 0 < E < y and choose 
s = y - e/2. Then c = ~ u p ~ > ~ e x p  O(se(w)) du) c 00 and +(u) 5 ~ e - ' ~ .  

- 4 2  = 0. 0 Thus l i ~ ~ , , + ~  $(u)e('-')" <_ limu-,m ce 
- ( J t  

11.4.3 The Adjustment Coeacient 

As before, the adjustment coefficient (or Lundberg ezponent) for a ruin function 
@(ti) is a strictly positive number y for which (11.4.5) and 

lim +(u)e(7+E)u = 00 (1 1.4.6) 
u-bw 
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hold for all E > 0. We leave it to the reader to show that this definition is 
equimlent to the notion of the Lyapunov constant y defined for a ruin function 

by 
(11.4.7) 

The constant y in Theorem 11.4.lb can only be called an adjustment 
coefficient, if we prove that (11.4.6) is true for all E > 0. However, this 
requires additional assumptions on more specific economic factors as have 
been discussed in Section 11.4.4. 
Remarks 1. For the compound Poisson model without economical environ- 
ment as well as for the Sparre Andersen model, Theorems 5.4.2 and 6.5.7 
show that, under appropriate conditions, limu+m +(u) exp(yu) = c holds for 
a certain positive finite constant c. Hence (11.4.5) and (11.4.6) are clearly 
satisfied. In these two special cases the adjustment coefficient y turns out to 
be the solution to equations (5.4.3) and (6.5.211, respectively. 
2. The converse statement is, however, false. It does not follow from (11.4.5) 
and (11.4.6) that the limit limu4m $(u) exp(yu) is positive. We illustrate this 
by considering a compound Poisson model without economical environment, 
i.e. e( t )  = 1 for all t 2 0. Consider the function given in (11.3.2) and suppose 
that for some -y > 0 

(1 1.4.8) 

and that 6(')(y) > 0. Then by Theorem 11.3.1 we have E ( Y ) I Z ( l )  - u < 0. 
Under P(7) the ruin time ~ ( u )  is therefore finite and ~ ( u )  + 00 as u + 00. 

Thus by (11.3.10) we have lim,,,$(u)exp(yu) = 0, from which (11.4.5) 
immediately follows. To check that (11.4.6) is also true, we use the integral 
equation (5.3.9) to obtain 

O(s) < 0 if s 5 y, 8(s) = 00 if s > y, 

(11.4.9) 

However, if &u(y + E )  = 00 for all E > 0, then the right-hand side of (11.4.9) 
tends to infinity as u + co; see Lemma 2.3.1. Using similar considerations the 
reader can show that we can even drop the assumption 8(')(y) > 0. 
3. A similar situation holds if O(y) = 0 for some y > 0, but 6(l)(7) = 00. In 
this case we have l i i u + m  $(u) exp(yu) = 0 by Theorem 5.4.2. 
4. There exist models for the claim arrival process where the limit li)(u)e7u as 
u + 00 does not exist or is infinite even if +y is the adjustment coefficient. 

11.4.4 Decreasing Economic hc to r  

We return to the discounted risk reserve process ( R ( t ) }  in the compound 
Poisson model in an economic environment introduced in (11.4.1). We 
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explicitly deal with two special cases where the function e ( t )  is decreasing 
and where the constant y, occurring in Theorem 11.4.1, is the adjustment 
coefficient. To show the latter, we only need to prove that in both cases (11.4.6) 
also holds. 

First we consider the case of discounting at constant rate 6 > 0, that is 
e( t )  = e-6t. Assume that s+ > 0 and that B > Xpv, where s+ = sup{s 5 
0 : Au(s) < m}, i.e. there exists an s > 0 such that 6(s) < 0. Furthermore, 
B(se-6u) < 0 for all v large enough. Thus sup,,o - s," 6J(se-6V) dv < 00 if s < s+ 
and S U ~ ~ > ~  $,'B(se-6u) dv = 00 if s > s+. Hence it follows that y = &. On 
the othechand, 

If s > s+? then it is clear that E exp (sxzl Uie-6ai) = 00 and by 
Lemma 2.3.1 also limu-+M P(xEI Uie-6ui > u + o/6)esu = 02. Thus, we 
have limu-,m +(u)e8" = m for all s > s+. This means that for e ( t )  = e-6t the 
constant y occurring in Theorem 11.4.1 is the adjustment coefficient. 

We next consider a more general economic factor. Suppose that e( t )  is 
decreasing and denote by e(m) the limit of e( t )  as t + 00. As before assume 
that s+ > 0 and O(s) < 0 for some s > 0. Then r = sup{s E [O,s+] : 
6J(se(oo)) < 0). In particular, if e(m) = 0 then y = s+ and, as in the special 
case that e ( t )  = edbt for some 6 > 0 which we discussed before, we get that 
limu+M +(u)esu = 00 for s > s+. 

Assume now that 7 < s+ and let < s < s+. Then, in the same way as in 
the proof of Theorem 11.4.1, we get 

+ E exp - sR(z)  - B(se(v)) dv); ~ ( u )  > z] . " 
The random variable in the second expectation is bounded by 1. Moreover, 
this random variable tends to 0 with probability 1 as z + co since, for the 
terms in the exponent, we have J,"6(se(v))dv + 00 and R(s)  + 00. By the 
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dominated convergence theorem we get 

and therefore 
e-su 

E (exp(-sR(.r(u)) - J:'") B(se(v)) dw) I T(U) < 00) 
+(u) = . (11.4.10) 

Note that, using e ( t )  5 e(0) = 1, we have for all u,g 2 0 

and therefore 

eszFu(x) 1 2 inf 
z z o  szw esv dFv(v) E; (exp(-@(se(cu)).r(u)) I ~ ( u )  < 00) ' 

where the last inequality follows from the fact that 6(se(m)) 2 0 for s > y, 
e(v) 2 e(m) for all v 2 0: and consequently 0 5 B(se(oo)) 5 B(se(v)). 
Kote that the infimum in this bound for $(u)eSU is positive. Mhermore,  
limu-,oo E ( ~ ( u )  I ~ ( u )  < 00) = 00, as can be shown as an exercise. It therefore 
follows that limu+w @(u)esu = 00 and 7 is the adjustment coefficient. 

Bibliographical Notes. An early paper on the compound Poisson model 
within an economic environment is Gerber (1971). The martingale given 
by (11.4.3) has been introduced by Delbaen and Haezendonck (1987). In 
Schmidli (1994) the concept of PDMP has been applied to this model. 
Bounds and asymptotic approximations to ruin probabilities in the case 
of a constant interest force are obtained in Boogaert and Crijns (1987), 
Boogaert, Haezendonck and Delbaen (1988), Gerber (1971), Harrison (1977aj, 
Kluppelberg and Stadtmuller (1998): Segerdahl (1942, 1954), Sundt and 
Teugels (1995, 1997) and Vittal and Vasudevan (1987). In the literature, 
further classes of modified risk reserve processes with a compound Poisson 
claim arrival process have been studied. For the case where the premium rate is 
a function of the current reserve, see, for example, Asmussen and Bladt (1996), 
Davidson (1969), Harrison (1977a), Petersen (1990) and Taylor (1980). It is 
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clear that also in this case the risk reserve process can be described as a 
PDMP. For risk processes where the limit limu+oo d(u)eTu does not exist or is 
infinite even if 7 is the adjustment coefficient, see, for example, Embrechts and 
Schmidli (1994). Asmussen and Nielsen (1995) considered the notion of a local 
adjustment coefficient for ruin probabilities in the compound Poisson model 
with state-dependent premiums. The probability of ruin under Merent types 
of dividend barriers is studied in Boogaert, Delbaen and Haezendonck (1988), 
Dickson (1991), Dickson and Gray (1984), di Lorenzo and Sibillo (1994), 
Gerber (1979, 1981) and Vittal and t'asudevan (1987). The equivalence 
between characteristics of storage and risk processes with state-dependent 
release and premium rates, respectively, has been discussed in Asmussen 
and Petersen (1988) and Harrison and Resnick (1978), for example. For 
relationships between reliability and risk models, see Aven and Jensen (1998). 

11.5 EXPONENTIAL MARTINGALES: THE SPARRE 
ANDERSEN MODEL 

In this section we show how to change non-Maxkov risk processes into Markov 
processes by adding supplementary Components to the process. We start 
with the previously discussed Sparre Andersen model. The Markovization of 
stochastic processes in other risk models will be studied in Chapter 12. In the 
case of the Sparre Andersen model we consider two types of supplementary 
components and obtain the corresponding martingales. The first approach 
is natural, but needs an additional assumption on the distribution of inter- 
occurrence times. The second type of supplementary components easily leads 
to simple martingales. This preferred approach is considered in Section 11.5.3. 

Assume that the claim counting process { N ( t ) }  is a renewal process where 
the inter-occurrence times are denoted by T,, and the claim arrival epochs by 
vn = CL1 Ti, where a0 = 0. 

The (continuous-time) risk reserve process { R ( t ) }  is not a Markov process, 
unless the inter-occurrence times are exponentially distributed. But the reader 
can show that considering the process {R( t ) }  only at the claim arrival epochs 
v,, yields a (discrete-time) Markov process. Furthermore, the behaviour of 
{ R ( t ) }  is piecewise deterministic in the intervals between claim arrival epochs. 
For the Markovization of { R ( t ) }  we therefore have to add information on 
the neighbouring claim arrival epochs. The two possibilities mentioned above 
consist of either adding information on the arrival epoch of the last claim or 
to include information on the arrival epoch of the next claim. We only discuss 
the martingales resulting from these two ways of Markovization. To prove 
Lundberg bounds or the Cram&-Lundberg approximation, one can proceed 
as in Section 11.3. 
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11.5.1 An Integral Equation 

We begin with an auxiliary result on the solution to an integral equation. The 
latter is similar to the equation (6.5.21) that defines the adjustment coefficient 
in the Sparre Andersen model. 

Lemma 11.5.1 Let s E R such that mu(s) < 00. Then, the following 
statements are tme: 
(a) There ezists at most one solution 8 = 8(s) to the equation 

hU(&(e + ps)  = 1 .  (11.5.1) 

More specifically, if s 1 0 then there ezists a unique solvtaon O(s) to (11.5.1). 
(b) Let s+ = sup{s 2 0 : & F ~ ( s )  < oc} > 0. Then, the finction a I+ 8(s) is 
strictlg convex on [O,s+) provided not both U,, and T, are deterministic. In 
any case, 8(')(0) = Xpu - P ,  where X = p ~ ' .  

Proof (a) The function ~ T ( s )  is monotone. Thus, (115.1) admits at most one 
solution. Assume s 2 0. Because the function i~ : [O,m) + (0,1] is one-to- 
one and r?ztr(s) 1 1, there exists a unique solution z(s) to &+) = (&~(s) ) - -~ .  
Thus B(s) = z(s) - 8s is the unique solution to (11.5.1). 
(b) By the implicit function theorem, see Hille (1966), O(s) is differentiable 
on [O,s+) and has the derivative 

( 11.5.2) 

For s = 0, this gives 8(1)(0) = Xpu - a. Moreover, it follows that 8(s) is 
infinitely often differentiable. Let us rewrite (11.5.1) in the form logrFbu(s) + 
10gfT(8(s) + ps) = 0. Differentiating twice, we find 

+@ (s)(log i T b ) ) ( ' )  I v=qa)+ps = 0 .  

We first observe t.hat O(s) + Ps 2 0 for s E [O,s+) and (logiT(v))(l) = 
$'(v)&(v) c 0 for w 2 0. The second derivative of logriau(s) can be 
represented as the variance of an associated distribution, see Lemma 2.3.2, 
and is therefore nonnegative and strictly positive provided U, is not deter- 
ministic. Note that (logiT(v))(2) = (log&T(-v))(2) > 0. Thus, in the same 
way as before, we can conclude that (logiT(v))(2) (v=B(s)+os > 0 if T,, is not 
deterministic. From (11.5.2) it follows that B(l)(s) + B # 0. If we assume that 
at least one of the random variables U, and T, is not deterministic we find 
that 8(2)(s) > 0. 0 
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11.5.2 Backward Markovization Technique 

We now consider the backward Markovization technique. Let T’(t)  = t - U N ( ~ )  

be the time elapsed since the last claim arrival. Often T’(t) is called the age 
of the inter-occurrence time at time t .  It is not difficult to see that the process 
{ X ( t ) }  with X ( t )  = ( R ( t ) , T ’ ( t ) , t )  is a PDMP. The only problem is to find 
the jump intensity X(z). Observe that X(z) only depends on the component 
w of z = (9, w, t) and so write X(w) instead. From the construction of the 
PDMP { X ( t ) } ,  it follows that 

(11.5.3) 

see Section 11.2.2. This is only possible if the distribution of the inter- 
occurrence times T, is absolutely continuous. We therefore have to assume 
that FT is absolutely continuous with density f ~ .  Differentiating (11.5.3) we 
obtain 

X(w) = A(!/, w, t )  = fT(w)/FT(w) . (11.5.4) 
To determine the other characteristics of the PDMP { X ( t ) }  is left to the 
reader. We find the following martingale. 

Theorem 11.5.1 Let s E R such that hu( s )  < 00 and the solution B(s) to 
(11.5.1) exists. Then, the stochastic process { M ( t ) , t  2 0) with 

(11.5.5) 
is a martingale. 

Proof With regard to Theorem 11.2.2 we have to solve the partial differential 
equation 

where we used the representation formula (11.5.4) for the jump intensity X(w). 
The general solution to this equation is hard to find. Motivated by the results 
obtained in Section 11.3.1 for the compound Poisson model: we try a function 
of the form g(y, w,t) = a(w)exp(-sy - et). Then 

-ea(w) - ~SQ(W) + & ) ( w )  + (~;,(2U))-lf*(w)(a(o)7jlU(8) - = 0, 
which has the solution 
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for some constant c E R. It is possible (but not trivial) to show that condition 
(11.2.6) cannot be fulfilled if c # 0, hence choose c = 0. Letting w = 0 yields 
the equation 

which shows that (11.5.1) has to be fulfilled. We can assume a(0) = 1. Thus 
~ ( o )  = a(o)hu(s)iT(e + ps) ,  

The verification that this function g satisfies the conditions of Theorem 11.2.2 
is left to the reader. 0 

11.5.3 Forward Markovization Technique 

Next to the approach discussed in Section 11.5.2, we consider the alternative 
forward Murkouizotdon technique. Let T ( t )  =  ON(^)+^ -t  be the time remaining 
to the next claim arrival and which is also called the excess of the inter- 
occurrence time at time t ;  see Section 6.1.2. The use of the stochastic 
process {T( t ) }  seems to be rather strange because {T( t ) }  is not measurable 
with respect to the natural filtration of {R( t ) }  unless the inter-occurrence 
times are deterministic. The natural filtration of the PDMP { X ( t ) )  with 
X ( t )  = (R( t ) ,T( t ) , t )  is therefore different from the natural filtration of 
{ R ( t ) } ,  and the process {T( t ) }  is not obserbable in reality. We will, however, 
see that the approach considered in the present section is much simpler than 
that of Section 11.5.2. 

First note that X(g,w,t )  = 0 because claims can only occur when T ( t )  
reaches the boundary 0. The active boundary consists of all points r = 

According to Theorem 11.2.2, we will arrive at a martingale of the form 
{(Y,O,t) : (Y,t> R2). 

{g(R( t ) ,  T ( t ) ,  t ) ,  t 2 0) if the partial differential equation 

(11.5.8) 

is satisfied together with the boundary condition (11.2.5) 
W o o  

g(S, 0, t )  = 9 ( y  - e', w, t )  dFT(w) flU(u) * (11.5.9) 

Note that the differential equation (11.5.8) is much simpler than (11.5.6). 
But we get. the additional integral equation (11.5.9). 

Theorem 11.5.2 Let s E R such that r h ~ ( s )  c 30 and the solutaon O(s) to 
(11.5.1) ezist. Then the s t o c h ~ t ~ c  process {&!(t) ,  t 2 0) with 

Jj,..(t) = , - ( e ( ~ ) + p s ) T [ t ) ~ - s R ( t ) ~ - 8 ( s ) t  (11.5.10) 
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is an (.Ft}-martingale. 

Proof We solve (11.5.8) and (11.5.9) by a function of the form g(y, w ,  t )  = 
b(w)e-Sye-eL. Plugging this function g(y, w, t) into (11.5.8) yields -8b(w) - 
/3sb(w) -g'(')(w) = 0 or equivalently b(w) = b(0)e-le+Ps)w. Note that b(0) = 0 
would imply g(y, w ,  t) = 0, and hence we put b(0) = 1. Substitution of this 
solution to (11.5.8) into (11.5.9) shows that (11.5.1) is satisfied. The remaining 

D 

Theorem 11.5.2 amply shows the advantages of the forward Markovization 
technique. First of all, no condition on the distribution of inter-occurrence 
times is needed. Secondly, it is much easier to arrive at the martingale in 
(115.10) than at that of Section 11.5.2. 

conditions of Theorem 11.2.2 can easily be verified by the reader. 

Bibliographicd Notes. The Sparre Andersen model was first investigated 
by means of PDMP in Dassios (1987); see also Dassios and Embrechts (1989) 
and Embrechts, Grandell and Schmidli (1993). 



CHAPTER 12 

Point Processes 

In earlier chapters of this book we introduced four classes of claim arrival 
processes in continuous time: homogeneous Poisson processes and compound 
Poisson processes in Section 5.2, renewal point processes in Section 6.1, 
and mixed Poisson processes in Section 8.5. For each one of these claim 
arrival processes, at least one of the following stationarity properties holds: 
the claim counting process { N ( t ) , t  1 0 )  has stationary increments or the 
sequence {Tn,n 2 1) of inter-occurrence times is stationary. The point 
processes considered in Section 12.1 provide a general model for claim arrival 
processes with such stationarity properties. In Section 12.1.4 we generalize 
these models further by considering marked point processes, giving us the 
possibility to include the claim sizes into the model as well. In Section 12.2 we 
extend the class of homogeneous Poisson processes in a different direction by 
introducing a notion of nonhomogeneity. The corresponding claim counting 
process { N ( t ) )  has independent but not necessarily stationary increments. 
Nonhomogeneous Poisson processes are an appropriate tool to define Cox 
processes, a wider class of claim arrival processes that can be seen as a mixture 
of nonhomogeneous Poisson processes. For this reason Cox processes are often 
caIIed doubly stochastic Poisson processes. We also discuss other constructions 
of new point processes obtained by several kinds of compounding, in particular 
superposition and clustering. This general point-process approach is later 
combined with techniques from piecewise deterministic Markov processes and 
subexponential distributions in order to study ruin probabilities. 

In this chapter, a point process is usually understood to be a two-sided 
sequence {un,n E Z} of random variables, where ... 5 a-1 5 00 5 
0 < u1 5 . . .. Furthermore, we consider the two-sided infinite sequence 
{T,,n E Z} of inter-occurrence times T, = un - U,-X where we interpret 
{Tn,n 5 0) and {Tn,n > 0) as the sequence of past and future inter- 
occurrence times, respectively. We also consider the random counting measure 
{ N ( B ) , B  E B(lR)} with N ( B )  = CiEZl(q E B). Notice that there is a 
one-to-one conespondence between (a,} and (N(B) } .  The elements of the 
sequence {a,} are called claim mild epochs but we will also speak of claim 
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arrival points, or briefly of points of the point process {on}. 
The introduction of point processes and their corresponding random 

counting measures on the whole real line rather than on the more usu- 
al nonnegative halfline, is particularly useful when studying stationarity 
properties of point processes. 

12.1 STATIONARY POINT PROCESSES 

In this section we study point processes having general stationarity prop 
erties. Hitherto we have usually assumed that the sequence of inter-occur- 
rence times {Tn} consists of independent and identically distributed random 
variables. However, we met two exceptions: the delayed renewal point process 
considered in Section 6.1.2, where the distribution of TI could be different from 
the distribution of T2, T3,. . . 7  and the mixed Poisson process considered in 
Section 8.5.5, where the inter-occurrence times TI ,  T2, . . . were exchangeable. 
It turns out that these two point-process models can be embedded into a 
general stationary framework. 

12.1.1 Definition and Elementary Properties 

We will discuss two kinds of stationarity. In the first case we assume that 
{T,} is stataonary, i.e. for all n 2 1 and k E Z the (joint) distribution of the 
random vector ( T l + k , .  . . 7Tn+k) does not depend on k. We also assume that 
0 < ET < 00. For simplicity we suppose that the T n  are positive random 
variables, that is P(T = 0) = 0. 

If there is a point at 0, then we have on = C:=, Ti for n > 0, oo = 0, 
and on = - ~~=,+, T, for n < 0. If {Tn} is stationary and if there is a claim 
arrival at the origin, we call {on,n  E Z} a Palm-stationary point process. 

However, from the insurer's point of view, it might sometimes be more 
convenient to put the origin of the time axis differently, so that this choice is in 
a sense "independent from data". The origin is then put uat random" between 
two consecutive claim arrival epochs. This alternative model of stationaxity of 
a claim arrival process is defined with the help of the random counting measure 
{ N ( B ) }  corresponding to {on}. Assume that the distribution of { N ( B ) }  is 
invariant under (deterministic) time shifting, that is, for B+t = {v+t, v E B } :  

{ N ( B  + t ) ,  B E B(R.)} { N ( B ) , B  E B(R)} (12.1.1) 

for all t E Hi. This means in particular that for all n 2 1, t E R 
and bounded B1, . . . , E l n  E B(R), the distribution of the random vector 
(N(B1 + t ) ,  . . . , N(Bn + t ) )  is independent of t .  Then { N ( B ) }  is c d e d  a 
time-stationary counting measure and the sequence {on} corresponding to 
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{M(B)} is called a tame-stationary point process. In this case, the counting 
process { N ( t ) , t  2 0) with N ( t )  = xzl l(q 5 t) has stationary increments. 
We assume that the expectation X = EN((0, 11) is positive and finite and we 
call X the intensit8 of {On}. We leave it to the reader to show that, for each 
time-stationary counting measure { N ( B ) } ,  

EN(B) = XIB[ (12.1.2) 

for al1 bounded B E B(R), where IBI denotes the Lebesgue measure of B. In 
particular, for each t E R we have P ( N ( { t } )  > 0) = 0. 
Examples 1. Homogeneous Poisson process. When we introduced the 
continuous-time risk model in Section 5.1.4 we assumed for convenience that 
00 = 0. However, in the definition of the counting process { N ( t ) , t  2 0 )  
given in (5.1.13) we did not take this claim arrival into consideration. In the 
case of a homogeneous Poisson process, see Section 5.2.1, we assumed that 
the sequence {Tn,n 2 1) of inter-occurrence times consists of identically 
(exponentially) distributed random variables. Furthermore, we showed in 
Theorem 5.2.1 that the corresponding counting process { N ( t ) , t  2 0) has 
stationary increments. This is the reason that a homogeneous Poisson point 
process {un,7c 2 1) on the positive halfline, where en = C;=, Ti, can easily 
be extended to a time-stationary model on the whole real line. It suffices to 
assume that -OO,OO - 0-1, u-1 - 0-2 , .  . . is a sequence of independent and 
identically (exponentially) distributed random variables which is independent 
of {unln 2 1). Anyhow, at the same time the sequence {Tn,7a 2 1) consists 
of identically distributed random variables and therefore can be seen as the 
restriction to the positive halfline of the Palm version of the timestationary 
Poisson model. 
2. Mixed Poisson process. By the result of Theorem 8.5.3, the mixed Poisson 
process introduced in Section 8.5.1 is a Palm model. However, as in the case 
of a homogeneous Poisson process (see Example 1 above), we obtain a time- 
stationary model if we cancel the point at the origin. The fact that by simply 
adding a point at the origin one can pass from a timestationary model to a 
Palm model is characteristic for (mixed) Poisson processes. We return to this 
later in Section 12.2.3; see Theorem 12.2.7. 
3. Renewal process. Here we have to distinguish more carefully between the 
time-stationary model and the Palm model, unless we consider the special 
case of a homogeneous Poisson process. By Theorem 6.1.8 we arrive at a 
timestationary model if the distribution of 7'1 is chosen according to (6.1.15). 
On the other hand, TI must have the same distribution as T2,T3,. . . to get a 
Palm model. Consider now a Palm renewal point process on R. In this case, 
{Tn, n E Z} is a sequence of independent and identically distributed random 
variables. We denote the common distribution function by F ( z ) .  To obtain a 
timestationary renewal point process on R we choose q , u 1  to have a joint 
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distribution defined by P(-ao > z,q > y) = Fs(z + y) for s l y  2 0. We 
choose uo - u - ~ ,  u - ~  - a - 2 , .  . . and 02 - u1 , u3 - a2>. . . to be independent 
and identically distributed and also independent of (uo,ol). It is left to the 
reader to show that the corresponding counting measure { N ( B ) ,  B E B(R)} 
is t he-st ationary. 

12.1.2 

There is a one-to-one correspondence between time-stationary and Palm 
models of point processes. To show this, it is convenient to use the repre- 
sentation of point processes as counting measures and to consider them on a 
canonical probability space. 

In this section fl is the set of all integer-valued measures w : B(R) + 
INu{oo} such that w(B) < 00 for all bounded B 6 B(R). Furthermore, let F 
be the smallest u-algebra of subsets of 0 that contains all events of the form 
{w : w ( B )  = j } ,  where B E B(R), j E IN. The canonical representation of a 
point process is then given by the triple (0,3, P),  where P is a probability 
measure on 7. Thus, we identify a point process with its distribution P (on the 
canonical probability space). In what follows we only consider simple point 
processes, that is P ( w  : ~ ( { t } )  > 1 for some t E R) = 0. Furthermore, in 
accordance with definition (12.1.1), we say that P is time-stationary if 

Palm Distributions and Campbell’s Formula 

P(A) = P(T,A) (12.1.3) 

for all A E F, x E R where the shift operator T, : R + R is defined by 
(T,w)(B) = w ( B  + z). It is left to the reader to show that for each time- 
stationary distribution P we have 

P({u : w(R-) = w(IR+) = 00) U (W : w(R) = 0)) = 1. (12.1.4) 

Thus, if 
P(w : w(R)  = 0) = 0,  (12.1.5) 

then there are infinitely many points on both halflines. 
In the rest of this section we take (12.1.3) and (12.13) under the probability 

measure P for granted. Moreover, the intensity X = fw((O,l])P(dw) is taken 
to be positive and finite. For brevity, we call P a stationary distribution. The 
following symmetry property of stationary distributions is often useful. 

Lemma 12.1.1 Let g : 0 x R2 + R.+ be a measurable finctaon. Then 
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Proof From the stationarity of P we have 

In the same way we get 

This give3 (12.1.6) since for all z E R and w E 51 

which follows from the substitution y' = z - y. 0 

We are now ready to introduce the Palm-stationary model corresponding 
to a time-stationary point process on the canonical probability space. For 
each B E B(R) such that 0 < IBI < 00 we define the probability measure 
Po : F + [0, I] by 

Po(A) = 1 1 / I(T,w E A) w(dz)P(du) , A E 3. (12.1.7) x l B l  f2 B 

Furthermore, using Lemma 12.1.1, we can show that the value Po(A) does 
not depend on the choice of the set B. Indeed, for g(w, z, p) = I(u E A)I(z E 
B)I(y E (0, l]), equation (12.1.6) gives 

The probability measure Po dehed  in (12.1.7) is called the Palm distribution 
corresponding to the time-stationary distribution P. It is not difficult to see 
that, under Po, with probability 1 there is a point at the origin, that is 
P0(Oo) = 1, where Ro = {w : w(R-) = @(EX+) = oo,w({O})  > 0). Indeed, 
this immediately follows from (12.1.7) if we put A = no in (12.1.7) and use 
(12.1.4) and (12.1.5). However, in some cases it is not very convenient to have 
this point at the origin. Besides Po one can still consider another type of a 
Palm distribution given by the probability measure P! : 3 4 [0,1] with 

P'(A) = 1 / 1 I(T,w - 60 E A)w(dz)P(dw), A E 3, (12.1.8) 
W I  n B 

which is called the reduced Pdm distribution. 
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We now show that under the Palm distribution Po, the inter-occurrence 
times T,, = un - ( ~ ~ - 1  form a stationary sequence. Denote by S : Ro + Ro 
the pointwise shift defined by Sw = T'vl(up; 9 = F n Ro. 

Theorem 12.1.1 For each A E 9, 
Po(A) = Po(SA). (12.1.9) 

Proof Let t > 0 and B = (0, t ] .  Then, (12.1.7) gives 

IPo(A) - Po(SA)I 

Thus, (12.1.9) follows since t can be taken arbitrarily large. 0 

The following relationship between P and Po is called Campbell's formula. 
It is rather useful when determining characteristics of functionals of stationary 
point processes, in particular when computing the ruin probability +(O) in the 
case of an arbitrary timestationary claim arrival process; see Section 12.1.5. 

Theorem 12.1.2 For each meamrable function g : R x R --+ R+, 

Proof We write (12.1.7) in the form 

//I(w E A,x E B)dxPo(dw) = x I(T,w E A,$ E B)w(dz)P(dw). Jl 
This shows (12.1.10) for functions of the form g(w,z) = I ( w  E A,x E B). 
Thus, (12.1.10) also holds for lineax combinations of such functions and, by 

0 

In some cases a dual versaon of Campbell's formula (12.1.10) is even more 

the monotone class theorem, for each measurable g : st x R + R+. 

convenient. 

Corollary 12.1.1 For each measurable function g : R x R + &, 

g(T-,w,x)dzPO(&) = - 1 1 g(w: x) w(ds) P(dw) . (12.1.11) 
X n n t  

Proof The result follows from (12.1.10) applied to the function g'(w,z) = 
g(T-,w, .I. 0 

terms of PO. 

This in turn leads to the following inversion formula which expresses P in 
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Corollary 12.1.2 Let 9 : R x R + R+ be a measurable fimction with 

c 9(w, 6 - d W ) )  = 1 (12.1.12) 
n 

ifw(H1) > 0, and g ( w : z )  = 0 if w(R) = 0. Then, for each A E T 

P(A) = X 1 1 I(T-,w E A)$(T-zw, 2) dx Po(&). (1 2.1.13) 
D l R  

Proof Suppose g fulfils (12.1.12) and put g’(w,z) = I(w E A)g(w:z) .  Then, 
0 

Remarks 1. To give an example fulfilling (12.1.12), consider the function 

(12.1.13) immediately follows from (12.1.11). 

1 i fx  = CQ(w), 
0 otherwise. 

In this case, (12.1.13) takes the form 
-u-l (w) 

P(A) = X 1 1 I(T-,w E A) dzPo(dw). (12.1.14) 
D O  

Thus, using (12.1.9) we get that 

01 (w) 
P(A) = X I  1 I(T,w E A)dzPo(dw) (12.1.15) 

n o  
and in particular, for A = 0, 

Eo0l = A-’ (12.1.16) 

where Eo denotes t,he expectation under Po. This shows that, starting from 
the Palm model Po with stationary inter-point distances and with a point 
at the origin, the time-stationary model E’ given by (12.1.15) is obtained by 
putting the origin “at random” between 00 = 0 and the next claim arrival 
epoch 01. 

2. The formulae (12.1.7) and (12.1.15) constitute a one-to-one relationship 
between time-stationary and Palm distributions of point processes. To see this, 
start from an S-invariant distribution Q on F” with 0 < J 01 (w> Q(dw) < 00 
and put 

(1 2.1.17) 

Defining Po by (12.1.7), we have 

P o = Q .  (1 2.1.18) 

Notice that by stating (12.1.18) we implicitly assume that the distribution P 
defined in (12.1.17) is T-invariant. We leave it to the reader to prove this. 
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12.1.3 Ergodic Theorems 

The right-hand side of (12.1.7) can be interpreted as a ratio of two intensities. 
The integral in (12.1.7) is the partial intensity of those points in B = (0,1] 
from whose perspective the shifted counting measure T,w has property A. 
This partial intensity is divided by the total intensity X of all points in the 
unit. interval (0,1]. Thus, taking P as the basic model, Po(A) can be seen 
as the pointwise averaged relative frequency of points with property A. This 
interpretation of Po can be stated more precisely if the stationary distribution 
P is ergodic. One possible definition of ergodicity is given by the following 
nondecomposabdity property: P is ergodic if each representation 

P = p P ' + ( l - p ) P ' t ,  asps 1 (1 2.1.19) 

of P as a mixture of stationary distributions Pr,P" on 3 must be trivial in 
the sense that either P' = P" or p(1- p) = 0. 

The following basic results of ergodic theory are useful. For their proofs we 
refer to Breiman (19921, Krengel(l985) and Tempelman (1992). Let ( R , F ,  P) 
be an arbitrary probability space and S : Sl + R a measurepreserving 
mapping, i.e. P(S-'A) = P(A) for all A E F, where S-'A = {w E R : 

Theorem 12.1.3 Let g : R + IR+ be memumble such that Jg(w)P(dw) < 00. 

Then the limit 

sw E A } .  

(12.1.20) 
k=l 

exists and the limit function $ : R + R+ is invariant with respect to S ,  
i e .  g(Sw) = g(w) for all w E 0. Moreover, JB(w)P(dw) < 00 and 

lim /I 2 g(Skww) - g(w)lP(dw) = 0. 
n+m 

k=l  
(12.1.21) 

The first part of Theorem 12.1.3 is called the individual ergodic theorem, 
whereas the second part is called the s ta t i s t id  ergodic theorem. We 
also observe that there are several equivalent definitions of ergodicity, as 
summarized in the following lemma. In its statement, Z c 7 denotes the 
sub-o-algebra of invariant events, i.e. S A  = A if and only if A E Z. 

Lemma 12.1.2 The following statements are equivalent. 
(a) Each representation of P as a mizture of S-invariant pro'bability measures 
is trivial, that as, (12.1.19) implies that either P' = P" o r  p(1 - p) = 0. 
(b) P ( A ) ( l  - P(A)) = 0 for each A E Z. 
(c) E (g I Z) = E g for  each measurable function g : R -+ R+ with E g  < 00. 
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An immediate consequence of Theorem 12.1.3 and Lemma 12.1.2 is the 
following result. If P is ergodic, then for the limit function g in (12.1.20) 
we have 

g(w) = Eg. (12.1.22) 

Furthermore, the folIowing continuous-time analogues to Theorem 12.1.3 and 
Lemma 12.1.2 are useful. Instead of a single measure-preserving mapping we 
then consider a whole family T = {T,,x E R} of such mappings T, : fl+ n, 
where 

0 P(A) = P(T,A) for all z E R, A E 7, 
0 T,T, = Tzfy for all z ,y  E R, 
0 {(w, z) : T,w 6 A }  E 7 @ S(R) for all A E F. 
The quadruple (Q, F, P, T) is called a dgnamical system in continuous time. 
Let Z c T denote the sub-o-algebra of T-invariant sets, i.e. A E Z i fT ,A  = A 
for all z E R. 

Theorem 12.1.4 Let g : R + R+ be measurable such that Jg(w)P(dW) < 00. 

Then the limit 
g(w) = lim -1 l t  g(T,w)dx (12.1.23) 

t+m t 
ezists and 

Moreover, Jg(w)P(dW) < 00 and 
s = E ( g l Z ) .  

t 

lim 11 g(T,icr) dx - g(w)l P(dw) = 0 .  
t-rw 

(12.1.24) 

(12.1.25) 

Lemma 12.1.3 Each representation of P as a mixtune of T-anvariant 
probability measures is trivial if and only af one of the conditions (b) or (c) of 
Lemma 12.1.2 holds. 

We now return to the interpretation of the Palm probability Po(A) as the 
relative frequency of points with property A. 

Theorem 12.1.5 Let P be a time-stationary distribution on the canonical 
point-process space. Assume that P is ergodic. Then 

lim t- 'w((~,  t ] )  = x (12.1.26) 
t+oo 

and for each A E T 

(12.1.27) 
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Proof Using the inequalities 

the existence of the limit in (12.1.26) is obtained from (12.1.23) for g(w) = 
w((O,l]). Taking into account that by Lemma 12.1.3 this limit is constant, 
(12.1.24) implies (12.1.26). Using a similar argument, the limit in (12.1.27) 
follows from Theorem 12.1.4 and Lemma 12.1.3. 0 

Theorem 12.1.5 provides the motivation to say that, in the ergodic case, 
Po(A) is the probability of the event A seen from the typical point of a time- 
stationary point process with distribution P. The next result shows that, in 
order to have ergodicity of a point process, it is immaterial whether we work 
with the timestationary model or with the Palm model. 

Theorem 12.1.6 The time-stationary distribution P is T-ergodac if and only 
if the corresponding Palm distribution Po is S-ergodic. 

Proof Assume first that P is not ergodic. Thus there is a nontrivial 
representation of P as a mixcure P = pP' + (1 - p)P" of two stationary 
distributions P', P" with intensities A', A", respectively. We leave it to the 
reader to show that then 

This means that Po can also be represented as a nontrivial mixture (of Palm 
distributions). Thus, Po cannot be ergodic. Conversely, if Po is not ergodic, 
then Po can be represented as a nontrivial mixture of the form 

PO = PQ' + (1 -P)Q", o p < 1 (12.1.28) 

for two S-invariant probability measures &' and Q" such t.hat 0 < f 6 1  d Q  < 
00, 0 < 1.1 dQ" < 00. The construction given in (12.1.17) leads to a T- 
invariant probability measure. Hence, if we apply the transformation (12.1.15) 
to both sides of (12.1.28) we see that P can be represented as a nontrivid 
mixture of 2'-invariant measures. D 

Corollary 12.1.3 A Palm renewal point process is S-ergodic. Moreouer, a 
time-stationary mnewal point process is T-ergodic. 

Proof The 0-1 law of Kolmogorov implies that a Palm renewal point process 
fulfils condition (b) of Lemma 12.1.2. Hence, such a process is S-ergodic. 
Ergodicity of the corresponding time-stationary renewal point process now 
follows from Theorem 12.1.6. 0 
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Not.ice that a mixed Poisson process is not ergodic unless the mixing 
distribution is concentrated at a single point. This immediately follows from 
Lemma 12.1.3 and from the defining equation (8.5.1) of mixed Poisson 
processes. Further examples of ergodic point processes will be discussed in 
Section 12.2. 

We conclude this section with a property on events, invariant under time 
shifts T,.  

Theorem 12.1.7 Let P be a T-ergodic distribution on the canonical point- 
process space and let A E Z be a T-anvariant set. Then, P(A) = 1 implies 

Proof Since A is T-invariant, the assertion follows from (12.1.7) and 

PO(A) = 1. 

I(T,w E A )  w(&) = w(B) I (w  E A ) .  D 

Since the event {w : limt+,t-'w((O,t]) exists} is T-invariant, Theo- 
rem 12.1.7 entails that, in the ergodic case, the law of large numbers (12.1.26) 
also holds under Po. By Corollary 12.1.3, this can be seen as a generalization 
of the law of large numbers which had been derived in Theorem 6.1.la for 
(nondelayed) renewal point processes. Other interesting results, whose proofs 
are based on Theorem 6.1.1a1 remain valid in the general ergodic framework. 
As a specific example we mention the law of small numbers stated in Theo- 
rem 6.1.3. 

12.1.4 Marked Point Processes 

Marked point processes are useful when we want the model to include other 
information about the claims like their size or type. We first generalize the 
canonical probability space introduced in Section 12.1.2. Let K be a complete 
separable metric space, for example K = Rd, and let K: be the u-algebra 
of Bore1 sets in K. Let RK denote the set of all integer-valued measures 
w : B ( R ) @ K  + INU(oo} such that w ( B x K )  < 00 for all bounded B E B(lR). 
Furthermore, let .FK be the smallest 0-algebra of subsets of QK containing 
all events of the form {w : w(B x C) = j), where B E B(R), C E K, j E IN. 
Note that there is a one-to-one correspondence between the counting measures 
w E RK and the set of sequences ( (on(w) ,Xn(w) ) ,n  E Z}, where the mark 
X, of un is a random variable with values in K. 

The canonical representation of a marked point process is given by the 
triple ( Q K ,  TK, P), where P is some probability measure on 3 K .  AS in 
Section 12.1.2, we only consider simple marked point processes, for which 
P ( w  : w ( ( t }  x K )  > 1 for some t E R) = 0. We call P time-stationargl 
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if (12.1.3) holds for all A E 3 K ,  z E R, where now the shift operator 
T ,  : RK + RK is defined by (T5u)(B x C) = w ( ( B  + z) x C), i.e. the 
marks are not changed under the time shift T,. 

In what follows we assume that P is a time-stationary distribution on FK. 
All notions and results stated in Sections 12.1.2 and 12.1.3 can be transferred 
into the framework of marked point processes. In particular, for each C E K: 
we consider the intensity X(C) = Jw((O,l]  x C)P(dw) of points with a mark 
from C. If A(C) > 0, then we assume P(w : w ( R  x C) = 0) = 0. In the 
same way as in (12.1.7), for each C E K with X(C) > 0, we introduce the 
(conditional) Palm distribution Pc by 

I(T,w E A ) L J ( ~ z  x C)P(dw), A E FK . 1 Pc(A) = - 

(12.1.29) 
X(C> L 

Then, Pc(s1$) = 1, where 

n,K = {w : w(R- x C) = w(R+ x C) = w, w ( ( 0 )  x C) > 0) 

and P c ( A )  = P c ( S c A ) ,  A E G, where Fg = 3 K  n QZ, SC : R$ + Rz 
with Scw = T,,(,)w and ac(w) = min{t > 0 : w ( { t } x C )  > 0). Furthermore, 
for each C E K with X(C) > 0, we introduce the (conditional) Palm mark 
distribution D c  by 

DC(C') = (x(C))-'x(c'), C' E nc (12.1.30) 

where ICC = K: n C. If C = K, then we use the notation Do = DK and 
Po = PK. It is clear that D c  can be used to establish a relationship between 
Palm distributions taken with respect to different mark sets. 

Theorem 12.1.8 Let C,C' E lc such that X(C),A(C') > 0 and C' C C. 
Then, 

(12.1.31) 

(12.1.32) 

P c f ( A )  = (Dc(C'))-'PC(A n {XO E C'}), A E FK , 
and, in particular, 

Proof Fkom (12.1.29) and (12.1.30) we get 

Dc(C') = Pc(X0 E C') . 

Pc, ( A )  = & 11 f (T ,w  E A) w(dz x C')P(dw) 
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Analogously to (12.1.10) and (12.1.11), for each C E K: such that A(C) > 0 
and for each measurable function g : OK x R -b &, we have the Campbell 
formulae 

(12.1.33) 
and 

g(T-,w,  3) dx Pc(dW) = - 1 / g(w,z)w(dz x C)P(dw). 
X(C> 51K w 

(12.1.34) 
Moreover, analogously to (12.1.14) and (12.1.15)1 we get the inversion 
formulae 

J,, L 
-U;(W) 

P(A) = X(C) 1 / I(T-,w E A) dzPc:(dw), (12.1.35) 
Q K  0 

where ab(w) = max{t < 0 : w ( { t }  x C) > 0}, and 

. C ( W )  

€'(A) = X(C> 1 I(T,w E A) dzPc(dw) (1 2.1 -36) 
O K  

and in particular 

a.c(u)Pc(dU) = (A(C))-'. (12.1.37) 

The notion of an ergodic marked point process is introduced in the same way 
as in Section 12.1.3 for (nonmarked) point processes. 

Examples 1. The compound Poisson process { (a,, U,)$ n 2 1): introduced 
in Section 5.2.2, can be seen as the restriction to the nonnegative halfline 
of a time-stationary marked point process {(un,X,,)} with Xn = U,, and 
mark space K = R+. It is a special case of an independently marked point 
process {(an, X,)} ,  where one assumes that the sequences {a,} and {X,} are 
independent and that {X,,} consists of independent random variables with a 
common distribution D. But the (nonmarked) point process {a,} itself can 
be arbitrary. If the point process {a,,} is also stationary, then the Palm mark 
distribution DK defined in (12.1.30) coincides with D .  The proof of this is left 
to the reader. 
2 .  The mixed Poisson process, introduced in Section 8.5, can also be seen as 
a marked point process. Each point un can be "marked" by a nonnegative 
random variable Xn3 say, indicating to which mixing component the point 
a, belongs. In this case, { (nn, X,)} is not independently marked unless the 
distribution of the X,, is conceritrated at  a single point. 

6. 
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12.1.5 Ruin Probabilities in the Time-Stationary Model 

In this section we consider the claim surplus process {S(t) , t  >_ 0) introduced 
in Section 5.1.4. We suppose that { S ( t ) }  is given on the canonical probability 
space of the (extended) claim arrival process { (on, Xn)? n E Z}. Here X, = 
(U,, Vn), where Urn 2 0 denotes the size of the claim arriving at time on and 
V,, 2 0 is the type of this claim. The mark space is then K = (R+)2. We 
assume {(on, X,)} to be a T-ergodic time-stationary marked point process. 
We also assume that the net profit condition 

P > h0 ( 12.1.38) 

is fulfilled, where po = E o U  denotes the expected claim size under the Palm 
mark distribution Do = Dp+p given in (12.1.32), i.e. po = JzP0(Uo E dz). 
By Theorem 12.1.4 and Lemma 12.1.3, we then have limt-roo S( t )  = --oo and 
consequently limu+oo @(u) = 0 for the ruin function 

where ~ ( u )  is the ruin time. Take the initial reserve u to be 0 and consider 
the ruin probability 

(12.1.40) 

Here T = T ( O ) ,  X+ = X+(O) is the surplus prior to 7, Y+ = Y+(O) is the 
severity of ruin, V+ = V,+ is the type of the daim that triggers ruin and 
u+ = min{n > 0 : cy., Lri - Po, > 0). In the next theorem we state a 
surprisingly simple formula for the ruin probability p(z, y, C). It shows that 
p(z, y, C) does not depend on the distribution of {on} provided that X is fixed 
and that { (onl X, , ) }  is independently marked. This is in agreement with the 
results given in (5.3.18) and in Theorems 6.4.4 and 6.5.15, where we obtained 
the same type of formulae for ladder height distributions in the compound 
Poisson model. 

Theorem 12.1.9 For afl z,y 2 0 and C E Z?(R+), 

cp(z, y, C) = P(T < 00, x+ > z, Y+ > y? v+ E C) . 

(12.1.41) 
JZ+Y 

Proof First note that the probability p(z, y, C) and the integral on the right- 
hand side of (12.1.41) do not change if we rescale the time axis by the factor 
/3 considering the new claim arrival process ((/30n,Xn)} with intensity 
instead of {(on, Xn)}. Thus, without loss of generality we can assume /3 = 1. 
Introduce the notations 

g(w,v) = I(X+ > Z , Y +  > y , v +  E C)I(T = .) , 
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and w,, = T- ,w.  We then have 

= X 1" Po(@ : X+(w,) > 2, Y+(w,) > y,V+(w,) E C , T ( W ~ )  = v) dv , 

where we used Campbell's formula (12.1.34) in the last but one equality. 
Trying to evaluate the integrand in the last expression, it is convenient 
to introduce an auxiliary stochastic process {S*(t) , t  2 0) on the Palm 
probability space (QK, FK, Po). Assume that {S*(t )}  maka a.n upward jump 
of size U-, at time - o - ~  and moves down linearly at unit rate between the 
jumps. Assume further that S'(0) = UO. This gives for B1, B2,C E B(R+), 

Po@: X+(W,)  E Bl,Y+(W,) E BZ,V+(W,) E C,T(W,) =v) 
= Po(Uo-s"(~ )  E B ~ . S 8 ( ~ ) E B 2 , ~ E C , S f ( ~ ) < S * ( ~ - t ) V t E ( 0 , ~ ) )  
= PO({U~ - s*(v) E B ~ , s * ( ~ )  E B ~ ,  v0 E C }  n A , ) ,  

where A, = {S*(u) S*(t)  Vt E ( 0 , ~ ) )  is the event that { S * ( t ) }  has a 
relative minimum at v. Consider the random measure {M*(B), B E B(R)} 
given by 

M * ( B )  = 1 l(S*(v) E B ) I ( A , )  dv. 

Since s'(0) = UO, the support of {M'(B)}  has right endpoint UO. Moreover 
Po is S-ergodic by Theorem 12.1.6, and EoUn < E0(on+l - g n )  by (12.1.37) 
and (12.1.38). Henceforth, we get from Theorem 12.1.4 and Lemma 12.1.3 that 
l imv+oos*(v) = -00, Thus: the left endpoint of the support of { M * ( B ) }  
is -m and consequently {M'(B)}  is the Lebesgue measure on ( - ~ , U O ] .  
Putting the above together, we have 

00 

50 

++,p, c) = A J PO({U~ - s*(v) > 2, s*(v)  > y, tb E C )  n A,) dv 
0 
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Corollary 12.1.4 Let p = Ap-Ipo and let U+ = ,Y+ + Y+ denote the size 
of the claim that triggers ruin. Then the following statements hold: 
(a) The time-stationary ruin pmbabalitg $(O) for the initial reserve u = 0 is 
gauen by @(O) = p. 
(b) The conditional distribution of (U+,V+)  given r < 00 is obtained from 
the Palm mark distribution of (UO, VO) by change of measure with likelihood 
ratio Uo/E0Uo. That is, for each measumble function g : at, x + R+, 

(12.1.42) 

(c) The wndational distribution of (X+,V+) given U+,V+,r < 00 is that of 
(U+Z, V + (  1 - Z ) ) ,  where Z is unijomly distributed on ( 0 , l )  0nd independent 
of u+,v+,r < 00. 

Proof (a) Putting x = y = 0 and C = IR+ in (12.1.41), the assertion is 
immediately obtained. (b) Using integration by parts on the right-hand side 
of (12.1.41), formula (12.1.42) also follows easily from (12.1.41). (c) Suppose 
for a moment that statement (c) is already shown. Then 

P(X+ > Z , Y +  > y I u+ = u,v+ E c,r < 00) 

= P(U+Z > Z , U + ( l -  2) > y I C'+ = u,v-+ E C,T < 00) 

= ( l - = ) I ( u > . + y ) .  
u 

Using (12.1.42), this gives 

= .A,L!~-~EO[UO - 2 - 3/; Uo > z + 9,  Vo E C] 
00 

= Xp-' P0(Vo > s: VO E C> ds. 

In view of (12.1.41), this proves statement (c) because of the uniqueness of 
Radon-Nikodym derivatives. 0 

Remarks 1. The statements of Theorem 12.1.9 and Corollary 12.1.4 remain 
d i d  if the strict inequality in the net profit condition (12.1.38) is weakened to 
/3 2 Ape. This follows from the fact that both sides of (12.1.41) are continuous 
functions of p in the interval [XpO, OG). We leave the verification to the reader. 
2. A closer analysis of the proofs of Theorem 12.1.9 and Corollary 12.1.4 show 
that their statements can be proved in the nonergodic case as well. It suffices 
to assume that for almost all ergodic components of the time-stationary claim 
arrival process {(on,Xn)}, the net profit condition (12.1.38) (or its slightly 



POINT PROCESSES 499 

weaker version mentioned in the remark above) is fulfilled and that {(on, X,)} 
is independently mark&. In particular, Theorem 12.1.9 and Corollary 12.1.4 
remain valid if {(c-r,,, XJ} is an independently marked mixed Poisson process 
for which P(h 5 Sp;') = 1, and where A is the mixing random variable 
considered in Definition 8.5.1. 

We conclude this section with a remarkable relationship between the ruin 
function +(u) for the time-stationary model and the ruin function 

(I 2.1.43) 

for the corresponding Palm-stationary model. Assume that there is only one 
type of claim (the are therefore omitted) and that the claim arrival process 
{ (on, Un)} is independently marked. Put Fu for the claim size distribution and 

Theorem 12.1.10 For each u 2 0, 

p = xP-lcLFu. 

The proof of Theorem 12.1.10 can be found, for example, in Section 9.4 of 
Konig and Schmidt (1992) where the relationship (12.1.44) is considered in the 
context of queueing theory and derived from a general intensity conservation 
princapie. However, if we additionally assume that 

(12.1.45) 

then (12.1.44) can be obtained by an application of the inversion formula 
(12.1.35) to the claim arrival process {(on,Un)}. As in the proof of 
Theorem 12.1.9, we rescale the time axis by the factor p, which is then taken 
equal to 1. Now use (12.1.35) with C = R+ and A = {o : s ~ p , , ~ { C ~ ~ '  - C;, - 
t }  > u } ,  to get 
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Notice that we used (12.1.45) in the last but one equality. The last equality 
results from the fact that the Palm distribution Po is S-invariant. Thus, using 
the notation h4 = ~ u p ~ > ~ ( C L ( ( l t )  - Ui - t } ,  we have 

$(u) = 
= 

XEo((M + Uo - u)+ - ( M  - u)+) 
X(EoUo - Eo min(U0, (U - &I)+})  

where in the third equality we used that { (u,,? Un)} is independently marked 
and consequently the random variables UO and ~ u p , > ~ { ~ ~ ( E ) U i  - - t )  are 
independent under Po. 

A special case of interest is the ruin function in t,he Sparre Andersen model. 
Note, however, that the ruin function $(u) from Section 6.5 is now denoted by 
+"(u). If the underlying claim arrival process is a stationary renewal process, 
then we call the model a stationary Sparre Andersen model. We leave it to 
the reader to show that, for the latter, a Lundberg inequality and a Cram& 
Lundberg approximation can be derived for the ruin function $J(u). They are 
in agreement with the results obtained in Section 6.5. 

Bibliographical Notes. The introduction to point processes given in 
Sections 12.1.1 to 12.1.4 and in particular their representation on a canonical 
probability space is in the spirit of Konig and Schmidt (1992). Other books 
dealing wit.h the general theory of point processes on the real line are, for 
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example: Baccelli and BrCmaud (1994), Daley and Vere-Jones (1988), Franken, 
Konig, Arndt and Schmidt (1982), Last and Brandt (1995) and Sigman (1995). 
Theorem 12.1.9 and Corollary 12.1.4 have been obtained in Asmussen and 
Schmidt (1995). For further related results of this type, see also Asmussen 
and Schmidt (1993) and hliyazawa and Schmidt (1993, 1997). From the 
mathematical point of view, the ruin function @(u) in the time-stationary 
model is equivalent to the tail function of the stationary virtual waiting time 
in a G/GI/1 queue, whereas the ruin function q0(u) defined in (12.1.43) is 
equivalent to the tail function of the stationary actual waiting time in such a 
queue. In queueing theory relationships of the form (12.1.44) are called Talcdcs’ 
fomdae; see, for example, Section 3.4.3 in Baccelli and BrCmaud (1994), 
Section 4.5 in Ranken, Konig, Arndt and Schmidt (1982), and Section 9.4 
in Konig and Schmidt (1992). For the stationary Sparre Andersen model, see 
also Grandell (1991 b), Thorin (1975) and Wikstad (1983). Mixing conditions 
on the point process {gn}, such that (12.1.45) is fulfilled, can be found in 
Daley and Rolski (1992); see also Daley, Foley and blski (1994). 

12.2 MIXTURES AND COMPOUNDS OF POINT 
PROCESSES 

In this section we show how the classes of mixed Poisson processes, compound 
Poisson processes, and renewal processes can be extended to more general 
point processes with a similar structure. We first introduce the notion 
of a nonhomogeneous Poisson process. Then we consider a general class 
of mixtures of nonhomogeneous Poisson processes, called Cox processes. 
Particular emphasis is put on two important special cases: Markov modulated 
Poisson processes and Bjork-Grandell processes. Besides mixtures of point 
processes, we also discuss other methods to construct new point processes. 
They consist of several kinds of compounding, in particular superposition 
and clustering of point processes. Since in the definition of mixtures and 
compounds of point processes several (independent) stochastic processes 
occur, it is not always convenient to use the canonical point-process space 
as an underlying probability space. 

12.2.1 Nonhomogeneous Poisson Processes 

We first extend the coucept of a homogeneous Poisson process to allow 
time-dependent arrival rates. For example, there are situations where claim 
occurrence epochs are likely to depend on the time of the y w .  

Let X(t)  be a nonnegative, measurable and locally integrable (deterministic) 
function. While there are several equivalent definitions of a nonhomogeneous 
Poisson process, our approach via the counting measure { N ( B ) }  has the 
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advantage that it can be used to introduce nonhomogeneous Poisson processes 
also on more general state spaces than R. Recalling the counting measure 
{IV(B)}, the increment N ( ( a ,  b]) where a < b is the number of points in (a ,  b]. 
We will say that a counting meisure { N ( B ) }  or the corresponding point 
process {a,} is a nonhomogeneous Poisson process with intensitp function 
X ( t )  if { N ( B ) }  has independent increments on disjoint intervals and for all 
a < b the random variable N((a ,  b]) is Poisson distributed with parameter 
J," X(x) dx. Then, 

b 
E N ( ( a ,  b ] )  = / X(v) du . (12.2.1) 

a 

which means that A ( t )  plays the role of an arrival rate function. In the same 
vain, q(t)  = s,' X(v) dv is called the cumulative intensity function (t 2 0 )  while 
the measure with v(B) = JB A(v) du is called the intensaty measure of {un}. 
By P, we denote the distribution of a nonhomogeneous Poisson process with 
intensity measure q. 

The conditional uniformity property of homogeneous Poisson processes 
considered in Theorem 5.2.1 can be generalized in the following way. 

Theorem 12.2.1 A counting rneasuw { N ( B ) }  is a nonhomogeneous Poisson 
process with intensity fvrsction A( t )  if and only if for all a < b: n = 
1,2 , .  . . the random variable N((a,b]) has distribution Poi(J: X(v) dv) and, 
given { N ( ( a ,  b])  = n}, the random vector ( C Y ( ~ ) : .  . . , a(*)) of the n (ordered) 
locations of these points has the same distribution as the order statistics of 
n independent [a, b]-valued random variables, each with the common densfty 
function f(v) = X(v)/ s," X(w) dw. 

Proof The sufficiency part is omitted since we only have to show that { N ( B ) }  
has independent increments. But this is fulIy analogous to step (b) +- (c) in 
the proof of Theorem 5.2.1. Assume now that { N ( B ) }  is Poisson with intensity 
function X(t). Then, the increment K((t ' ,  4) has distribution Poi($ X(v) dv) 
for all t' < t. Thus, for a = to  5 ti  < t l  5 ta < t~ 5 . . . 5 tk < t ,  = b, 

n 

= n! fi ( ~ ( v )  dv /' /* X(V) dv) . 
k=l t& a 

0 

We still give another important property of nonhomogeneous Poisson 
processes. 
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Theorem 12.2.2 Suppose that { N 1 ( B ) }  and { N z ( B ) }  are two independent 
nonhomogenww Poisson processes with intensity functions A1 ( t )  and Az( t ) ,  
respectivelg. The superposition { N ( B ) } ,  where N ( B )  = &(B)  + &(B) is a 
nonhomogenww Poisson process with intensity function X( t )  = X l ( t )  + X2(t). 

The proof of Theorem 12.2.2 is left to the reader. 

12.2.2 Cox Processes 

If one investigates real data on the number of claims in a certain time interval, 
it turns out that the Poisson assumption is not always realistic. It is then often 
possible to fit a negative binomial distribution to the data. We have already 
noticed that a negative binomial distribution can be obtained by mixing the 
Poisson distribution with a gamma distribution, i.e. by letting the Poisson 
parameter be gamma distributed. As a more general variant, we can take the 
parameter X of the homogeneous Poisson process to be stochastic. Such an 
extension has already been considered in Section 8.5, where it was called a 
mixed Poisson process. What is really needed, however, is more variability 
in the claim arrival process. In a mixed Poisson process, this variability will 
diminish as time progresses. In order not to lose this variability, a basic idea is 
to let the "expect,ed" number of claims A((a,  b ] )  in the time interval (a, b] be 
generated by a random measure {h(B) ,  B E B(R)}. Here h(B)  = J, X(v) dv 
for some nonnegative stochastic process {X(t ) ,  t E R}, whose sample paths 
are measurable and locally integrable. We call {X( t ) }  an intensety process, 
and { A ( B ) }  a cumulative intensity measure. Given {A(B)} ,  the number of 
claims N ( ( a ,  b ] )  in the interval (a,b] is assumed to be Poisson distributed 
with parameter A((a,  b]) .  We turn to a formal description. 

A counting measure {IV(B)} or the corresponding point process {un} is 
called a Coz process or a doubly stochastic Poisson process if there exists an 
intensity process {Act ) }  such that for all n = 1,2, .  . ., for k1,. . , , Is ,  E IN, and 

< bl 5 a2 < b2 5 ... 5 an < bn 

The two-stage stochastic mechanism can be seen as follows. Consider the 
canonical representation (O,F,P) of a point process as introduced in 
Section 12.1.2, where R is the set of all locally finite, integer-valued measures 
on B(E3). Furthermore, let 0 be the set of all (not necessarily integer-valued) 
measures q : B(R) + R+ U (00)  such that v ( B )  < 00 for all bounded 
B E B(R.1. As in Section 12.1.2, let denote the smallest a-algebra of subsets 
of fi containing all events of the form { q  : a < q(B) 5 b } ,  where B E B(R) 
and 0 5 a < b. 
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Consider the random intetasity measure { A ( B ) ,  B E D(R)} given by A(B)  = 
J,X(v)dv. As in the case of point processes, it is convenient to work on a 
canonical space. The canonical -- representatoon of the random measure {A@)) 
is then given by the triple (a ,3 ,Q) ,  where Q is a probability measure on 7. 
We c m  therefore identify a random measure with its distribution Q (on the 
canonical _.- probability space). Using the canonical representations (0 ,7,  P )  
and (Q, 3, Q),  it is possible to give a definition of a Cox process as a mixture 
of nonhomogeneous Poisson processes. Namely, (Q, F, P) is said to be a Cox 
process if there is a random intensity memure with distribution Q such that 

(12.2.3) 

However, a formal introduction of Cox processes along these lines, requires 
some discussion on measurability, like for example whet.her the mapping 
rj t) P, is measurable. In this connection, it can be useful to consider the 
product probability space (Q x a, 3 @ F, P) with 

P 

(12.2.4) 

Using (12.2.2), we get an alternative two-stage stochastic mechanism for Cox 
processes which is similar to that given in (12.2.3) and (12.2.4). 

Theorem 12.2.3 Let {N‘ ( t ) , t  2 0) be u homogeneous Poisson process on 
R+ with intensity 1 and let {A( t ) , t  2 0) be an intensity process. If { N ’ ( t ) }  
and { A ( t ) }  are independent, then the counting measure ( N ( B ) ,  B E a(&)} 
given by N ( ( O , t ] )  = A(v)dv) is a Coz process with intensity process 

Proof We show that (12.2.2) holds. Indeed, 

{W. 

which is equal to the right-hand side of (12.2.2). 
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The notion of stationarity for general (locally finite) random measures 
can be introduced BS in the case of a time-stationary point process given 
in (12.1.3). We say that the random measure {A(B)}  and equivalently its 
canonical representation (f43,Q) is stationary if Q(A) = Q(T,A) for all 
A E 7, x E R, where the shift operator T, : fi + is defined by (T,q)(B) = 
q(B + 2). We leave it to the reader to show that a Cox process is time- 
stationary, i.e. the corresponding counting process has stationary increments 
if and only if its random intensity measure is stationary. Furthermore, the 
random intensity measure {A@)} given by A(B)  = JB X(w) dw is stationary 
if and only if the intensity process {X(t)) is stationary. 

Let { A ( B ) }  be stationary with distribution Q such that X = 
Jq((O,l])Q(dq) is positive and finite. Then, for each B E B(R) such that 
0 < IBl < 00 we define the mapping go : 7 + [0,1] by 

-- 

&'(A) = / 1 l(T,q E A)q(dz)Q(dq) , A E 7.  (12.2.5) 
B 

Ln the same way as was done in Section 12.1.2 for stationary point processes, 
it can be shown that Qo is a probability measure independent of the choice of 
B. The probability measure Qo is &led the Palm distribution corresponding 
to the stationary distribution Q. It can be used to describe the reduced Palm 
distribution PI of a timestationary Cox process. In particular, the following 
result shows that P! again is the distribution of a Cox process. 

Theorem 12.2.4 Let P be given by (12.2.3) for some stationary distribution 
Q such that X = Jq((O,l])Q(dq) i s  positave und finite. Then, 

(12.2.6) 

The proof is omitted. It can be found, for example, in Section 5.3 of Konig 
and Schmidt (1992). 

For point processes on lR+ , time stationarity and Palm distributions remain 
meaningful by appropriate restriction to R+ of corresponding objects on the 
whole real line, as shown in some of the examples below. 
Examples 1. A special case of a Cox process is a mixed Poisson process 
where X(s) = A for some nonnegative random variable A. From the definition 
(12.2.2) and (8.5.1), we immediately get that a mixed Poisson process is a 
time-stationary point process. Theorem 12.2.4 implies that the reduced Palm 
distribution of a mixed Poisson process is given by 

l m  (12.2.7) 

where P, denotes the distribution of a homogeneous Poisson process with 
intensity z, and El is the distribution of A. In particular, (12.2.7) shows that 
P is again the distribution of a mixed Poisson process. 

P!(A) = - 1 zP,(A)dFA(Z), A E F ,  
0 
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2. Let A0 : R+ + El+ be a periodic (and deterministic) function with 
period equal to 1, say. Let {"(t), t 2 0) be a homogeneous Poisson process 
with intensity 1. The counting process { N ( t ) , t  2 0) given by K ( t )  = 
N'(S6 Ao(w)dw) is sometimes called a pera'odic Poisson process; see also 
Section 12.4. This process does not have stationary increments. However it is 
possible to define a corresponding counting process with stationary increments 
in the class of Cox processes. Let X be uniformly distributed on [0,1] and 
independent of {N'(t)}. Furthermore, let A( t )  = Ao( t  + X) and h(t) = 
s," A($) ds. Then, the Cox process {N' ( t ) , t  1 0) with N * ( t )  = N'(A( t ) )  has 
stationary increments. We leave it to the reader to prove this as an exercise. 
3. Let { J ( t ) }  be a Markov process with state space E = {l, ...,f!} and 
intensity matrix Q = ( q t j ) i , J E E .  The process { J ( t ) }  models the random 
environment of an insurance business. If at time t the environment is J ( t )  = i, 
then claims are supposed to arrive according to a homogeneous Poisson 
process with intensity A, 2 0. By a Markov-modulated Poisson process we 
mean a Cox process whose intensity process { A ( t ) }  is given by A ( t )  = AJ(t) .  
We leave it to the reader to show that a Markov-modulated Poisson process 
has stationary increments if the environment process { J ( t ) }  has a stationary 
initial distribution. Furthermore. it follows from (12.2.5) and (12.2.6) that the 
reduced Palm distribution of a time-stationary Markov-modulated Poisson 
process is again the distribution of a Markov-modulated Poisson process. 
Indeed, if { J ( t ) }  has stationary initial distribution ?r = {TI:. . . , T [ } ,  then 
(12.2.5) and (12.2.6) imply that 

F I 

P! = A-' c 7riAiPi , A = c 7rJZ , (12.2.8) 
i= 1 kl 

where Pi denotes the distribution of a Markov-moddated Poisson process 
governed by the same intensities A,, . . . , A t  but by the Markov process {J i ( t }}  
with intensity matrix Q and initial state Ji(0) = i. Ruin probabilities in risk 
models where the claim arrival process is a Markov-modulated Poisson process 
will be studied in Sections 12.2.4, 12.3 and 12.6.4. 
4. We now consider the Markov-modulated process as in Example 3 above 
with marks added. To define the process we have to specify the number of 
states C, the intensity matrix Q, the intensities XI,. . . , A t  and the distributions 
Fl,  . . . , Ff.  For our purpose, the Fi are distributions on EL+. If J ( t )  = i, then 
claims are arriving according to a Poisson process with intensity Az and the 
claim sizes are distributed according to Fi, independent of everything else. In 
this way we define a marked point process {(On,  Xn)} called a marked Markou- 
moddated Poisson process, with X, = (U,, V,), where U n  is the claim related 
to the nth arrival on and 1% = J(an). We leave it to the reader to show that 
P0(U0 E B) = g=, A-lA*TsFt(B). 
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5. Let {(Ai,Ii) , i  2 1) be a sequence of independent random vectors with 
P(Ai  2 O,Ii > 0) = 1 for all i 2 1. Assume that the random vectors 
(Az, I z ) ,  (-43: &), . . . are identically distributed. A Bj6rk-Grandell process is 
a Cox process on R+ whose intensity process {X(t ) , t  2 0) is given by 
A(t)  = A, whenever x&: Ik 5 t < cb-, Ik. Thus, Ii is the duration of the 
intensity level A j .  In the special case whe;e (AI ,  11) and (A2,12) are identically 
distributed we speak of an ordinary (nondelayed) Bjork-Grandell process. We 
leave it to the reader to show that a Bjork-Grandell process has stationary 
increments if El2 < 00 and, for all B, B' E S(R+), 

P(A1 E ByI1 E B') = - P ( h 2  E B,Iz > v)dv .  (12.2.9) 
El2 B' 

In view of (12.2.9) the stationary Bjork-Grandell process is completely 
specified by the distribution of ( A z , I 2 ) .  The special case where Ii = 1 for 
n = 2,3, . . . is called an Ammeter process. 

12.2.3 Compounds of Point Processes 

Consider the point processes {qn}, . . . , { u ~ , ~ }  and the corresponding count- 
ing measures { IV, (B) ] : . . . , { Nt(B)} .  By a superposition of these point 
processes we mean a point process with counting measure { N ( B ) }  defined 
by N ( B )  = &Ni(B),  B E B(R); see also Theorem 12.2.2. We now 
state a representation formula for the Palm distribution of the superposition 
of t independent stationary point processes (ul,,,}, . . . , {at,,,} with positive 
and finite intensities XI,. . . A t ,  respectively, where t E IN is fixed. By 
{h'?(B)} we denote a Palm version of { N i ( B ) } ,  i.e. the counting measure 
corresponding to the Palm distribution of {ui+}. Assume that the sequence 
{@(B)},. . . {N:(B)}  consists of independent counting measures and is 
independent of { N l ( B ) } ,  . . . , {,Vf(B)}. Consider a (product) probability space 
on which all these 2t point processes are defined, and denote the basic 
(product) probability measure by P. It is then clear that the superposition 
N = x:=l Ni is stationary and that its intensity is X = c:=, A,. In 
the next theorem we state a representation formula for the distribution of 
the Palm distribution Po of N .  In this connection we use the notation 
N ( i )  = NI + . . . + Ni-1 + N: + Ni+l + . . . + Nl for i = 1,.  . . ,C. 
Theorem 12.2.5 For each A E F, 

t 
PO(A) = c $P(N(') E A )  . (12.2.10) 

i=l 

Proof By the independence assumptions, (12.2.10) easily follows from (12.1.7). 
0 We leave it to the reader to provide the details. 
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In Section 12.2.4 we show how Theorem 12.2.5 can be used to derive lower 
and upper bounds for the time-stationary ruin function $(u). For another 
application of Theorem 12.2.5, see also Sect.ion 12.6.3. 

The following type of compounding leads to the notion of cluster processes. 
Let (06) be a stationary point process with a positive and finite intensity 
A'. Let {Nn,n E Z} be a sequence of independent and identically distributed 
counting measures which is independent of {ox}. Assume 0 < ENn(R) < 00. 

The point process with counting measure { N ( B ) , B  E B(R)) defined by 
N ( B )  = CnEZ Nn(B - 0;) is called a cluster process, where {t&} is called 
the point process of cluster centres. The counting measures { N , , n  E Z} 
describe the individual clusters. It is clear that { N ( B ) }  is stationary and that 
its intensity is X = X'EN,(R). If the point process { u i }  of cluster centers 
(or parent points) is a homogeneous Poisson process, then { N ( B ) }  is called 
Poisson cluster process. In order to study the Palm distribution of this class 
of compound point processes it is convenient to introduce the notion of the 
generating functional of a point process. 

Let I be the set of all Borel-measurable functions f : R + R such that 
0 5 f(z) 5 1 for all z E R and f(z) = 1 for all z E R \  B, where B E B(R) is 
some bounded set (dependent on f). Then, for any fixed point process (un}, 
the mapping G : I + R defined by 

G(f) = E nrc4 3 f E I , (12.2.1 1) 
n 

is called the generating functional of {on}. The following properties of the 
generating functional are known. 

Theorem 12.2.6 (a) The distribution of a point process k uniquely 
determined by/ its generating finctional. 
(b) The generating functional of the superposition {(Nl + N2)(B)}  of two 
independent counting measvres { N l ( B ) } ,  {&(I?)} is given by the product of 
the generating jknctaoncls of { NI ( B ) }  and { n;Z ( B ) }  . 
The proof of Theorem 12.2.6 goes beyond the scope of this book. We therefore 
omit it and refer to Daley and Vere-Jones (1988), for example. 

We are now in the position to state a useful representation formula for 
the generating functional of the Palm version of a Poisson cluster process. It 
is a generalization of Slawnyak's theorem for Poisson processes. Let G be the 
generating functional of a Poisson cluster process and let Go be the generating 
functional of its Palm distribution. Wthermore, let G denote the generating 
functional of the point process whose distribution P is given by 

*(A)  = (ENn(R))-'E (1 I(T,Nn E A)N,(d.)) , -4 E .F . (12.2.12) 
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Theorem 12.2.7 For each f E I ,  

@(f) = G(f)G(f)  - (12.2.13) 

The proof is omitted. It can be found in Section 5.5 of Konig and 
Schmidt (19921, for example. 

Theorems 12.2.6 and 12.2.7 can be used to derive a lower bound for the 
time-stationary ruin function @(u) if the claim arrival process is governed 
by an independently marked Poisson cluster process; see Section 12.2.4 
below. Another application of Theorem 12.2.7 is given in Section 12.6.2, 
where asymptotic properties of ruin functions are studied in the case of a 
subexponential claim size distribution. 

12.2.4 Comparison of Ruin Probabilities 

The aim of this section is to develop techniques allowing comparison of the 
ruin function @(u) in the timestationary risk model to the ruin function +* (u) 
in a correspondingly averaged compound Poisson model. We begin with the 
stationary Markov-modulated model. So, consider the claim surplus process in 
the time-stationary risk model introduced in Section 12.1.5, where the claim 
arrival process {(an, X,)} is a marked Markov-modulated Poisson process 
as defined in Example 3 of Section 12.2.2 and specified by l ,  Q, XI,. . . , A t ,  
F1, .. . , Ff.  Moreover we assume that Q is irreducible and that T I , .  . . ,Tt is 
the stationary initial distribution. 

Recall that for each i E E the (conditional) claim arrival intensity is X i  and 
the (conditional) claim size distribution is F,. We assume that, given { J ( t ) ) ,  
the sequences {c,,} and {Xn} are independent and that {a,} is a Markov- 
modulated Poisson process governed by { J ( t ) }  and XI,. . . , X i .  Furthermore, 
we assume that, given { J ( t ) }  and {on}: the claim sizes U1, UZ, . . . are 
independent, where U, has distribution Fi if (Vn =) J(o,) = i. As usual 
N ( t )  is the number of claims arriving in (0, t ] .  

Here we study $(u) = P(T(u) < 00) = EfZl Ir&(u), where 

We show that under some conditions this ruin function +(u), given by 
(12.1.39), is "more dangerous" than the ruin function in the following 
(averaged) compound Poisson model. Let +*(u) be the ruin function in the 
compound Poisson model with characteristics (A, F) given by 
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Since we want to apply the results of Section 12.1.5, the net profit condition 
(12.1.38) will be taken for granted; see also Section 12.3.2. We observe t.hat 
the relative safety loading is the same for the Markov-modulated model and 
for the compound Poisson model. 

Theorem 12.2.8 Let Q be stochastically monotone and let 

A1 5 . . . 5 A t ,  F1 SSL . . . Fe. (12.2.15) 

Then $(u) 2 $J*(u) for  all 'u 2 0. 

The proofof Theorem 12.2.8 is subdivided into several steps. We also need 
some extra notation. Let { J i ( t ) }  denote a homogeneous Markov process with 
intensity matrix Q and initial state Ji(0) = i. Furthermore, for i = 1, .  . . ,l, 
let { N i ( t ) }  be a Cox process with intensity process { X J ~ ( ~ ) }  and let Ui,,Uj,. . . 
be a sequence of claim sizes where the distribution of U i  is Fj if Ji(uk) = j .  

i E E ,  the following comparison holds. 

Lemma 12.2.1 Under the assumptions of Theorem 12.2.8, the inequality 
$+(u) 5 @,(u) holds for all u 2 0 whenewer i 5 j .  

Proof We use a coupling argument. Let i 5 j .  Then by Theorem 8.1.8 there 
exists a probability space (fli,, Fij, Pij) on which Jj( t )  5 Jj ( t )  for all t 2 0. By 
the first part of condition (12.2.15), there exists a probability space (a', 3', PI) 
on which {c(,} c {u i } .  We leave it to the reader to provide the details. 
The second part of condition (12.2.15) and a multidimensional analogue to 
Theorem 3.2.1 imply the existence of a probability space such that U i  5 Lri 
for all n = 1 ,2 , .  . .. Thus, taking the product space as the basic probability 

0 

For the (conditional) ruin functions @j(u) = P(sup,,,{C;,, Wi(t)  ui ,, - f i t }  > u), 
- 

space we get that on this space UA 5 CrLy' Lri for all t 2 0. 

The following standard inequality of Chebyshev type will be useful. 

Lemma 12.2.2 I f 0  5 a1 < . . . 5 at ,  0 5 bl 5 . . . < be and Qi 2 0 for  all 
i E E ,  a.  I - - 1, then aiaibi 2 Zf=l a,a, a&i. 

Proof Let X be an E - d u e d  random variable with probability function 
a = {cq, ..., at}. I f  we define k by k = min{i 2 1 : bi - E b x  2 0 } ,  then we 
have 

1 T 

e I I 

i=l i=l i= 1 i= 1 
k - 1  c 

i=l i=k 
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51 1 

i= 1 i=k 

Proof of Theorem 12.2.8. By (5.3.9) we have 

(12.2.16) 

For the Markov-modulated model we have P0(Uo 2 .u, 110 = i) = ~ i X i A - ' ~ ( v )  
which can be concluded from (12.2.8). Theorem 12.1.9 then implies that 

Since by the assumption (12.2.15) and by Lemma 12.2.1, the sequences {a*} ,  
( b i }  with ai = XiFi(u), bi = &(u - u> are increasing, Lemma 12.2.2 gives 

P P 

Thus, 

q(u)  2 ~F(u) + XP-' +(u - ut)F(~)  dv . (1 2.2.17) 

Comparing (12.2.16) and (12.2.17), Lemma 6.1.2 immediately implies that 

The same argument as in the proof of Theorem 12.2.8 almost immediately 
applies when analysing the following model. Consider the ruin function in 
the stationary risk model where the claim arrival process is governed by a 
time-stationary mixed Poisson process such that, given h = Z, the sequences 
{gn} and {U,,} are independent and the claim sizes are independent random 
variables with distribution F,. 
Theorem 12.2.9 Assume that F, sst F,t for x 5 x' and J?(AppA < 8)  = 1. 
Then +(u) 2 @*(u) for all u 2 0, where ?/,J*(u) is the min function in the 
compound Poisson model with arrival intensity E A and claim size distribution 
fvnction F ( t )  = JF F, ( t )  dF;i (z). 

Proof We use a general version of the Chebyshev-type inequality given in 
Lemma 12.2.2 stating that for each real-valued random variable X and for 

$(a) 2 $*(u) for all u 2 0. 
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each pair of increasing functions a(%) and b ( s ) ,  

Ea(X)b(X) 2 Ea(X)Eb(X). [ 12.2.18) 

Let &(u) be the ruin function in the compound Poisson model with 
characteristics (2, Fz) .  One needs to show first that &(u) 5 q!~~(u) for 2 5 y, 
and this is analogous to Lemma 12.2.1. Then, using (12.2.18), the same 
argument as in the proof of Theorem 12.2.8 applies. The details are left to 
the reader. R 

The ruin function +(u) of the time-stationary Sparre Andersen model can 
similarly be compared with that of an appropriately chosen compound Poisson 
model. 

Theorem 12.2.10 Consider the time-stationary Sparre Andersen model puith 
distribution FT of inter-arrival times and distribution Fu of claim sizes, where 
0 < p ~ : p u  < 00. If FT is NBUE, then $(u) 5 $*(ti) for a11 p6 2 0, where 
+*(u) i s  the ruin function in the corresponding compound Poisson model 
with arrival intensity pT1 and claim size distribution F L ~ .  Moreover, if FT 
as NWUE then $(u) 2 +*(u) for all u 2 0. 

Proof Let FT be NBUE. Then FB, Ist FT. Therefore by Theorem 3.2.1 
we can find a probability space ( f t ,F ,  P) and independent random variables 
Tf,Tl,Tz, ..., V1:U2, ... such that 2'1 I T:, where 7'1 has distribution F+, 
Ti,  Tz, T3,. . . have distribution FT and 171, U2,. . . have distribution Fu. The 
risk reserve process in the time-stationary model is therefore always smaller 
than in the Palm model and hence q(u) 2 $O(u), where v,k0(u) is the ruin 
function in the (Palm-stationary) Sparre Andersen model. Analogously to 
(12.2.17), we get from (12.1.44) that for all u 2 0  

$421) I ( P T P ) - ~ P U % ( ~ )  + (PTP)-' 1" +(u - v)FL'(v) dv. (12.2.19) 

As in the proof of Theorem 12.2.8, also +(u) 5 It)*(u) for all u 2 0, where $*(u) 
is the ruin function in the compound Poisson model with arrival intensity pF1 
and claim size distribution Fu. For FT being NWUE, the proof is similar. 0 

Using the representation formula (12.2.10) for the Palm distribution, The- 
orem 12.2.10 can be generalized from a single renewal point process to a 
superposition of several renewal processes. Assume that the time-stationary 
claim arrival process {(nnn, Un)} is independently marked with claim size 
distribution Fu and that {un} is the superposition off! independent stationary 
renewal point processes with interpoint-distance distributions Fl , .. . , Ft and 
expectations P I , . .  . ,pel respectively. If F1,. . . , Ft are NBUE, then we get 
from (12.1.44) and (12.2.10) that +(u) 5 $+(u) for all p6 2 0, where $*(u) 
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is the ruin function in the compound Poisson model with arrival intensity c;=, pT1 and claim size distribution Fu. Moreover, if F1, .. . , Ft are NWUE 
then $(u) 2 $*(a) for all u 2 0. 

Another natural generalization leads from a renewal point process to the 
class of serni-Murkov point processes where the inter-point distances are no 
longer independent nor identically distributed but connected via a Markov 
chain with finite state space. A classical example is the so-called ultemating 
renewui point process. For this class of point processes, similar conditions 
can be found for deriving an upper "Poisson" bound for the timestationary 
ruin function $(ti). It suffices to assume that all (conditional) distributions 
of distances between consecutive points are NBUE. A corresponding lower 
bound for $(u) is obtained if all these distributions are NWUE. 

Finally, we mention that a lower bound analogous to that in Theorem 12.2.8 
can be derived for the time-stationary ruin function $(u )  if the claim arrival 
process is governed by an independently marked Poisson cluster process. 
From (12.1.44) and the representation formula (12.2.13) for the generating 
functional of the Palm distribution of this class of stationary point processes, 
we get that this lower bound holds without any additional conditions. 

Bibliographical Notes. Properties of Cox processes and cluster processes 
can be found in many books dealing with point processes on the real line; 
see, for example, Bremaud (1981), Daley and Vere-Jones (1988), Karr (1991), 
Kiinig and Schmidt (1992) and Last and Brandt (1995). The Markov- 
modulated risk model was first introduced by Janssen (1980) and also 
treated in Janssen and Reinhard (1985) and Reinhard (1984). The definition 
of this model using an environmental Markov chain { J ( t ) }  goes back to 
Asmussen (1989). Theorem 12.2.8 has been derived in Asmussen, bey, Rolski 
and Schmidt (1995). rl weak form of comparison between the ruin function 
in the timestationary Markov-modulated model and the ruin function in 
the correspondingly averaged compound Poisson model was originally given 
in Rolski (1981). A survey of methods for statistical estimation of the 
parameters of Markov-modulated Poisson processes is given in R y d h  (1994). 
For the queueing-theoretic analogue to the time-stationary Sparre Andersen 
model, the inequalities @(u) 2 (5 )  $*(u) for all u 2 0 if FT is NBUE 
(NWUE) have been proved, for example, in Franken, Konig, Arndt and 
Schmidt (1982), p. 137. The Bjork-Grandell process was introduced in 
Bjijrk and Grandell (1988) as a generalization to the model considered by 
Ammeter (1948). Another application of nonhomogeneous Poisson and Cox 
processes in risk theory can be found, for example, in Arjas (1989) and in 
Norberg (1993) , where the prediction of outstanding liabilities is investigated. 
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12.3 THE MARKOV-MODULATED RISK MODEL VIA 
PDMP 

We now turn to the continuous-time risk process {R( t ) ) .  We use techniques 
for PDMP developed in Chapter 11, where the claim arrival process is given 
by a Markov-modulated Poisson process. Moreover, as in Section 12.2.4, we 
allow that claim size distributions are modulated by t.he Markov environment 
process { J ( t ) } .  The stochastic process {(J( t ) ,R(t))}  is called a Markov- 
moddated risk model. Our aim is to obtain bounds and approximations to 
the infinite-horizon and finite-horizon ruin functions of this model. 

12.3.1 

The risk reserve process {R(t)}  can be represented in the following way. Let 
( I ,&,  . . . with <,,+I = inf{t > tn : J ( t )  # J(t - 0)) be the times where the 
state of the environment changes, where (0 = 0. Consider the independent 
compound Poisson risk processes {Rr ( t ) ) ,  . . . , {R[ ( t ) }  with characteristics 
( A l ,  FI), . . . , (A!, &), respectively. Let pi = s r  vdF;(w) denote the expected 
claim size in state i and &(s) = ~ome*u dFi(v) its moment generating 
function. Furthermore, the claim counting process in the i-th model is denoted 
by {Ni ( t ) } .  The claim counting process { N ( t ) }  in the Markov-modulated risk 
model is then given by 

A System of Integro-Differential Equations 

N ( t )  = 5 J' I ( J ( u )  = i) d.Vi(v), (12.3.1) 
i=l 0 

and the corresponding risk process {R(t)}  by 

e 
R(t)  = u + C lo" I ( J (v)  = i) dRd(v). 

i=l 
(12.3.2) 

This means N ( 0  - 0) = 0, R(0 - 0) = u while for (n 5 t < ,$,,+I 

"t)  = W n  - 0) + NJ(t , ( t )  - NJ(6)KtI - 0) 7 

R(t) = R(<n - 0) + RJ(t)W - R J ( t , ( I n  - 0) * 
In particular (12.3.1) implies that, given the environment, the conditional 
expected number of claims in the interval (0, t ]  is equal to E ( N ( t )  I J ( v ) ,  0 5 
TI 5 t )  = s,' A J ( ~ )  dw. Hence, E N ( t )  5 maxist A$ < 00. 

The ruin function +(u) = P(inft>oR(t) < 0) and the conditional ruin 
functions &(u) = P(inft>o R(t)  < 0 t J ( 0 )  = i) are expressed in terms of the 
risk reserve process {R(tr} rather than using the claim surplus process {S ( t ) }  
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as was done in Section 12.2.4. Further, the conditional survival functions are 
denoted by ?;(ti) = 1 - &(u). 

As in Section 5.3.1, we can derive a system of integro-differential equations. 

Theorem 12.3.1 The szdruival functions qi(u) are absolutely continuow and 
Wf;l 

and 

for E = 1 , .  . . ,!, where Gii,+(u) and qi.-(u) are the right and left deriuatives 
of ?$(u), respectively. 

The proof of Theorem 12.3.1 is similar to the proof of Theorem 5.3.1 and is 
left to the reader. 

12.3.2 Law of Large Numbers 

Let Q be irreducible and write 7r = (TI,. . . , nt) for the stationary initid 
distribution of { J ( t ) } .  Recall that by Theorem 8.1.4 we have T = nexp(tQ) 
€or all t 1 0.  In Section 8.1.2 we showed that this is equivalent to n Q  = 0. The 
following law of large numbers for the Maxkov-modulated risk model extends 
its counterpart for the compound Poisson model as it was mentioned in the 
introduction to Section 5.3; see also Theorem 10.3.4. Recall that similar results 
for renewal processes were derived in Theorem 6.1.12. 

Theorem 12.3.2 Assume that Q is Irreducible. Then 

I 
(12.3.5) 

Proof Without loss of generality we can assume that PL = 0. Let r/’.(t) = 
s,” l (J(v)  = i) dv denote the amount of time in ( O , t ]  that { J ( t ) }  spends in 
state i. First observe that (12.3.2) can be rewritten in the form 



516 STOCHASTIC PROCESSES FOR INSURANCE AND FINliNCE 

It is left to the reader to show that limt+m t-'Vi(t) = ?ri. It therefore suffices 
to show that (&(.?))-I s,' I(J(v) = a )  d&(v) tends to p - Xipi a~ t + 00. But 
s,' I ( J (v)  = i) dR,(w) has the same distribution as &(&(t))  because {&(t)} 
has independent and stationary increments. Since Q is irreducible, &(t) tends 
to infinity as t + 00. The assertion now follows by the same arguments as 

0 

1 if p 5 EL, A,Xip*. Indeed assume 
J ( 0 )  = a. Let lo = 0 and let I,+l = inf{t > I, : J ( t )  = i : J ( t  - 0) # i} be 
the epochs, where { J ( t ) }  returns to state i. It is easy to see that {R(I , ) )  
is a random walk. Since n-lRR(ln) = (Im/n)(R(In)/I,,) and I, + 00, it 
follows from Theorem 12.3.2 that {R(In)}  does not have a positive drift if 
p 5 xi=l x,Xipi. Thus, by Theorem 6.3.1, ruin occurs almost surely. We 
therefore take the net profit condition 

that used in the proof of Theorem 6.3.1. 

Theorem 12.3.2 implies that $(u) 

I 

P > C r i X i p i  (12.3.6) 
i=l 

for granted in what follows. 

12.3.3 

Thanks to the following result, the techniques for PDMP developed in 
Chapter 11 become available. 

Theorem 12.3.3 The process { (J( t ) ,R( t ) , t ) }  ds a PDMP. Its generator A 
h a  the property that g E D(A)  and (9, Ag) E A for each function g fdfitling 
the conditions of Theorem 11.2.2, where 

The Generator and Exponential Martingales 

Proof We leave it to the reader to show that { (J ( t ) :R( t ) ) }  is a PDMP. 
The vector field X of this PDMP is given by (Xg)(t) = P(dg/dz)(z). If the 
environment process { J ( t ) }  is in state i, then jumps caused by claims occur 
with rate Xi, while jumps caused by a change of the environment to j # i have 
rate q i j .  The statement then follows from Corollary 11.2.1, where in (12.3.7) 

0 

Before we construct an exponential martingale, needed in the study of ruin 
probabilities in the Markov-modulated risk model, we cover some auxiliary 

we used that - Cjfi qijg(i, Z, t) = qiig(i, Z, t). 
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results from matrix algebra. Let {B(t) ,  t 2 0) be a family of C x l matrices 
that satisfies the condition 

B(0) = I ,  B ( t  + t') = B ( t ) B ( t ' )  (12.3.8) 

for all t,t' 2 0, and 

=c B(h) - I  
lim 
h4o h 

for some matrix C. By similar considerations as in Section 8.1.2, we can then 
show that 

B(t) = exp(tC) . (12.3.9) 

We prove a lemma that is useful in its own right and that will be applied later 
on. Recall that for an t x C matrix B = (b,j)  with positive entries, the trace 
trB = '& bjj equals the sum of the eigenvalues 81,. . . , 8t of B, i.e. 

E 
t r B  = (12.3.10) 

Indeed, in the characteristic polynomial w(z) = det(B - zI), the coefficient 
of ze-I is (-l)e-l xi=, b j j .  

Lemma 12.3.1 Let { B'(s)} be a family of C x C matrices defined for  all s from 
a certain (possibly unbounded) interval (s~, 32) such that all entries b;(s) QW 

positive. Let bi j (s)  be logconvm in (~1,s~) for all i , j  = 1, ... ,C and let 6'(s) 
be the Perron-Frobeniw eigenvalue of B'(s).  Then 8'(s) is logconvex. 

Proof Let s1 < s < s2 and let f?i(s), . . . ,B;(s) be the eigenvalues of B'(s). 
The reader should verify that the class of logconvex functions is closed 
under addition, multiplications and raising to any positive power; moreover 
the limit of logconvex functions is logconvex or zero. Hence, the assertion 
follows from (12.3.10) because (Cf=l (6i(s))") lln equals the Perron- 

0 

Xow let K ( s )  be the diagonal matrix with entries ni,(s) = X i ( h i ( S )  - l), 

i=l 

Frobenius eigenvalue of B' (s j . 

where we put IE,,(s) = 00 if &(s) = 00. Furthermore let 

C(S) = Q + K(s )  - &I.  (12.3.11) 

Differentiation of C ( s )  tells us that C(l)(O) is a diagonal matrix with entries 
Xip, - 8. Hence we get 

e 
7rC(')(O)e = ~ 7 r & & z  - 0 .  

i=l 

(12.3.12) 
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Furthermore, for each t 2 0, let B(t) be the l x e matrix with entries 

b i j ( t )  = b i j ( t ; s )  = E (e-8(R(t)-u)I(J(t) = j )  I J ( O )  = i) ( 12.3.13) 

for i , j  = 1 , .  . . , e .  Note that B(0) = I .  

Lemma 12.3.2 Let SO > 0 be f i ed  such that h i ( s 0 )  < 00 for all i = 1, . . . , t. 
Then, 

B( t )  = exp(tC(s>) (12.3.14) 

for dl s 5 so and t 2 0, where C(s )  is defined in (12.3.11). In par t i~u l~r ,  
P ( J ( t )  = j 1 J (0 )  = i) = (exp(t&))ij. 

Proof It is easily seen that the matrices B(t)  given in (12.3.13) satisfy (12.3.8). 
Furthermore, for a small time interval (0, h] we have 

P(IL'(h) = 0 1 J ( t )  = i) 
P(N(h)  = 1 I J ( t )  = i) = Xih + o(h) , 

= 1 - Xih + o(h) ,  

Rearrange the terms to obtain 

= (C(s))t j  + 4 1 ) .  

Letting h -+ 0, the proof is completed in view of (12.3.9). 0 

Let SO > 0 fulfil the conditions of Lemma 12.3.2 and let s 5 SO. By 
Lemma 12.3.2, the matrix exp(C(s)) has strictly positive entries. Let @(s) 
be the logarithm of the largest absolute value of the eigenvalues of the matrix 
exp(C(s)). By the Perron-Frobenius theorem (see Theorem 7.2.2), ee(s) is an 
eigenvalue of exp(C(s)). It is the unique eigenvalue with absolute value ee(s) 
and the corresponding right eigenvector $(s) = (dl (s), . . . , &(s)) has strictly 
positive entries. In particular $ ( O )  = e, the vector with all entries equal to 1. 
Indeed, recall that &eT = 0 and consequently (exp Q)eT = eT. We normalize 
#(s) in such a way that ?r($(s))' = 1. 

Let 0 < s 5 SO. By Lemma 7.1.3, C ( s )  can be written in the form 
C ( s )  = DTD-I, where T = ( t i j )  is an upper triangular matrix and D 
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is nonsingular. Hence the eigenvalues of C ( s )  are &(s) = tii (i = 1, .  . . , e )  
because 

det(l3TD-l - 01)  = det(T - 01) = n ( t j i  - 0) . 

Then exp(C(s)) = Dexp(T)D-' and exp(T) is upper triangular too. Xote 
that its diagonal entries exp(tii) with i = 1 , .  . . , l are strictly positive. We can 
therefore conclude that B,(s) is an eigenvalue of C(s) if and only ifexp(@i(s)) 
is an eigenvalue of exp(C(s)), i = 1 , .  . . , l .  

In Section 12.3.4, the following martingale will be used when changing the 
probability measure. 

Theorem 12.3.4 Assume that there exists an SO > 0 such that m i ( s 0 )  < 00 

for all i = 1 , .  . . , l .  Then, the following statements are t w e .  
(a) For each s 5 SO, the process { M ( t ) ,  t 2 0) with 

--eR(t) -O(s)t 

e 

i= 1 

9 (12.3.15) n.r(t) = 4J(t)(s)e 

is a martingale with respect to the history of { ( J ( t ) ,  R ( t ) ) } .  
(b) The function B(s) is convea: on (-OO,SO] and 

I 

e(l)(o) = - ( p  - 1 ri~i . i> < 0 .  (12.3.16) 

Proof Theorem 11.1.3 tells us that (a) will follow if we find a martingale 
solution of the form { g ( J ( t ) ,  R( t ) ,  t ) ,  t 2 0) to the equation Ag = 0. We try a 
function g of the form g ( i ,  z ,  t )  = hi exp(-sz - 29t) for some h l ? .  . . , he? 19 E R. 
Using (12.3.7) this yields 

i= 1 

P 
-/3rh,i - dhi + A i ( h i ( ~ )  - 1)hi + C qijhj = 0 

j = 1  

for each i E { l , .  . . , l } ,  i.e. C(s)hT = $hr, where h = ( h l ? .  . . ,h .e) .  Thus, 29 
must be an eigenvalue of C(s) and h the corresponding eigenvector. But we 
already know that 0(s) is an eigenvalue of C ( s )  with right eigenvector q5(s), It 
remains to verify that g ( i ,  z, t )  = r$i(s) exp(-sz-O(s)t) satisfies the conditions 
of Theorem 11.2.2. Condition (a) of Theorem 11.2.2 is obviously fulfilled since 
g is absolutely continuous. Condition (11.2.5) is trivial because the active 
boundary r is empty and the validity of (11.2.6) can be shown in the same 
way as in Section 11.3.1. This proves statement (a). To show (b), we apply 
Lemma 12.3.1 with bij(s) = bij(l;s) = E (e-8(R(1)-ull(J(l) = j )  1 J ( 0 )  = i). 
Note that b:.(s)  = / ~ e - 8 z F ~ j ( d . z ) ,  where F&(z) = P(R(1) - pd 5 z , J ( l )  = 
j I J ( 0 )  = is. By Holder's inequality each bij(s) is logconvex. We still have 
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to show (12.3.16). Recall that e(s) is an eigenvalue of C(s), i.e. 19 = e(s) 
is a solution to the equation det(C(s) - 291) = 0. By the implicit function 
theorem, see Theorems 17.1.1 and 17.41 in Hille (1966), B(s)  is differentiable 
on (-00, SO). firtherrnore, @(s) is the solution to (C(s) - B(s)I)(c$(s))' = 0 ,  
i.e. a rational function of differentiable functions. Thus @(s) is differentiable. 
Besides this, we have . r r C ( ~ ) ( c $ ( s ) ) ~  = O(s)n(q5(s))T = @(s) since we 
normalized c$(s) in such a way that ?r(@(s))T = 1. Hence 

Letting s -$ 0, (12.3.16) follows from (12.3.6) and (12.3.12) because .rrC(O) = 
0 ?rQ = 0 and c$(O) = e. 

12.3.4 Lundberg Bounds 

We now use the martingale { M ( t ) }  given in (12.3.15), when changing the 
probability measure, as was done in Section 11.3.2. Let s E R be such that 
h i ( s )  < 00 for all i = 1 ,..., .! and let 4 ( s )  = (&(s)) i= l , . .  ., be the right 
eigenvector corresponding to the eigenvalue ee(") of exp(C(s)) introduced in 
Section 12.3.3. Using the martingale { M ( 8 ) ( t ) ,  t 2 0) with 

(12.3.17) 

we define the probability measures {P{"'l t 2 0) by Pp)(B) = E [ M f s ) ( t ) ;  B]  
for B E Ft, where the process { ( J ( t ) , R ( t ) ) }  is assumed to be given on its 
canonical probability space and {Ft} denotes the history of { ( J ( t ) ,  R ( t ) ) } .  
We leave it to the reader to show that the measures Pi"' can be extended 
to a "global" measure P(') on 3 = a(Ut,,,3t), see also Section 11.3.2. It 
turns out that this new measure P(") again describes a Markov-modulated 
risk model. 

- 

Lemma 12.3.3 Under the measure P(8), the process { ( J ( t ) , R ( t ) ) }  is a 
Murkov-moddated risk model with intensit9 matrix &("I = (&)), where 
q$' = (@i(s))-l+jj(s)qij for i # j .  The claim arrival intensities are A!"' = 
Xi&(s) and the claim saze distributions UTE Fi"'(y) = J:es2dFi(z)/Ai(s). 
~ r a  particular, ~ ( ~ ) ( l i m t + ~  t - ' ~ ( t )  = -~(')(s)) = 1. 

The proof of Lemma 12.3.3 is similar to that of Theorem 11.3.1 and consists 
of very long calculations. We only sketch a number of the most important 
constituent steps. 
Step 1 Under P("), { J ( t ) }  is a Markov process with intensity matrix Q("). 
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Step 2 Given J(O),  J(&), . . . and <I,&?, . . ., the stochastic processes {R(Cn + 
t )  - n ( < n )  : 0 5 t 5. &+I - Cn} are (conditionally) independent and the 
dependence on 3~" occurs via J(<n) only. 

Step 3 Given J ( 0 )  = i and & > v ,  N(v) has the conditional distribution 
Poi(xp' ). 
Step 4 Given J (0 )  = i, (1 > 2) and N(v) = n, the claim sizes U l , .  . . ,U, are 
independent and identically distributed with distribution F,("), independent 
of the claims arrival epochs. 
Step 5 Given J (0 )  = i, (1 > 2) and N ( v )  = n, the first n claim arrival epochs 
have the same conditional distribution as under the original meamre P. 
Step 6 Knowing that { ( J ( t ) ,  R ( t ) ) ]  is a hlarkov-modulated risk model under 
P('), Theorems 12.3.2 and 12.3.4 give that 

P(")( lim t - ' ~ ( t )  = -ep(o)) = 1 , 

where O,(h) corresponds to the function 8(h),  but now under the measure 
P('). Thus, it remains to show that e!"(O) = B(l)(s). This is an immediate 
consequence of the fact that O,(h) = O(s + h) - e(s). An easy way to prove 
the latter relationship is to show that the stochastic process (Gch)(t), t 2 0) 
with 

(12.3.18) 

is a P(")-martingale provided O(s + h) exists. Indeed, in the proof of 
Theorem 12.3.4 we have seen that for a martingale of the form (12.3.18) it is 
necessary that &(h) = q5J(i)(s + ~ ) / $ J ( ~ ) ( s )  is an eigenvector and &(h) is an 
eigenvalue. Since &(h) > 0, &(h) must be the Perron-F'robenius eigenvalue. 
Let t 2 v .  Then, using (10.2.26) we have 

t-hJ 

&(h) ( t )  = 4J(t)(' + h, e-hR(t)e-(-B(a+h)--B(s))t 

cbJ( t )  ( 8 )  

E'")(M(")( t )  13;) 

- - E (0 )  ( i t d h ) ( t ) ( ~  (0) (4J(o) ( ~ ) ) ) - - l 4 ~ ( ~ )  (s)e-g(R(t)-u)-8(8)t I F v )  

E (0) ( ( & J ( t ,  ( ~ ) ) - ' 4 ~ ( ~ ,  (S + h)e-hR(t)-8*(h)fcb J ( t )  (s)e-sR(t)--B(a)t I 3 v )  

(E (O) ( 4 ~ ( ~ )  (a)))-' 4 ~ ( ~ )  (s)e-8(R(v)-u)-o(s)v 

- - (4J(v)  (s)) -le-sR(v)--B(a)v 

-(s+h)R(t)--B(B+h)t I ~ v ) e " l ( v ) f @ ( s ) v  = (~J(")(s))-1E(0)(9J(t!(s+ h)e 

= (4J(v)(Q))-'4J(r& + h)e 

This verifies that O , ( h )  = O(s + h) - O(s). 

-hR(v)-(e(ath)--B(s))v = ~ ( h ) ( y ) .  

0 

In Theorem 12.3.4 it has been shown that the function O(s) is convex while 
its derivative at 0 is negative. Thus, besides s = 0, there might be a second 
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solution s = T > 0 to the equation O(s) = 0. If y exists, we again call 7 the 
adjustment coeficient. The following theorem derives Lundberg bounds for 
$(u) for this case. Let zi = sup{y : Fi(y) < 1). 

Theorem 12.3.5 Let { ( J ( t ) , R ( t ) ) }  be a Markou-modulated risk model and 
assume that the adjustment weficient 7 &ts. Then, for dl u 2 0 

a-e-?" 5 $(u) 5 a+eYu, ( 12.3.19) 

where 

e ? ' m m  ( O ) # J ( O )  (7) a+ = max sup 
l<iSto<y<z, $i(7) JVm eTz dF,(z) ' 

Proof Let T ( U )  be the time of ruin to the initial risk reserve u. By 
Theorem 12.3.4, O(s) is a convex function. This yields that @'))(y) > 0 
and therefore P(?'(T(U) < 00) = 1 because P(-"(R(t) + -00) = 1 by 
Lemma 12.3.3. For the ruin probability @(u) we get an expression under the 
measure ~ ( 9 ) :  

+(u) = E ( O ) $ J ( O )  (7) E (')((#J(7(U))(Y))-1eSR(r(U)))e-'u . (12.3.20) 

Condition on J ( T ( u ) )  and R(T(PL) - 0) to find 

E ( r ) ( ( ~ J ( r ( u ) ) ( y ) ) - l e y R ( r ( u ) )  I J(T(u) )  = ~ , R ( T ( u )  - 0) = y) (12.3.21) 

where U+ denotes the size of the claim causing ruin. The assertion readily 
follows. 0 

Note that min(&(y) : 1 5 i 5 l'} > 0 and therefore the upper bound in 
(12.3.19) is finite. 

12.3.5 Cram&-Lundberg Approximation 

We now study the question whether $(u)eTU converges to a limit its u + 00, 

i.e. whether a Cram&-Lundberg approximation holds. 

Theorem 12.3.6 Let { ( J ( t ) , R ( t ) ) }  be a Markou-moddated risk model. 
Assume that the adjustment coeficient y exists and that Y@)(?) < 00 for 
i = 1 , .  . . , 4. Then there Q canstant c > 0 such that 
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Proof In view of (12.3.20) we have to show that the function 

9 ( 4 = E ( ( 4 J (  7( u) ) (7)) - e? R(7(U)) (12.3.22) 

converges to a constant c as u + 00. Assume first that the initial state of 
{ J ( t ) )  is fixed, say J(0)  = 1. Without loss of generality we can assume that 
XI > 0. Let 

v- = inf{t > 0 : J ( t )  = 1 and R(t) = inf R(v)} 
o j v j t  

be the first descending ladder epoch occurring in state 1. Note that P(7)(v- < 
00) = 1 because P(7)(limt,,R(t) = -00) = 1. Write G-(y) = P(?)(u - 
R(v-)  5 y) = P(r)(S(v-) 5 y) for the (modified) ladder height distribution. 
The function g(u) fulfils the following renewal equation; see also Section 11.3.3, 

9(4 = 1’d. - Y)dG-(!l) + E(7)I(bJ(7(U))I?.))-1e7R(7(U));R(v-) < 01 , 

because E(Y)((~~(T(U))(nl))-1e?R(7(U)) I R(v-)  = u - y) = g(u - y) for y 5 u. 
Define 

zi(u) = E(7)[(4~(7(U))(~))-1e7R(7(u));R(~-) < 0 I J(0)  = 4.  
Kote that zi(,u) is bounded and q(y)  = ( & ( ~ ) ) - ~ e 7 %  if y < 0. For h > 0 
small 

a ( u )  = (1 - p h  + & ) h ) Z l ( t A  + Dh) 

Letting h + 0 shows that zl(u) is right-continuous. Fiom 

z1(u - ph) = (1 - X p h  + &)h)z1(.) 

it follows that z1 (u) is left-continuous as well. Let &jn(Y) = mini &(T). Then 

#min(?)zl(u) 5 P‘~)(R(v-)  < 0) = P‘”(s(v-) > U> 1 

Since the latter function is monotone, it will be directly Ftiemann integrable 
if it is integrable. But this is the case because 
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The expectation on the right is finite since under the measure P(') the 
(conditional) expectations of the claim sizes are finite. Indeed, the latter 

(1) property is implied by our assumption that mi (7) < 00 for aI1 i = 1,. . . , e. 
The details are left to the reader. Note that, at an ordinary ladder epoch 
occurring in state j ,  there is a strictly positive probability that the next 
ordinary ladder epoch will occur in state 1. Thus, the function zl(u) is 
continuous and has a directly Riemann integrable upper bound. But this then 
ensures that z1(u) is directly Riemann integrable, as can be easily proved 
by the reader. Hence, it follows from Theorem 6.1.11 that the limit of g(u) 
exists as u + 00. Turning to the general case, let J(0)  have an arbitrary 
distribution. Then, g'(u) = E(r)((~J(+(u))(r))-lerR(T(u)) I J ( 0 )  = 1) is 
the function considered before. Let T' = inf { t  2 0 : J ( t )  = 1) and let 
B'(y) = P(')(S(7') 5 y) be the distribution function of the claim surplus 
when { J ( t ) }  reaches state 1 for the first time. Then 

J--00  

where g(u) is defmed in (12.3.22). Note that the second summand on the 
right-hand side of this expression is bounded by (4min(r))-1P(7)(~(u) < T') .  

We leave it to the reader to show that P(')(T(u) < 7' )  tends to 0 as u + 00. 

Since g'(u) is bounded, it follows by the dominated convergence theorem that 

lim g(u) = lim g'(u) = c ,  
u+oo u-+w 

which proves the theorem. 0 

12.3.6 Finite-Horizon Ruin Probabilities 

To close Section 12.3, we extend the results of Section 10.3.2 on Lundberg 
bounds for finite-horizon ruin probabilities. For simplicity, we assume that 
8(s) exists for all s considered below; a sufficient condition is, for example, 
that S: = sup{s : t i t i (s )  < 00) and sOc = mins:. Assume lim,T8- f i j (s )  = 00 

for all i such that sm = s:. In this case soo > 0 because &,(O) = 1. Moreover: 
we put e(s) = 00 if 6(s) does not exist. Recall that O(s) > 0 for s < 0. The 
following inequalities hold. 

Theorem 12.3.7 
aryumerat at which 

Let ~ ( y )  = sup{s - 6(s)y : s E R} and let s(y) be the 
the supremum is attairred. Moremer, let 
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The following statements are valid: 
(a) IfyO(l)(y) < 1, then y(y) > y and 

$(u; 9 4  I Cs(# (O)4J(O) (r(v)) e-7(y)u - (12.3.23) 

(b) IfyO(')(y) > 1, then y(y) > 7 and 

$(u> - $,(u;yu) I C s ( y ) E ( O ) # J ( O ) h ( % l ) )  e-7(y)u (12.3.24) 

Proof (a) It suffices to consider s 1 0 for which O(s) exists. As usual ~ ( u )  
denotes the ruin time, starting with initial risk reserve u. Then, as in (12.3.20), 
we have 

@(u; y u )  = E(')q5J(O) (s) E~s~[(q5~~T~U~~(s))~1esR~T~u~~+e~s~T~u~; ~ ( u )  I yule-'" 
< - E ( O ) ~ ~ ~ ( ~ ) ( S )  C, ~ ( ~ ) [ e ~ ( , ) * ( ~ ) ;  ~ ( u )  < - 
5 E ( O l # J ( o ) ( s )  ,-, e-mh{s,a-tNs)lu , 

where the first inequality follows as in (12.3.21). The derivative of s - yd(s) 
at 9 = y is 1 - yO(')(y) > 0. Thus y(g) > 7. h r t h e r  s - yO(s) is 
concave and hence the argument s(y) at which the maximum is attained, 
is larger than y. In particular d(s(y)) > 0. Thus s(g) > s(y) - yd(s(y)) and 
min{s(y), s(y) - yO(s(y))} = y(y) proving the first part of the assertion. 
(b) Note that for 0 I s 5 y we have as before that 

$(u) - +(u; YU) 
= E ( o ) q 5 J ( * ) ( ~ ) E ( s ) ( ( q 5 J ( I ( U ) ) ( ~ ) ) -  1 e s R ( r ( u ) ) + e ( * ) ~ ( u ) ;  p < r(u) < Wle-8~ 

5 E ( ')q5~(0) (s) cb E ('1 [ee(s)T(u); yu < .(ti) < oo]e-s" 
I E ( o ) q 5 J ( o )  (8) C, e-(s-ge(s))u , 

where in the last inequality we used that d ( s )  I 0. Fbrther, the derivative of 
the concave function s - ye($) at s = 7 is 1 - @)(y) < 0. Part (b) follows 

c1 since s(y) < y, and this immediately implies that y(y) > y. 

Corollary 12.3.1 Assume there ezists s > 7 such that 7jli(s) < 00 for 
1 5 i I I!. Then 1imu+-u-lT(u) = (d(l)(y))-l an probability on the set 

The proof of Corollary 12.3.1 is omitted since it is analogous to the proof of 

{.(.I < 4. 

Corollary 10.3.1. 0 

Bibliographical Notes. Lemma 12.3.1 is due to Kingman (1961); see also 
Miller (1961). Lemma 12.3.2 and Thmrem 12.3.6 were fist proved by Asmus- 
sen (1989). In the same paper an upper bound for the ruin probability $(u) 
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was derived which is larger than that given in Theorem 12.3.5. For two-sided 
Lundberg bounds in a Markovian environment, see also Grigelionis (1993). 
Matrix-algorithmic methods for the numerical computation of the ruin 
probability +(u) are studied in Asmussen and Rolski (1991). A method for 
statistical estimation of the adjustment coefficient is given in Schmidli (199%). 
In Bauerle (1997)) the expected ruin time ET(u)  is investigated in the case of a 
negative safety loading. An optimal stopping problem for a Markov-modulated 
risk reserve process is studied in Jensen (1997). For the case that interest and 
cost rates are also incIuded in the model, see Schottl (1998). A model where 
the premium rate depends both on the current surplus and on the state of the 
Markov environment is considered in Asmussen and Kella (1996). 

12.4 PERIODIC RISK MODEL 

In practical situations, the claim arrival rate may vary with the time of the 
year or the claim size distribution may be depend on the seasons. k t  X(t)  be 
the intensity function of a nonhomogeneous Poisson process { lV( t ) ,  t 2 0). 
In this section we assume that X(t) is periodic with period 1, say, so that 
[t] = t - It] is the time of season. We say that {iV(t)} is a periodic Poisson 
process. Let { F t ( z ) ,  t 2 0) be a family of distribution functions such that the 
mapping t + JT g(z) dFt(z) is measurable and periodic with period 1 for all 
integrable functions g. 

Assume now that claims arrive according to the periodic Poisson process 
{ N ( t ) }  with intensity function A ( t )  and that - if a claixn arrives at  time t 
- then the claim size distribution is Ft, independent of everything else. We 
denote the moment generating function of F' by h t ( s )  = 1; ese Ft(dz). We 
also assume that the premium rate is constant and equal to 0. From the 
construction of the risk reserve process it is apparent that {R(t)  - 71: t 2 0) 
has independent increments. We now compute the Laplace-Stieltjes transform 

Lemma 12.4.1 For s , t  2 0, 

i( t;  9 )  = E e-s(R(t)-u). 

i ( t ;s)  =exp(-fist+~X(u)(r;r,(s)  -1)dv).  

Proof Using Theorem 12.2.1 we find 

(12.4.1) 
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= exp(-@t+lh(v)(til,(s) - 1)dv). 0 

Let. us denote the average arrival rate by X = & X(u)dv while @(z) = 
A-' Jt X(v)F,(z) dv is the distribution function of a typical claim size. Its 
mean is p; = 5 F:(dz) and the moment generating function is mF; (s) = 

X-' J; X(v)7iau(s) du. Let 30 = sup(s 2 0 : supwE o,I) liau(s) < 00). Similarly 
as in (11.3.2) we define P ( s )  = A(&F;(s) - 1) - 8s. 

Let y > 0 be the solution to r,' X(w)(ria,(y) - 1) dv = fir. Then y > 0 fulfils 
6*(y) = 0. In the sequel, we assume that such a 7 exists. Since 8*(0) = 0 and 
the derimtive of 6*(s) at zero is Xp& - p < 0, the convexity of 8*(s) ensures 
that 

8*(1)($ = A I" ze'ZF;(dz) - p > 0 .  (12.4.2) 

By {Ft}  we denote the smallest (uncompleted) right-continuous filtration such 
that {R( t ) }  is adapted. Then, a law of large numbers and an q o n e n t i d  
martangale can be derived for the periodic Poisson risk model. 

Theorem 12.4.1 The risk werue  process {R(t)} fpSlfil-9 

Moreoverfor alls < SO, the process { M ( t ) }  giwen by M ( t )  = e-8(R(t)-u)/i(t;s) 
is a {&}-martingale. 

Proof The random variables YI = R(l) - u, Yz = R(2) - R(1), . . . are 
independent and identically distributed. Fkom the derivative of their Laplace- 
Stieltjes transform at s = 0 we obtain E Y  = E (R(1) - u)  = p - A&. We 
also have 

The strong law of large numbers yields the first part of the theorem. Similarly 
as in Example 3 of Section 10.1.3 we can prove that e-s(R(t)-u)/Ee-s(R(t)-u) 

0 

For all t > 0: we define PI"'(A) = E [ M ( t ) ; A ] ,  where A E Ft. Since 
{M(t)) is a positive martingale and M ( 0 )  = 1, it is easily seen that Pi8) 

is an {Ft}-martingale. By Lemma 12.4.1, the proof is then complete. 
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is a probability measure and 

P$"'(A) = E[M(t'); A], A E Ft , 
whenever t 5 t'. We leave it to the reader to show that the measures 
{Pp', t 2 0) can be extended to a "global" probability measure P(') on 
F, = u(Utlo 3t). In the remaining part of t.his section we only consider P(7) 
and as usual P ( O )  = P. 

Lemma 12.4.2 The risk reserve process {R(t), t 2 0) on (Ct:Fw:P(71) i s  
again that of a periodic Poisson model specified by (a, i(t),&(x)), where 

Proof For t 5 t' and 0 5 s SO we have 

E i:fe-s(R(t)-u) 

- - E e-8(R(t)-u) ! ~ ( t )  = E e - 8 ( R ( t ) - u ) - 7 ( R ( t ) - u ) + ~ s t - ~ ~ ~  W v ) ( % ( V ) - l )  da 

t 
= exp(J0 ( ~ ( v > ( f i ~ # ( s  + r> - fi,(r)) - ~ 5 ) d o )  

= e x p ( 1  (i(v)(mpw (7) - 1) - a s )  dv) . 
t 

In a simi1a.r way we can prove that, for tl < t 2  < . . . < t ,  5 t' and 
0 5 s1> . . . , sn 5 so 

n 
E1;7)e-(8'(R(t')-u)+. ..+s.(R(t.)-u)) = n Ei:)e-8i(R(ti)-U) . 

i=l 

Thus, using Lemma 12.4.1, the assertion follows. 0 

Next we compute the trend of the {R(t)} under P(r). Using (12.4.2) and 
Theorem 12.4.1, we obtain 

E(Y)R(1) - ~1 = -e*(') (7) < 0. 
Hence by Theorem 6 . 3 . 1 ~  we have liminft,, R(t) = --oo and so ruin occurs 
with P(Y)-probability 1. Let ~ ( u )  be the time of ruin starting with initid risk 
reserve u. As in (10.2.31), we can show that 

$(u) = P ( T ( U )  < 00) = (12.4.3) 

This relation brings us in a position to derive Lundberg bounds for the ruin 
function +(u). Put xv = sup{y : Fv(y) < 1). 



POINT PROCESSES 529 

Theorem 12.4.2 For the ruin function +(u) in the periodic Poisson model 

u-e-7u 5 +(u) 5 a+e-?*, u 2 0 , (12.4.4) 

where 

The upper bound in (12.4.4) can be derived in the same way. 0 

We remark that - under some additional conditions - it is also possible to 

lim eVu@(u) = C ( & O ; ~ ) ) - '  . 

prove a Cram&-Lundberg type approximation of the form: 

( 12.4.5) 
U+X 

Bibliographical Notes. The material of this section is from Asmussen 
and Rolski (1994). Periodic risk models were also considered by Asmussen 
and Rolski (1991), Beard, Pentikiiinen and Pesonen (1984) and Dassios and 
Embrechts (1989). 

12.5 THE BJORK-GRANDELL MODEL VIA PDMP 

The Bjork-Grandell model has been introduced in Example 5 of 
Section 12.2.2. Recall that { (&, I* ) ,  i 2 1) are independent random vectors 
with P ( A i  2 0, Ii > 0) = 1 and {(Ai, I i ) ,  i 2 2) are identically distributed. 
Let cn = C7!1 I, be the time where the intensity level changes for the n-th 
time. For convenience we put (0 = 0. Then A(t) = A, if (,+I 5 t < cn and the 
cumulative intensity function q ( t )  is given by q(t)  = s,' A(v) dv. Conditioned 
on { ( A i > I i ) ,  i 2 l}, the expected number of claims in ( O , t ]  will be q ( t ) .  
Let {"(t)} be a homogeneous Poisson process with intensity 1. The claim 
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counting process { N ( t ) }  in the Bjork-Grandell model can then be defined as 
N ( t )  = N'(q(t));  see Theorem 12.2.3. As before the risk process { R ( t ) }  is 
given by 

i=l 

where {Ui} is a family of independent and identically distributed random 
variables, independent of {(A*, I* ) } .  By (A, I) we denote a generic vector with 
the same distribution as (A2, 1 2 ) .  In order to exclude trivialities, we assume 
that E A  > 0 and EI < 00. Furthermore, to ensure t.hat EIlr(t) < 00 for all 
t > 0, we assume Ell < 00. If we want to formulate a net profit condition, we 
also have to assume that E ( A I )  < 00. If the support of i l  only consists of a 
finite number of points and I conditioned on A is exponentially distributed, 
then we have a Markov-modulated risk model. Note, however, that there exist 
Markov-modulated risk models that are not Bjork-Grandell models. 

12.5.1 Law of Large Numbers 
We begin with the investigation of the asymptotic behaviour of {R( t ) }  as 
t + 00. 

Theorem 12.5.1 Let p = pu denote the expected claim size. Then, 

lim t-'R(t) = 0 - pE ( A I ) / E 1  . 
t+do 

that 

Because ~ ( t )  + w, it follows from the law of large numbers for the sum of 
independent random variables and from Theorem 6.1.la that 

It remains to show that limt,, t-'Q(t) = E (AI) /E1.  Define the counting 
process N,(t)  = sup{a 1 0 : [,, 5 t} to be the number of changes of the 
intensity level in the time interval (0, t ] .  Then 
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Since { N c ( t ) }  is a renewal process we have limt,, t-'NC(t) = (EI)-l by 
Theorem 6.1.1. Finally 

tends to E ( A I )  by the usual law of large numbers. 0 

The expected income in ( ( I ,&)  is OEI and the expected aggregate 
claim amount during that period is pE (AI). Considering the random walk 
{R((,,),  n 2 1) it follows from Theorem 6.3.1 that ruin occurs almost surely 
if BE I 5 pE (AI) .  We therefore assume the net profit condition 

PEI > P E ( W  , (12.5.1) 

which ensures that R(t)  + 00 as t + 00. 

12.5.2 

The stochastic process { (R(t), t ) ,  t 2 0) is not a Markov process in general. 
In order to use the results derived in Chapter 11 for PDMP, we have to add 
further supplementary variables. In particular, if the conditional distribution 
of I given A is not exponential, then, as in the case of the Sparre Andersen 
model considered in Section 11.5, the time since the last or the time till 
the next change of the intensity level has to be included into the model. In 
Section 11.3 we showed that it is more convenient to use the time till the next 
change of the intensity level. Let A ( t )  = en - t  for 5 t < &. Then it is not 
difficult to see that the process { ( R ( t ) : X ( t ) , A ( t ) , t ) }  is a PDMP. The active 
boundary is I' = {(y, z,O, t )  : (y, z,  t )  E R x R+ x IR+}. For each function g 
fulfilling the conditions of Theorem 11.2.2 the generator A is given by 

The Generator and Exponential Martingales 

and the boundary condition (11.2.5) is 

To get an idea on how to find an exponential martingale we solve the 
equation Ag(y, z ,  w, t )  = 0. We try a function of the form g(y, z ,w ,  t )  = 
a(%, w)e-aYe-Bt. Hence we have to solve the differential equation 

-eu(z,w) - p s a ( z , ~ )  - U . ( O ~ ) ( ~ , Z U )  + za(~,ut)(mv(~)  - 1) = 0 ,  
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As the right-hand side of this equation is independent of 2, d ( z )  is constant. 
Without loss of generality we can aSSUme that d ( z )  = 1. It thus follows that 
6 = 6(s), where e(s) is a solution to the equation 

E exp((A(tfiu(s) - 1) - Ps - 6(3))1)  = 1. (12.5.4) 

We leave it to the reader to show that, once it exists, this solution is unique. 
Without using the results of Section 11.2.3 explicitly, we get the following 
theorem. 

Theorem 12.5.2 Let SO > 0 such that mu(s0) < 00 and assume that for each 
s 5 so the solution 6(s) to (12.5.4) d t s .  Then, the following statements are 
true: 
(a) For each s 5. SO, the process { M ( t ) }  with 

M ( t )  = exp((X(t)(rfiv(s) - 1) - 0s - 6(s) )A( t )  - s R ( t )  - 6 ( s ) t )  (12.5.5) 

is a martingale with respect to the history {&} o f { ( R ( t ) , X ( t ) , A ( t ) ) } .  
(b) The finetion 6 ( s )  is strictZy conwes on ( -OO,SO]  and 6(')(0) = -@ + 
pE (AI)/EI. 

Proof (a) We prove the martingale property directly. There is no loss of 
generality to assume u = 0. First, consider the process { M ( t ) }  at the epochs 
Cn only. Note that A(&) = :L+I and A(<,,) = 1,+1 is independent of Fen-,, 
<,, and R((,,). Then by the definition of 6(s) 

E (hl([,) I F C ~ - ~ )  = E (e-sR(cn)-e(8)cn 1 3 c n - , )  
- - e(.ht (*u(8)-1)-b3)1,, e-sR(€"-~ ) - e ( s ) ( E n - i + l n )  

where the last equality follows from (5.2.7). This means E(M(&) I 3tn-,) = 
M(<n-l)l which implies 
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Now let 0 5 v < t .  Analogously as above it follows that E(M(w + A(v)) I 
3,) = M ( w ) ,  E(M(t) I F.Ne(I)) = M(&.+(t)) and that for t 5 w + A(er), we 
have E ( M ( t )  I &,) = M(v). We can therefore assume that t > v + A(v), 
i.e. w + A(v) 5 [ N < ( ~ ) .  The next step is to show that 

I Fw+d(v))  E (~~(<N~(t)) 1 F v + A ( u )  ) = E (e-sR(€N((t))-e(S)SN~(*) 
= M ( v  + A(w)) . (12.5.7) 

If s 5 0, then the integrand in the second expression is bounded by e-pSf 
because in this case e(s) 2 0. If s > 0 then the integrand is bounded by 
exp(sC;"f)Ui), where Iv'(t) = N ( ~ N ~ ( ~ ) ) .  To see this, it suffices to notice 
that s > 0 implies Ps+B(s) > 0, which follows from the definition of 8(s). We 
want to show that the latter bound is integrable. F'rom (5.2.7) we know that 

&om Fatou's lemma and the definition of 8(s) it then follows that 

NE(t)An 

E lim exp( -E (Ai(&U(s) - 1) - Ps - @($) ) I , )  
n+oa 

i=l 

Thus (12.5.7) follows from (12.5.6) by the dominated convergence theorem. 
That the process in (12.5.5) is a martingale follows from the fact that, for 
t > v + A(w), 

E(ll.i(t) I F v )  = E (EWW I F€'ve(t)) I 3,) 
= E (E ( n . f ( t N c ( t ) >  I Fv+A(w)) I 3 w )  = E(M(v + A(v) )  I 7,) = M ( w )  ' 

(b) For simplicity, we consider the nondelayed case only. So, we take (Al ,  Zl) 2! 
(A,,&) for i 2 2. R R d  from (5.2.7) that 

E ( ~ ( A ( ~ ~ ( S ) - ~ ) - ~ S - @ { S ) ) ~  I A, 1) = E ( e - s ( w - u ) - w l  I 4 4 .  
Thus e(s) fulfils the equation 

E (e-s(R(l)-u)-@(s)J) = 1. (12.5.8) 
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By the implicit function theorem - see Hille (1966) - B(s) is differentiable and 

-E ((~(1) - + ~ ( 1 )  (s)I)e-'(R(I)-~)-6(8)') = 0 

from which it follows that B(s) is infinitely often differentiable. Letting s = 0 
yields B(' ) (O)  = -E ( R ( I )  - u)/EI = -P+pEAI/EI. The second derivative 
of (12.5.8) is 

from which 8(2) (s )  > 0 readily follows. 0 

12.5.3 Lundberg Bounds 

We turn to the ruin function $(u) = P(min{t : R(t) < 0 )  < 00). Note that 
the underlying Bjork-Grandell claim arrival process needs neither to be time- 
stationary nor Palm-stationary. Nevertheless, we need the net profit condition 
(12.5.1). 

As before, choose s E R 90 that B(s) is well-defined. Let a ( t , w )  = 
e(r(mu(s)-l)-,~s-e)w. Consider the likelihood ratio process { L , ( t ) ,  t 2 0) - 
a nonnegative martingale with mean 1, where 

~ ~ ( $ 1  = (E a ( ~ l  , ))-le(~(tj(~u(s)-1)-3e-e(s))A(t)e-s(R(~)-u)e-6(s)t 

and define the new measures Pp'(B) = E @ ) [ L 8 ( t ) ; B ]  for B E Ft. We again 
use the smallest right-continuous filtration {Ft} such that { (R(t) ,  A(t) ,  A ( t ) ) }  
is adapted. Then the measure Pi') can be extended to a "global" measure P(') 
on Fm; see Remark 2 in Section 10.2.6. As one can expect, under P('): the 
process { (R(t) .  X(t), A( t ) ) }  is agah defined by a Bjork-Grandell model. But 
we have to slightly adapt the notation. In the new model, the process (A(t}} 
will no longer be the intensity process. We therefore denote the intensity 
process by {X(")(t)), where X ( O ) ( t )  = A(t) .  

Lemma 12.5.1 Under the memure P(') the pmess  { ( R ( t ) , A ( t ) , A ( t ) ) }  aS 
defined by u Bj6rk-Grandell model with interasitg process {X(")( t ) )  given by  
X(')(t) = &,r(s)X(t) and with cham size distribution function F$)(y) = 
J: e""dFu(v)/&u(s). The distn'bution of (A, I )  is  given by  

@(&, du;) = e(z(*~(s)-1)-~s-6(s))ur FA,f(dz: dut) 

and 
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The proof is omitted since it is similar to the proof of Lemma 12.3.3. 
In Theorem 12.5.2 we have seen that B(s) is a strictly convex function, even 

with a negative derivative at 0 under the net profit condition (12.5.1). There 
might be a second solution s = 7 > 0 to B(s) = 0 besides the trivial solution 
s = 0. Such a solution -y > 0 is called the adjustment coeficaent. Assume 
now that 7 exists. The ruin probability $(u) can be determined using the 
measure P("'). Indeed, since B ( l ) ( . y )  > 0, we have P(7)(~(u)  < 00) = 1. Thus, 
proceeding in the same way as in Section 11.3.1, we have 

$(u)  = E (0)a(A1, 11) E (7) 
( 12.5.9) 

In order to use this formula we have to determine the distribution of 
( X ( T ( U ) ) ,  A(T(u))) .  Rather than solving this hard problem, we obtain an upper 
bound for the ruin probability ?&(u) but only under an additional assumption. 

Theorem 12.5.3 Let { ( R ( t ) ,  A(t) ,  A ( t ) ) }  be defined bg a Bjork-Grandell 
model such that the adjustment weficient y exists. The foUowdng statements 
are h e :  
(a) Assume there exists Q constant c > 1 such that 

Let 20 = sup{y : F(y) < 1). 

a € B  inf E(O)(e(n(mU(7)-1)-Br)(s-Y) I A = z ,J  > y) 2 cW1 , (12.5.10) 

where B c {z : z(T%~(y) - 1) < Pr} M a set such that P(')(A E B)  = 
P(o)(A(T%~(7) - 1) < a?). This is particularlg the m e  when there exists a 
constant d < 00 such that 

U P  

and c = &Tc'. Then 

( 1 )  (b) Assume hU (7) < M. Then 
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Thus there exists a constant c > 1 such that (12.5.10) is fulfilled. Conditioning 
on (A1!Il) we now assume that A, and Il are deterministic. Later on we 
remove this additional assumption by integrating the obtained expression. 
Furthermore, conditioning on {X(T(U)), A(T(u)) ,  R(T(u) - 0)) and using 
(12.5.9), we find 

+(u) - < a ( ~ l ,  I ~ ) E  ( 7 ) ( e ( i 3 y - - X ( r ( u ) ) ( * y ( ~ ) - 1 ) ) A ( r ( u j ) )  

see also (12.3.21). Taking the expectation E (7) we split the area of integration 
into the three subsets {~(u) < II}, { ~ ( u )  1 11, X(T(U) ) (&U(~)  - 1) 2 By} and 
{~(u) 2 Il,X(~(u))(&jzu(r) - I) < fir}. First we consider the set { ~ ( u )  < I*}. 
Then 

On the set {T(u) 1 11, X ( T ( U ) ) ( ~ ? Z U ( ~ )  - 1) 2 Pr} we have 

The most delicate case stems from the integration on the set (~(24) 1 11, 
X ( T ( U ) ) ( ~ U ( ~ )  - 1) < or}. We first claim that 

E (Y)(e(87--A(inU(7)-l))(l-Y) I A = 2, I > 0 )  5 c 
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Define the random variable T, as the last epoch before ruin time ~ ( u )  where 
the intensity level changes. Then 

Conditioning on ~ ( u ) ,  r, and X(T , )  is like conditioning on T(u), T ~ ,  X(T,)  and 

Summarizing the above results we find that 

If ( A l ,  11) is not deterministic one has to take the expectation. 
(b) Define 7' = inf{cn : R([,J < 0) the first epoch where the intensity level 
changes and the risk reserve process is negative. Let @'(u) = P(')(T' < 00). 

It is clear that pl,(~) 2 $'(u). Since P(?)(T' < 00) = 1 and since ( A ( T ' ) ,  A(T')) 
is independent of { R ( t )  : 0 5 t 5 7') and has the same distribution as (A, I) 
we obtain 

where we used Lemma 12.5.1. Let T: be the last epoch where the intensity 
level changes before 7'. We have to distinguish between the two cases: 7: = 0 
and 7: # 0. Note that by (10.2.25) 

Conditioning on R(T:) = y yields 
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To simplify the notation let X = R(&) - R ( 5 ) .  Then by (10.2.23) 

- e7YP(O)(X < -9) - 
E(O)[e-TX;X < -y] ' 

which proves the assertion by taking the infimum over y 2 0. 0 

Example Consider the Ammeter risk model where &, = n. Then O(s) is 
defined by E(eA(~u(8)-')-08-e(s)) = 1, i.e. 8(s) = logE exp(A(ljLU(s) - 1)) - 
&I. The net profit condition (12.5.1) takes the form P > PEA. The Lundberg 
bounds derived in Theorem 12.5.3 simplify to 

and 
(12.5.14) 

where 

In particular, if A has the gamma distribution r(a,b) then the net profit 
condition is bp > ap and 

qS) = a(iogb - iog(b - ( ~ ~ ( s )  - 1))) - ps 

provided t.hat riZv(s) - 1 < b. In this case, the distribution function G(y) 
defined in (12.5.15) is given by 

which is a shifted compound negative binomial distribution. 

12.5.4 Cram&-Lundberg Approximation 

We turn to the question about under what conditions a CramCr-Lundberg 
approximation to $(u) would be valid. Fkom (12.5.9) we find 

e(u)ew = E ( 0 ) a ( ~ l ,  i 1 ) ~  ( 7 )  ( e ( P ? - x ( 7 ( u ) ) ( ~ v ( ? ) - l ) ) A ( T ( u ) ) e r R ( . ( u ) ) )  . 
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The existence of a Cram&-Lundberg approximation is therefore equivalent to 
the existence of the limit 

lim E ( 7 )  (e (P?-~ (7 (U) ) (~v (? ) - l ) )A (T (U) )e7R(7 (U) ) )  . 
u+ca 

We leave it to the reader to verify that this limit does not depend on the 
distribution of ( A l ,  11) .  It is, however, not trivial to prove that the limit 
actually exists. 

Theorem 12.5.4 Assume that the adjustment coeficient 7 > 0 exists, that 
k g ) ( y )  < 00 and that there ezists a constant c > 1 such that 

where B c (z : z (A~(7)  - 1) < f l y )  is a set such that P(''(A E B) = 
P ( O ) ( h ( k ~ ( 7 )  - 1) < 07). Then there exists a constant c', not depending on 
the initial state, such that 

lim $(u)eYU = E (0)4.4~,11) c' . (12.5.16) 

The proofof Theorem 12.5.4 is omitted. It can be found in Schmidli (1997a). 

U+oO 

12.5.5 Finite-Horizon Ruin Probabilities 

Ultimately, we turn to finitehorizon ruin probabilities. We need to be 
guaranteed that subsequent quantities are well-defined. Assume therefore that 
for every s E R considered the solution O(s) to (12.5.4) exists. We also assume 
that the adjustment coefficient 7 > 0 exists. Furthermore, in order to get 
upper bounds, the technical assumption of Theorem 12.5.3a must be fulfilled 
for all s considered. As we showed in the proof of Theorem 12.5.3, t.his is most 
easily achieved by assuming that there exists c' < 00 such that 

supE(')(I-  y I A = z , I  > y) 5 C' < 00, 
ire8 
920 

where B is a set such that P(')(A E B) = 1. To simplify the notation let 
6(s) = co if O(s) is not defined. 

Theorem 12.5.5 Let y(p) = sup{s - yO(s) : s E R} and denote by s(y) the 
argument where the supremum is attained. Moreover, let 
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The following statements are true: 
(a) If g6(1)(y) < 1, then ~ ( y )  > y and 

(b) If yB(')(r) > 1, then y(y) > y and 

( 12.5.17) 

( 12.5.18) 

The proof of Theorem 12.5.5 is left to the reader since it is similar to the proof 
of Theorem 12.3.7. 

Corollary 12.5.1 Assume that there exists s > 7 such that %(s) < 00. Then 
hnu-+m u-'T(u) = (O(l)(y))-l an probability on the set {~(u) < 00). 

The proof of Corollary 12.5.1 is analogous to the proof of Corollary 10.3.1. 

Bibliographical Notes. The risk model studied in this section was intro- 
duced in Bjork and Grandell (1988) as a generalization of the model considered 
by Ammeter (1948); see aka Grandell (1995). The approach to this model via 
PDMP is similar to that used in Dassios (1987) for the Sparre Andenen 
model; see also Dassios and Embrechts (1989) and Embrechts, Grandell and 
Schmidli (1993). An upper bound for $(u) which is larger than that given 
in (12.5.11) was obtained in Bjork and Grandell (1988). Theorem 12.5.2, 
Theorem 12.5.5 and Corollary 12.5.1 were derived in Embrechts, Grandell 
and Schmidli (1993). 

12.6 SUBEXPONENTIAL CLAIM SIZES 

In the previous sections of this chapter we found the asymptotic behaviour 
of the ruin functions +(u) and v,bo(u) given in (12.1.39) and (12.1.43), 
respectively, when the initial risk reserve u tends to infinity. However, 
our results were limited to the case of exponentially bounded claim size 
distributions. In the present section we assume that some of the claim size 
distributions are subexponential, i.e. heavy-tailed. The main idea of the 
approach considered below is to compare the asymptotic behaviour of +(u) 
and +O(u) in models with a general (not necessarily renewal) claim arrival 
process, with that in the Sparre Andersen model, and to use Theorem 6.5.11. 
We first state two general theorems, one for a Palm-stationary ergodic input 
with independent claim sizes, the other for processes with a regenerative 
structure. Thereafter, we will apply the general results to several classes of 
claim arrival processes. 
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12.6.1 General Results 

Consider the marked point process { (u ,~ ,  Un)}, where a, is the arrival epoch 
and U, is the size of the n-th claim. We first assume that the point process 
{o,} is PaIm-stationary and ergodic and that {Un} consists of independent 
and identically distributed random variabla which are independent of {gn}.  

We also assume that the net profit condition (12.1.38) is fulfilled in that 
X-’ = Eo(u,+l - o,). For each E > 0 let 2, = ~ u p ~ > ~ { n ( X - ’  - E )  - on}. 
Note that by Theorem 12.1.3 and Lemma 12.1.2 we have 

lim n-la, = x-’. (12.6.1) 
n+3o 

Hence 2, < 00 follows. The condition formulated in the next theorem means 
that, for each E > 0, the tail of the distribution of the supremum 2, should be 
lighter than that of the (integrated tail) distribution Pu of claim sizes. In other 
words, the sequence {qn} of claim arrival epochs should not be too bursty. 
Examples where this condition is fulfilled are Poisson cluster processes and 
superpositions of renewal processes. They will be discussed in Sections 12.6.2 
and 12.6.3, respectively. 

Theorem 12.6.1 Assume that F& E S and that limu-+m K ( u ) / q ( u )  = 0 
for all E > 0.  Then, for the ruin function q0(u) given in (12.1.43), 

(12.6.2) 

Proof By rescaling, we can assume without loss of generality that p = 1. Let 
E , E ‘  > 0. Using (12.6.1) it is not difficult to see that there exists c > 0 such 
that 

p o ( ( n  5 n ( ~ - l  +&) +.I> > 1 -&!. 

n2l 

Hence 

$(u) 2 (1-E’)PkP{2(UL - X - l - & ) }  > u + c ) .  
21 k=l 

Thus, (2.5.7) and Theorem 6.5.11 imply 
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where p = EU. Since E,E' > 0 are arbitrary it follows that 

Let now 0 < E < A-' - p and Me = SUPn>l{c~==,(uk - - A-' + E ) } .  Then 

00- From Theorem 6.5.11 we get that P(M, > u)/Ju F ~ ( v ) d v  tends to (A-' - 
E - p)-l as u + 00. By the conditions of the theorem and by Lemma 2.5.2, 
this implies 

1 
x-' - E - p . - - P(M, > u)  = limsup 

u-sm sum F(v) dv 

Since E > 0 is arbitrary, the assertion follows. 0 

Corollary 12.6.1 Under the assvmptions of Theorem 12.6.1, the man 
function +(u) in the tame-stationary model given bg (12.1.39) as asymptotically 
equivalent to the ruin function $"(u) in the Palm model. That is, 
fimu+oo ~jr(u)/+O(u) = 1 and, consequently, 

(12.6.3) 

Proof Using Lemma 2.5.2, the assertion is an immediate consequence of 
Theorems 12.1.10 and 12.6.1. 0 

In some applications the assumptions of Theorem 12.6.1 are too strong. For 
instance, in the Markov-modulated risk model, the claim sizes and the claim 
arrival epochs are not necessarily independent. Moreover, as can happen in 
other risk models as well, the claim arrival process does not always start 
in a timestationary stat.e or with a claim at the origin (Palm model). 
In Theorem 12.6.2 below, we therefore state another general result on the 
asymptotics of $(u) as u -+ 00, which is applicable to these situations. 
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Assume that the risk reserve process {R( t ) }  has a regenerative structure, 
i.e. there are stopping times 0 = Co < < ... such that, the processes 
{R(<k + t )  - R ( 6 )  : 0 5 t 5 c k + l  - Ck}, Is = O , l ,  ..., are independent 
and identically distributed. One could let (R( t )  - ti : 0 _< t 5 cl} have 
a distribution different from the others, but for reasons of simplicity, we 
only consider the situation described above. We also assume that P({&,n 2 
1) n {(~,,n 2 1) = 0) = 1, i.e. the sets of regeneration epochs and of claim 
arrival epochs are disjoint with probability 1. 

For convenience, conditions and statements are formulated in terms of the 
claim surplus process S(t) = czi’ Ui - Pt, rather than of the risk reserve 
process { R ( t ) } .  Let < = c1 and S = S(<). Assume that --oo < ES < 0 and 
Fi+ E S, where S+ = max(0, S}. Considering the “embedded” ruin function 
$‘(u) = P(supn2, S(cn) > u) and using similar arguments as in the proof of 
Theorem 6.5.11, we find that 

(12.6.4) 

In the next theorem we formulate a condition which implies that the usual 
“continuous-time” ruin function $(u) = P(T(u) < 00) with T(U) = min{t : 
S(t) > u}, has the same asymptotic behaviour as that of #(u) obtained 
in (12.6.4). A motivation is provided by the following observation: In many 
situations where ruin occurs at time T(u), the surplus process will not be able 
to recover until the next regeneration epoch. In particular, if the claim size 
distribution is subexponential, then (2.3.7) suggests that, typically, S( T (ti)) 

largely exceeds the level ti. Thus, if the time from ~ ( u )  to the next regeneration 
epoch is not long enough, the surplus process can not recover. As it turns out, 
a sufficient condition for this, is the asymptotic tail equivalence of the random 
variables S and S’ = Czt’ U,. 
Theorem 12.6.2 Assume that Fs,, G, E S, limr-tm %(z)/%(s) = 1 and 
-00 < ES < 0 .  Then 

(12.6.5) 

In the proof of Theorem 12.6.2 we use the following auxiliary result for the 
regenerative claim surplus process (S ( t ) }  with negative drift and with heavy- 
tailed increments during the regeneration periods. Define M = suptzo S(t)  
and M’ = supQ>1 S(Cn)- Further, let A, =  SUP^^<^^,,+^ S(t)  - S(<n), 
M:, = SUPlSk<n SICk: , ,  and 

a(.) = inf{n 2 I : S(<n) > u), P(u) = id{,. 2 O : S(<n) + Lin > a}. 
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Lemma 12.6.1 Under the assumptions of Theorem 12.6.2, for each a > 0, 

PW' > ~ , S ( d ( , ) )  - S(Co(u)-d 5 4 = o(P(M' > 4)  (12.6.6) 

and 
P(M > 5 a) = o(P(M > u))  (12.6.7) 

asu+cG. 

Proof We first show (12.6.6). Consider the random walk {Sn, n. 2 0) with 
Sn = S(G), and the sequence of its ascending ladder epochs defined in 
(6.3.6). Let N = ma.{n : v,f < m} be the number of finite ladder epochs. 
Furthermore, let {Y:} be the sequence of ascending ladder heights introduced 
in Section 6.3.3. Recall that N is geometrically distributed with parameter 
p = P(Y+ < 00). Define a'(u) = inf{n 2 1 : I:+ > u}. Then, 

P(S(Ca(u)) - ~ ( C a ( u ) - d  I a I M' > 4 I P(Y:(u, I a I 144' 4 - 
Thus, in order to prove (12.6.61, it suffices to show that 

lim P(Y$(,) 5 u I M' > u)  = 0. ( 12.6.8) 
U-PW 

We have 

P(a'(u) = n, M' > 21) 
n n-1 

= P(~y;'>u)-P(~~+>>) 
a= 1 i=l 

where GO(%) = P(Y+ 5 z 1 Y+ < 00). From Lemma 6.5.2 we know that 
Go E S. Later on, we need an upper bound for P(a'(u) = n 1 -44' > u), which 
is obtained in the following way. Choose E > 0 such that E (1 + a)" < a?. 
From Lemma 2.5.3 we know that there exists a constant c < 00 such that w(u) 5 c(l  + E)~G(U) for all n 1 1, u 2 0. Thus, using (12.6.9) we 
have P(a'(u) = n,M' > u) 5 p"c(1 + e)*G(u). On the other hand, from 
Theorem 6.3.3 and from the inequality @(u) > (G(u)) '  we obtain 

This yields the bound 

pn- 1 
P(a'(u) = n 1 M' > u)  5 -c(l + a)n 

1 - P  
(12.6.10) 
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for all u 3 0. Furthermore, 

P(Y,+ 5 a, a'(u) = n, M' > u) 

i=l i= 1 

Using (2.5.7) and (2.5.11), this and (12.6.9) imply that 

iim P(Y;(., 5 5 I M' > u, a'(u) = n) = 0 ,  

Yow, (12.6.8) follows from (12.6.10) and the bounded convergence theorem, 
since 

U - b W  

P(Yz(u, 5 Q I M' > u) 
00 

= C P(a'(u) = n I M' > u)  P(Y:,,, 5 5 1 M' > u,d(u)  = 71). 
n=l 

To prove (12.6.7) note that 

P(M > u, 5 a) 5 P(M' > u - a, s((a(u-G)) E (u - 5, u)) . 
Since P(M' > u) 5 P(M > u), and P(M' > u - a) w P(M > u.) as u + 00, 
it thus suffices to show that 

lim P(S((++&)) E (u - a, u) I M' > u - a)  = 0 .  (12.6.11) 
U+W 

Using that 

5 P (2 u;' > u - a) - P (2 q+ > u)  , 
i=l i-1 

the proof of (12.6.11) is analogous to the proof of (12.6.6). 0 

Proof of Theorem 12.6.2 Recall that +(u) = P(M > u) and $'(u) = 
P(M' > u). Using (12.6.4), it therefore suflices to show that 

lim P(M' > .u) /P(M > u)  = 1. (12.6.12) 
u-bw 
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The 
& >  

3 2  

I assumed asymptotic tail equivdence of S a,nd S' implies that, for each 
0, one can find a > 0 such that P(S > 2 )  2 (1 - Cc)p(&~ > z) for all 
a. Using (12.6.6) and (12.6.7), this gives 

n=l 
M 

= (1 - E)P(M > ",4/3(4 > a) 
(1 - &)P(M > .). - 

Thus, letting u + 00 and next E J- 0 yields 

On the other hand, it is clear that 

P ( M '  > .) 
U--)'Jo P(M > u) lim sup 

since M' 5 M .  Hence, (12.6.12) follows. 0 

12.6.2 Poisson Cluster Arrival Processes 
Assume that the claim arrival process {a,} is a time-stationary Poisson cluster 
process introduced in Section 12.2.3. Furthermore, assume that the sequence 
{ Un} of claim sizes consists of independent and identically distributed random 
variables, independent of {gn}. Using Theorem 12.6.1 and Corollary 12.6.1, we 
derive conditions under which the asymptotic behaviour of the ruin functions 
$(ti) and t,bo(u) is given by (12.6.3) and (12.6.2), respectively. 

We leave it to the reader to show that a time-stationary Poisson cluster 
process is ergodic. By Theorem 12.1.6, this is equivalent to ergodicity of the 
corresponding Palm distribution. U'e also remark that the distribution of the 
homogeneous Poisson process { gk} of cluster centres remains invariant under 
independent and identically distributed shifting of points. Indeed, if { Yn} 
is a sequence of independent and identicdly distributed random variables, 
independent of {oh}, then {u; - Yn} has the same distribution as {ah}. The 
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proof of this fact is left to the reader. Thus, without loss of generality we can 
and will assume that for each n E Z the cluster centre a; is the leftmost point 
of the n-th cluster, i.e. 1Vn((-O0,0)) = 0. 

Since, under the conditions of Theorem 12.6.1, the ruin functions +(u) and 
$O(u) are asymptotically equivalent (see Corollary 12.6.1), we can pass to a 
Palm-stationary model for the claim arrival process. That is, we assume that 
the point process of claim arrival epochs is distributed according to the Palm 
distribution of {u,,}. Since no confusion is possible, we will further use the 
same notation {an) for this Palm-stationary cluster process. 

In Theorem 12.2.7 we saw that the Palm distribution of a timestationary 
Poisson cluster process can be obtained by the superposition of this Poisson 
cluster process with an independent single cluster fi in such a way, that 
a randomly chosen point of fi is at the origin; here the distribution of fi 
is given by (12.2.12). Thus, for each n 2 1, the claim arrival epoch On in 
( 0 , ~ )  can come from three different types of clusters: (i) from a cluster 
with uk E (O,oo), (ii) from a cluster with 0; E (-qO), (iii) from the 
independent cluster fi. For each n 2 1, let k(n) = sup{i : O: 5 On} 

denote the number of the last cluster centre before On. Then obviously 
I Ci=l "'"'Ni(R) + x :=-mNi( ( -~ i ,~ ) )  + &(Xi) and un 1 o;.~). Thus, 

for the random variable 2, appearing in Theorem 12.6.1 we have 

z, 5 z(1) + ~ ( 2 )  + ~ ( 3 )  , (12.6.13) 

n 

and Z ( 3 )  = fi( IR)(X- '  - E ) .  Let V, = sup{z : Nn({z}) > 0) and notice 
that the distribution of Vn does not depend on n since the clusters {Nn} are 
identically distributed. We therefore arrive at the following result. 

Theorem 12.6.3 Let the net profit condition (12.1.38) be fdflled.  Assume 
that Fg, E S, Ee6N-(m) < 00 and Ee6vn < 00 for some 6 > 0. Then, 
limu+m $(u)/$O(u) = 1 and 

(12.6.14) 

Proof Choosing 63 = h/(A-' - s), it follows that Ee65'(') < 00. Note 
that X = X'EX,(R), where A' is the intensity of the cluster centres. Then 
ENi(R)(X-' - E )  = (A')-' - €E.Vi((R). Thus {EEL Ni(R)(A-' - E )  - u&} 



548 STOCHASTIC PROCESSES FOR INSURANCE AND FINANCE 

is a compound Poisson risk model where the adjustment coefficient exists 
when E < A - l .  Thus by (5.4.4) we have EeslZ‘l’ < oa for some 61 > 0. Now 
let na = sup{i 2 0 : V--i + 2 0). Then, using Ni((-oc,O)) = 0: we have 
2(2) 5 CEO N-i(lFt)(A-’ - E ) .  We first want to show that P(m > n) 5 ue-6‘n 
for some a,&’ > 0 and for all n 2 1. By (5.4.4) there exists -y‘ such that 

P ( - d k  5 x ’ k / 4 )  5 P(sup{X’n/2 + dn} 2 X‘k/4) 5 . 
n 

By our assumptions there exists a constant u‘ > 0 such that P ( v - k  > 
X‘k/4) 5 for all k 2 1, where 6’ = min{y’X’/4,6/2}. Then 

00 00 

n=O n=O 

where c = d(u’+ 1)/(1 -e-6‘). Thus for 60 = min{6l1&,63} we have 
Eeaoze < 00. Hence, using (12.6.13) and the assumption that E S, 
Theorem 2.5.2 and (2.5.2) give that limu+OO ~ ( u ) / ~ ( u )  = 0 for all E > 0. 
The assertion now follows from Theorem 12.6.1. 

12.6.3 Superposition of Renewal Processes 

Assume now that claims arrive according to the superposition N = N1 + 
. . . + Nt of .t independent time-stationary renewal processes N1,. . . , Ne as 
considered in Section 12.2.3. Using Corollary 12.1.3, it is not difficult to show 
that the point process N is ergodic. By Theorem 12.1.6, its Palm distribution 
is also ergodic. Furthermore, we assume that the sequence {Un} of claim 
sizes consists of independent and identically distributed random variables, 
independent of N. If their integrated tail distribution is subexponential, we 
obtain the following result without further assumptions. 

Theorem 12.6.4 Let the net profit condition (12.1.38) be fulfilled. Assume 
F& E S .  Then 

(12.6.15) 

where X = X I  + . . . + At.  
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Proof As in Section 12.6.2, we pass to the Palm-stationary claim arrival 
process to show that the conditions of Theorem 12.6.1 are fulfilled. In 
particular, we show that the tail of the distribution of 2, is exponentially 
bounded. Note that 

P0(Z, > u )  5 PO( u (K(n(X-1 - E )  - 21) 2 n}) . 

P( u (Nj(n(X-1 - E )  - 21) 2 n x , / A } )  5 f!4?+, 

P( u (N,o(n(X-' - E )  - u) 2 .Xj/A}) 5 ce-bu 

nz 1 

Thus from Theorem 12.2.5 we can conclude that it suffices to show that for 
some c,6 > 0 

n>l 

ft/l 

for all j = 1,. . . ,C and u > 0. We will only show the first inequality as 
the second follows analogously. Indeed, the tail of the distribution of 2, will 
then be exponentially bounded and the conditions of Theorem 12.6.1 will be 
fulfilled. Recall that the points of the j-th renewal process Nj we denoted 
by {Uj,n}. Furthermore, let ~j = A;' - EX/Aj. Then, using the notation 
E j  = X i '  - € A / A j ,  we have 

P( U (iVj(n(X-1- €1 - u)  2 n ~ j / ~ } )  
n> 1 

5 P( U {oj,LnAj/Xj I n(~-' 

5 P( U {oj,m < (.t + I)(A-~ - E ) x / x ~  - .I) 

5 P( U {Ojsm - oj,l< (m - 1)~j - (21 - Bj)}) 

- ~ 1 )  
n>l 

m21 

m>l 

m>2 
= P(  SUP((^ - 1 ) ~ j  - (qj,m - qj,l) > - 2 ~ j } )  

5 oje-YJu, 

for some a j , y j  > 0, where the last inequality follows from Theorem 6.5.11. 
This completes the proof. 0 

12.6.4 The Markov-Modulated Risk Model 

In the last two sections, we considered ruin probabilities in timestationary 
and Palm-stationary models. In what follows this does not need to be the 
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case. Let $I(.) be the ruin function in the Markov-modulated risk model 
with an arbitrary initial distribution of the Markov environment. process 
{ J ( t ) } .  Assume that the intensity matrix Q of { J ( t ) }  is irreducible. Let 
F be a distribution on R+ such that for each i E { 1, .  . . , !} we have 
lim2+oo Fi(z)/F(z) = ci for some constant c, E [0, co), where Fi denotes 
the conditional claim size distribution in state i. As before, the conditional 
claim arrival intensity in state i is denoted by Xi, and {T,}  is the stationary 
initial distribution of { J ( t ) } .  Then we arrive at the following result for the 
asymptotic behaviour of $I(.) as u --t 00. 

Theorem 12.6.5 Let the net profit condition (12.3.6) be frdfilled. Assume 
that F, F E S and c = E:=l > 0. Then, for each distribution of the 
initial state J(O) ,  

- 

(12.6.16) 

Proof Suppose J (0 )  = i and let C = inf{t > 0 : J ( t )  = i , J ( t  - 0)  # i} be 
the regeneration epoch in the model of Theorem 12.6.2. We leave it to the 
reader to show that the distribution of C is phase-type and therefore the tail 
of N(C) is exponentially bounded. Let F& denote the o-algebra generated 
by { J ( t )  : t 2 0). Let {VA} be a sequence of independent and identically 
distributed random variables with distribution F’(s) = infl<j<e Fj( z ) .  Then 
U,, Ist U;. Furthermore, the quotient F(r)/F(z) tends to max{cj : j = 
1,.  . . ,!} > 0 as z -+ 00. In particular F’ E S by Lemma 2.5.4. Let S > 0 such 
that E (1 + 5)N(C) < 00. By Lemma 2.5.3, there exists a constant c” such that 

“C) 
P(S > z I FJ> 5 P( UA > 2 I Fi) 5 c”F(z)(l+ S)”(O. (12.6.17) 

n=1 

Because the Vn are conditionally independent given F&, Lemma 2.5.2 implies 
that 

where iVj = CrL$’ l ( J ( g n )  = j). In particular, by Lemma 2.5,4 the 
conditional distribution of S’ given F& n {cj=, cjNj > 0) is subexponential. 
Thus by (2.5.7) 
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Now, in view of the integrable bound given in (12.6.17), the dominated 
convergence theorem yields 

The last equation follows from the law of large numbers and Theorem 12.3.2 
by considering a Markov-modulated risk model with claim sizes U,, = z;Gl cjl(J(ola) = j). Letting 0 = 0 it immediately follows that &(z)/F(z) 
tends to c as well. Thus, Fs, E S and l i m 5 + o o ~ ( ~ ) / ~ ( z )  = 1. By 
L'Hospital's rule also Ps+ E S. Therefore, for the case J ( 0 )  = i, t,he assertion 
follows from Theorems 12.3.2 and 12.6.2. Because the limit in (12.6.16) does 

0 

At first sight, it might be surprising that the constant in (12.6.16) does not 
depend on the initial state. Intuitively, starting with a large initial reserve u, 
ruin will be caused by a large claim. However, it takes some time before such 
a claim occurs. Thus, the process ( J ( t ) }  has enough time to reach the steady 
state. Alternatively, the independence of the initial state conforms with the 
fact that the constant in (12.6.14) and (12.6.15) only depends on the arrival 
intensity A, not on the specific structure of the underlying point process of 
claim occurrence epochs. 

not depend on a the result holds for any initial distribution. 

12.6.5 The Bjiirk-Grandell Risk Model 

Consider the nondelayed Bjiirk-Grandell risk model of Section 12.5, i.e. 
assume that ( A l , I , )  = (&I). Furthermore, assume that the claim size 
distribution is subexponential. To state the result on the asymptotic behaviour 
of the ruin function +(u), we also have to make an assumption on the 
distribution of (A,  I>. The distribution of the number of claims in the interval 
(&,&+I)  must have an exponentially bounded tail if we want to avoid the 
aggregate claim amount in ((i,&+l) becoming large due to the number of 
claims. 

Theorem 12.6.6 Let (141, 11) P (A, I )  and let the net profit condition (12.5.1) 
be fuljilled. Assume that Fu, FC E S and that there exists 6 > 0 such that 
EebA' < 00. Then, 

d 

(12.6.18) 
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we conclude that If((;) is light-tailed. The rest of the proof is analogous to 
U 

Note that by the result of Theorem 2.5.6, the assumption that Fu, Pu E S 
made in Theorem 12.6.6 can be replaced by FU 6 S*. An analogously modified 
assumption can be made in Theorem 12.6.5. 

the proof of Theorem 12.6.5. 

Bibliographical Notes. The material of this section is from Asmussen, 
Schmidli and Schmidt (1999), where also the case of heavy-tailed A and I 
in the Bjork-Grandell model is considered. For the special case of Pareto type 
distributions, see also Grandell (1997). The proof of Lemma 12.6.1 follows an 
idea developed in Asmussen and Kluppelberg (1996); see also Kliippelberg 
and Mikosch (1997). A version of Theorem 12.6.5 was already obtained by 
Asmussen, Flpre Henriksen and Kliippelberg (1994). Some related results can 
be found in Asmussen, Kliippelberg and Sigman (1W8), Rolski, Schlegel and 
Schmidt (1999) and Schmidli (1998). 



CHAPTER 13 

Diffusion Models 

In this chapter we begin with a short introduction to stochastic differential 
equations. As an application we consider models with stochastic interest 
rates which are described by diffusion processes. An insurance risk reserve 
process with such a diffusion component is called a perturbed risk process. 
It turns out that, for perturbed risk processes, methods can be used which 
are similar to those applied to unperturbed risk processes in earlier chapters. 
Other examples from actuarial and financial mathematics follow. We discuss 
the popular Black-Scholes model and consider a life-insurance model under 
stochastic interest rates. As before, all processes are assumed to have ciadlag 
sample paths. We start from a given filtration {F t }  and assume that all 
stochastic processes considered below are adapted to this filtration. Unless 
stated otherwise, we assume in this chapter that the underlying probability 
space (Q,F,  P) and the filtration {Ft} are complete. 

13.1 STOCHASTIC DIFFERENTIAL EQUATIONS 

13.1.1 

For a stochastic process { X ( t ) }  we define the variation over [0, t ]  by 

Stochastic Integrals and It&% Formula 

i= 1 

where the supremum is taken over aU sequences 0 = to < t l  < . . . < tn  = t 
and n E IN. Let {X(t)} be a process with bounded variation, i.e. V ( t )  < 00 
for each t > 0. Writing 

and X ( t )  = X ( t )  - ( X ( t )  - X ( O ) ) ,  we have 

X ( t )  = X(0)  + X ( t )  - X ( t ) .  (13.1.1) 

Stochastic Processes for Insurance and Finance 
Tomasz Rolski & Hanspeter Schmidli 

Copyright 01999 by John Wiley & Sons Ltd, 
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Here { W ( t ) }  and {x(t)} are increasing processes and (13.1.1) is called the 
Jordan decomposition of { X ( t ) } .  For example the risk reserve process in the 
Sparre Andersen model has bounded variation. As we will see later in this 
section, this is no longer true for Brownian motion. If the process {X(t)} 
has bounded variation, the stochastic integral s,' Y (v) dX(v) for an arbitrary 
stochastic process {Y( t ) }  is defined pat.hwise as a Lebesgue-Stieltjes integral, 
provided that { Y ( t ) }  is integrable with respect to {X(t)}. It however turns 
out that the standard Brownian motion { W ( t ) }  has unbounded variation and 
therefore the integral s,' Y ( v )  dW(v) cannot be defined in the preceding sense. 
Indeed, one can show that 

(i - l ) t  2" 

i= 1 

(13.1.2) 

with probability 1 as n + 00. To prove (13.1.2), define 

2" 

zn = c(.'($) - w ( y ) ) 2  - t  
i= 1 

Then EZ, = 0. Also E(Z:) = t22-"+', as can be easily shown by the 
reader, using the fact that, for each constant c > 0, the scaled process 
{ f i W ( t / c ) ,  t 2 0) is again a standard Brownian motion. For each .E > 0, 
Chebyshev's inequality implies 

P(lZ,l 2 E )  5 E-~E(ZE) = ( t / . ~ ) ~ 2 - , + ' .  

Hence C:=, P(IZn1 2 E )  < 03. By the Borel-Cantelli lemma we can then 
conclude that limn-too 2, = 0 with probability 1. From this we have 

The sample-path continuity of {W( t ) }  entails 

with probability 1 as n + m, and so (13.1.2) follows. 
We are facing the problem of defining an integral with respect to a process 

with unbounded variation. For example, if we want to define s," W ( v )  dW(v), 
we already have the two different Riemann sums 

(13.1.3) 
(i - l ) t  2" (i - 1)t 

a= 1 
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and 
2" 

Cv2,n(t) = xw($)(w(;) - w ( Y ) )  
i= 1 

(13.1.4) 

that could be used. Note that 

Taking the difference of (13.1.3) and (13.1.4), we also obtain 

and this converges to t with probability 1, as was shown above. Thus, 

lim W2,n(t) = 24(W2(t)  + t) 
n+oo 

and 
lim WI,n(t) = 2 - ' ( ~ ~ ( t >  - t )  . 

We can choose either one of the expressions above as the value of the stochastic 
integral s,'W(v) dW(v). In Theorem 10.1.2 we have seen that both {W(t)} 
and {W2( t )  - t} are martingales. Since the martingale property is desirable, 
we will choose J:W(v)dW(v) = 2-'(W2(t) - t) as our stochastic integral. 
This choice is inspired by a general theory for defining integrals with respect 
to Brownian motion. Due to its complexity, we will only sketch this theory. 
Readers interested in more details should consult the appropriate references 
to the literature. 

Let {Y(t)}  be an arbitrary stochastic process. We calI {k'(t)} a piecewise 
constant process if it can be represented in the form 

n+w 

00 

Y ( t )  = C Y ( s ) I ( r a  I t < 7i+l) 
i=O 

for some increasing sequence { T ~ }  of stopping times for which 0 = TO < 
TI c . . .> limn+00 T,, = 00 and where for each n the random variable Y(T,) 
is FT,,-measurable. Note that we do not assume that the sequence { Y ( T n ) }  
is bounded, nor that it consists of square integrable random variables. For a 
piecewise constant process { Y ( t ) }  it is natural to define 

I' Y ( v )  dW(v) 
N ( t ) - 1  

= c Y(7i) (W(Ti+l) - M'(.ri)) + Y(t )  ( W t )  - W W ( t ) ) )  7 (13.1-5) 
i=O 
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where N ( t )  = max{i : T~ 5 t). The stochastic process {s,” Y(w) dW(v), t 1 0) 
so defined is continuous and has the following important property. Let 
T; = inf{t 2 0 : IS,’Y(v)dW(v)l 2 n}; then {s,’*‘.: Y(v)dW(v), t 2 0) is a 
uniformly integrable martingale. This fact, to be proved by the reader, induces 
the concept of a local martingale. A stochastic process { X ( t ) }  adapted to the 
filtration {Ft} is called a local martingale if there exists a sequence of {&}- 
stopping times {T,} such that rn = 00 and if for each n = 1,2 , .  . . 
the process {&(t), t 2 0) with Xn(t)  = X(t A 7,) is a martingale. The 
sequence (7,) is called a Zocalization sequence. In many cases it is possible to 
choose { T ~ }  in such a way that each process { X , ( t ) }  is a uniformly integrable 
martingale. Moreover, the following is true. 

Lemma 13.1.1 Let { X ( t ) }  and {Y( t ) }  be two piecewise constant processes, 
and { W ( t ) }  u Brownian motion. Then the processes { M ( t ) }  and {A.i‘(t)} with 
M(t)  = Ji Y ( v )  dW(v) and 

M‘(t )  = Y ( v )  dW(er) it X ( v )  dW(v) - I’ Y ( v ) X ( v )  dv (13.1.6) 

are local martingales. If { X ( t ) }  and {Y( t ) }  arz bounded, then { M ( t ) }  and 
{ M ‘ ( t ) }  are martingcrles. 

Proof First consider the case where { X ( t ) }  and {Y(t)}  are bounded. In this 
case it is clear that { M ( t ) }  is amaxtingale, as can readily be seen from (13.1.5). 
Fbrthermore, for 0 5 PI < t ,  

t 

E ( I  Y(w)dW(w) I 7”) = 0, 

where we put s,’ Y(w) dW(w) = s,’ Y(w) dlY(w) - s l  Y ( w )  dW(w). Thus, 

t 

E (M‘(t) - M‘(v) I 7,) = E ([ Y(w) dW(w) X(w)  dW(v) 
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we obtain 

= E ( x ( V ) y ( V ) ( W ( ~ N ( v ) + I )  - w(u))2 
N ( t ) - 1  

+ c Y(T*)X(Ti) (W(%+l) - W ( d ) 2  

+ X ( t ) Y ( t )  (W) - W(T’vv(t)))2 1 3”) 

+ X(t)Y(t) (t - TW))  I 4) 

t=N(v)+l 

N ( t ) - 1  

= E ( x ( u ) y ( V ) ( T N ( u ) + l  - v )  + c Y(Ti)X(TJ ( G + l  - 7;) 
i=N(u)+l  

= E ([ Y(w)X(w) dw I Fv) . 

Using (13.1.7), it follows that {n/r’(t)} is a martingale. For the general case 
we consider the stopping times T,!, = inf{t 1 0 : max{lX(t)l, lY(t)l} 2 n}. In 
this case the processes { X n ( t ) }  and { I ’ i ( t ) }  with 

X n ( t )  = X ( t ) I ( t  < T;) and Y n ( t )  = Y(t)l(t < T;) 
are bounded. By the first part of the proof, { M ( t ) }  and { M ’ ( t ) )  are local 
martingales. 0 

From the result of Lemma 13.1.1 we can conclude that, in particular, 
{ ( $ Y ( v ) ~ W ( V ) ) ~  - J;Y2(u)dv, t 2 0) is a local martingale if {Y( t ) }  is 
piecewise constant. This indicates that the right class of processes, for which 
we can define a stochastic integral with respect to Brownian motion, is the 
class L;oc of all Mlag processes. The notation L;oc is motivated by the 
fact that for each chdl&g process { X ( t ) } ,  J:X2(v)dv < 00 for all t 2 0. 
We also define the smaller class L2 c L& of chdlAg processes { X ( t ) }  for 
which &EX2(u)dv < 00 for all t 2: 0. Note that, if {Y(t)} E Ltoc and 
r, = inf{t 2 0 : max{lY(t)l,IY(t - 0)l) 2 n}, then { Y , ( t ) }  6 L2, where 

Yn(t) = Y( t ) I ( t  < Tn). (13.1.8) 

It is shown in Lemma 5.2.2 of Ethier and Kurtz (1986) that each process 
{ Y ( t ) }  in L2 can be approximated by bounded piecewise constant processes 
{Yn(t)} such that, for each t 2 0, 

t 
lim E (1 (Yn(.) - Y ( v ) ) ~  du) = 0 .  

n+oo 
(13.1.9) 
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The following theorem extends the notion of the stochastic integral with 
respect to {W(t )}  to arbitrary processes in L2 and Ltoc: respectively. 

Theorem 13.1.1 (a) Let { Y ( t ) }  E L2.  Then there exists a (up to indtstin- 
pishability) unique continuous madingale denoted by {s,” Y (u)  dW(v), t 2 0) 
such that, for all x 2 0, 

, rt 

and 
t 2 

l i i  E ( SUP I Jd’Yn(V) dW(v) - 1 Y ( v )  dW(u)l) = 0 
n-b- o j t < z  

whenever the approximating seqaence of bounded piecewise constant processes 
{Yn(t)} satisfies 

Moreover, af { X ( t ) }  E L2 then E Ji IY(v)X(v)l dw < 00 and {M’( t ) }  defined 
in (13.1.6) U a martingale. 
(b) Let {Y(t)} E Ltoc. Then there exists a (up to indistinguishabditv) unique 
continuous local martingale denoted by {s,’ Y(v) dW(u), t 2 0) such Mat, for 
each stopping tame T with { Y ( t ) l ( ~  > t ) ,  t 2 0) E L2,  

irAt Y ( v )  dW(v) = I” Y(v)I(T > V )  dIV(v). 

Moreover, zf { X ( t ) }  E Ltoc then s,’ 1Y(v)X(v)ldv < M and {M‘(t)} defined 
in (13.1.6) is a local martingale. 

The proof of Theorem 13.1.1 goes beyond the scope of this book and can be 
found, for example, in Ethier and Kurtz (1986), Theorems 5.2.3 and 5.2.6. 

Remarks 1. In textbooks it is usually required that { X ( t ) }  and { Y ( t ) }  
are progressively measurable. However, the reader should note that a right.- 
continuous process is progressively measurable. Since we exclusively work 
with c2tdlAg processes, the (weaker) condition of progressive measurability 
is automatically fulfilled. 
2. Note that by (13.1.8) we can always 6nd localization times {Tn} such 
that { Y ( t ) I ( t  < 7,)) E L2, provided that { Y ( t ) }  E L&. Furthermore, for 
{ Y ( t ) }  E L2, by (13.1.9) we can always choose a subsequence of approximating 
processes for which (13.1.10) holds. Thus, it is quite natural that the process 
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{s,’ Y(v)  dW(v)} appearing in Theorem 13.1.1 is called the stochastic integral 
of { Y ( t ) }  with respect to the Brownian motion { W ( t ) } .  
3. It is often the case that { Y ( t ) }  is continuous and that (13.1.10) is fulfilled 
for the approximating processes {Yn(t)}  with Yn(t) = CFo Y ( j n t , ) l ( j m ,  5 
t < (j + l)m,), where {m,} is some sequence converging to 0 as n + 00. In 
this case, the stochastic integral Ji Y(v )  dW(v) can be approximated by the 
Riemann sums ‘&m,~ Y(imn)(W((i  + l)m,) - W(imn)) .  This suggests a 
possibility to simulate the process {s,’ Y (v) dW(v)} using the Riemann sum 
for a “large” n. 

The next theorem is a special case of a result known i ~ s  Itd’s fonnda. 

Theorem 13.1.2 Let n E IN be &ed. For 1 5 i 5 n, let {&( t )}  E 
L&, { & ( t ) }  a process with bounded variation, and X i ( t )  = &(O) + 
s,’ Yi(iz(v) dW*(v) + \,;(t)l where the processes { W i ( t ) }  are Brownian motions 
such that either MTi = or CVi and W j  are independent. Consider the 
process { X ( t ) }  with 

where g( t ,  51,. . . , T,) is a function continuously diflerentiable with respect to 
t and twice continuously diffmntiable with respect to (XI, . . . ,xn>. Then 

{ g z i ( t r ~ l ( t ) ) ~ 2 ( t ) , . . .  > X n ( t ) ) ~ ( t > }  E L?oc 9 (13.1.11) 

for all t 2 0, where qij = 1 if IVi = W j  and q,j = 0 otherwiae, and where gzi  
(gt, respectively) is  the partial derivative with respect to xi (t ,  respectively). 

The proof of Theorem 13.1.2 can be found in Ethier and Kurtz (1986), 
Theorem 5.2.9. 
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If X ( t )  = X(0) + s,” Y ( v )  dW(v) + s,” Z(v) dv for some process {Z(t)) then 

dX(t)  = Y(t )  dW(t) + Z(t )  dt , ( 13.1.13) 

and (13.1.13) is called a stochastic diflerential. For example, in the case that 
n = 1, Yl(t )  = 1 and Vl(t) = 0, we write It6’s formula (13.1.12) in the 
following way: 

we use the short notation 

dg(t, W ( t ) )  = gt(t, W(t)) dt+g,(t, U‘(t))  dW(t)+&,,(t, W(t) )  dt . (13.1.14) 

If g(t, 2) = z2/2, the differential form (13.1.14) of Itb’s formula reads 

d(W2(t)/2) = W ( t )  dW(t) + dt . (13.1.15) 

This is different from the bounded variation case where d(z2(t)/2) = 
z(t)dz(t) .  The term 3 dt in (13.1.15) is due to the unbounded variation of 
{ W ( t ) }  and is called the quadratic variation part. Note that from (13.1.15) 
we have 

t 9 = /d U‘(w)dW(w) + j t 

2 
and therefore 

W2(t) - t 
2 -  I’ W(w)dW(v) = 

From It6’s formula (13.1.12) it also follows that the well-known formula for 
integration by parts of processes with bounded variation is no longer valid in 
the case of unbounded variation. Iffor instance dXi(t) = K ( t )  dW(t)+V,(t) dt, 
a’ = 1,2, then (13.1.12) gives that 

d(Xi(t)Xs(t)) = X , ( t )  d X 2 ( t )  + X2(t) dXl(t)  + I5 (t)Y2(t) dt . (13.1.16) 

Remark The stochastic integral introduced in Theorem 13.1.1 is the so-called 
It6 stochastic integral. If Ft = Ft+ for all t 2 0 one could consider (13.1.4), 
instead of (13.1.3), as another possible candida.te for the Riemann sums to 
define a stochastic integral. Alternatively, we could define the Stratonovich 
stochastic integral Y (v) o dW(v), which is obtained via the Riemann sums 

For the Stratonovich integral, the integration rules for processes with bounded 
variation remain valid in the case of unbounded variation, but enerally 
{s,’Y(w) o dW(v), t 2 0) is no longer a martingale. For instance so W(u) o 
dW(v) = W2(t ) /2 .  

8 
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13.1.2 Diffusion Processes 

By the stochastic diflerenttal equation 

dX(t) = a ( t , X ( t ) )  dt + o(t, X ( t ) )  dW(t) , (13.1.17) 

we mean the equation 

t t 
X ( t )  = X ( 0 )  + 1 u(v, X ( v ) )  dw + 1 o(v, X(w))  dW(v) , t 2 0 ,  (13.1.18) 

and a stochastic process { X ( t ) }  fulfilling (13.1.18) is its solution. If the 
solution is unique, then the process { X ( t ) }  is called a dif is ion process with 
infinitesimal drift function a(t ,  s) and infinitesimal variance 02(t, s) at ( t ,  z), 
provided that 02(t,z) > 0 for all t >, 0 and x E E, where E c R is the state 
space of { X ( t ) } .  We also say that ( X ( t ) }  is an (a(t ,x) ,  oz(t,z))-diffusion. 

The following conditions imply the existence of a unique solution to 
( 13.1.17). 

Theorem 13.1.3 Assume that E X 2 ( 0 )  < 00 and that for any x > 0 there 
m'sts a constant c, E ( 0 , ~ )  such that for all y, z E R, 

lo(t,z) -4t,!/) l+ la(t2.r) - a(t,!/)l I c*lz - YI (13.1.19) 

and 
g2(t, Y) + a v ,  %I) 5 CZ(1  + Y2) (13.1.20) 

whenever 0 5 t 5 2. Then there exists a unique solution { X ( t ) }  to (13.1.17). 
The solution { X ( t ) }  as continuous rand fu@k 

E X 2 ( t )  5 k,ekmt(l + E X 2 ( 0 ) )  (13.1.21) 

for some constant kZ and all 0 5 t 5 z. Moreover, the solution { X ( t ) }  to 
(13.1.17) is an {.Ft}-Markou process, and a strong Markov process with respect 
to the filtration {Ft+}.  

Again, the proof of Theorem 13.1.3 goes beyond the scope of this book. 
We therefore omit it and refer to the books of Ethier and Kurtz (1986) and 
Karatzas and Shreve (1991). 

Examples 1. If o(t,z)  = oz and a(t ,z)  = px for some constants Q > 0 
and p E R, then the solution { X ( t ) }  to (13.1.17) can be guessed from ItB's 
formula (13.1.12): 

~ ( t )  = X ( O )  exp((p - a2/2)t + o ~ ( t ) )  . (13.1.22) 

The process { X ( t ) }  given in (13.1.22) is called a geometric Brownian motion. 
Note that the solution to the (deterministic) differential equation z( ' ) ( t )  = 
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a(t ,r( t ) )  is r(t)  = z(O)exp(pt) = E(X(t) I X ( 0 )  = z(O)), which is the value 
of a capital z(0) after time t if the force of interest is constant and equal 
to p. Moreover, X ( t )  > 0 provided that X ( 0 )  > 0. Therefore the geometric 
Brownian motion is often used to model prices of financial securities, as for 
example stocks and bonds. We will study this process later in Section 13.3. 
2. In the next example we study a diffusion process which is a Gaussian 
process. A process { X ( t ) ,  t E 'T}, where 7 is an arbitrary set of parameters 
is called a Gaussian process if for all t l ,  . . . , t ,  E 7 the random vector 
(X( t , ) ,  . . . , X ( t , ) )  has a multivariate normal distribution. Notice that a 
random vector (21,. . . , Zn) is said to have a multivariate normal distribution 
if C;==, S j Z j  has a (univariate) normal distribution for all 81,. . . sn E R. In 
particular, if the covariance matrix C of (21 ). . . , 2,) is nonsingular, then the 
density f ( z1 , .  . . , 2,) of (21 , .. . , 2,) has the form 

where (pl, . . . ) pn) E R is the expectation vector and C' = C-' . We leave it to 
the reader to show that for a deterministic function h(t)  from the class L2, the 
random variable J," h(v) dW(v) is N(0, J," h2(u) dv)-distributed. If ~ ( t ,  z) = u 
and a(t,  t) = -a(t - 6) for some a, t~ > 0 and d E IR, then the process { X ( t ) }  
with 

X ( t )  = e-a'X(0) + 8(1 - e-Qt) + ue-'lt eav dW(v) (13.1.23) 

is the unique solution to (13.1.17). It is called an Omstein-Uhlenbeck process. 
If X(0) is deterministic or if (X(O) , {W(t ) } )  is jointly Gaussian, then the 
process {S ( t ) }  given by (13.1.23) is a Gaussian process. We Ieave it to the 
reader to show that the expectation and covariance functions of this process 
have the form 

E X ( t )  = 6 + e - a t ( E X ( 0 )  -6) ,  (13.1.24) 

Cov ( X ( t ) , X ( t  + h)) = - e-cr(2t+h)) (13.1.25) 

for all t, h 2 0. Note that a Gaussian process is uniquely defined if the mean 
and covariance functions are known. To show that the stochastic differential 
equation 

has indeed the solution given by (13.1.23), we multiply the above equation by 
eav and use formula (13.1.16) to obtain 

d(eQVX(v)) = &eaW dv + oeov dW(v) 

/d' 

2a 

&Y(v) = -c.w(X(V) - 8) dv + tYdW(v) 
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from which we get (13.1.23) after integration from 0 to t .  The Ornstein- 
Uhlenbeck process has the property that it is mean-reverting, i.e. it always 
tries to come back to its asymptotic niean value 8. It is therefore sometimes 
used as a model for the force of interest. In connection with this, the integral 

X(v) dv is considered; see Section 13.4. It follows from (13.1.23) that the 
Riemann sums for the integral f,” X ( v )  dv follow a normal distribution. Taking 
into account that the limit of normally distributed random variables is normal, 
it suffices to compute the expectation and variance of the integral s,’ X(v) dv 
to determine its distribution. Using (13.1.24) and (13.1.25) we have 

t t 
E 1 X(v)dv = EX(v)dv 

1 - e-at 
a 

) (13.1.26) = 8t + ( X ( 0 )  - ”( 
and 

t 
Var 1 X(v)dv 

= JtJfE(X(v)X(w))dwdu- (1 t EX(w)dw) 2 

0 0  

(13.1.27) 

3. Let rr(t,z) = c ~ f i  and a(t,s) = -a(s - 6 )  for o,a,6 > 0. Then, (13.1.17) 
becomes 

dX(t) = -a(X(t)- 8)dt + o m d W ( t ) .  (13.1.28) 

It can be shown - see for instance Cox, Ingersoll and Ross (1985) or 
Feller (1951) -that there exists a unique solution {X(t)} to (13.1.28) such that 
X ( t )  2 0 for all t > 0, where {s,’ a d U ’ ( v ) }  and { J ~ ( X ( V ) ) ~ I ~ ~ W ( V ) }  
are martingales and { X ( t ) }  is a strong bfarkov process with respect to the 
filtration {.Ftt+}. Notice, however, that we cannot apply Theorem 13.1.3 
because the square root function is only defined on R+ and because it is 
not Lipschitz continuous, i.e. condition (13.1.19) is not fulfilled. The process 
{X(t)} is called a Cox-IngersolI--Ross rnodeL From P(X(t) 2 0) = 1 it follows 
that X(t) cannot be normally distributed. Since the process {X(t)} cannot be 
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negative, it is popular to model interest rates as a Cox-Ingersoll-Ross model; 
see also Section 13.4. For the expectation and the variance of X ( t )  we can 
derive the following formulae. As above we assume that X(0) is deterministic. 
From (13.1.28) we obtain 

X ( t )  = X ( 0 )  - a (X(V) - 8) dv + u I' 
rt 

and therefore 

EX(t) =X(O)-a]-(EX(v)-8)dw 0 

because {s," m d W ( w ) }  is a martingale. Solving this integral equation we 
find that 

EX(t) = 8 +  e-"t(X(0) - 8) .  (1 3.1.29) 

For the second moment of X(t), ItB's formula (13.1.12) yields 

t t 
X2(t) = X2(0) - 2aX(v)(X(v) - 8) dw + 1 u2X(v) dv 

+ I' 2 a u ( X ( ~ ) ) ~ / ~  dW(v) . 

Since {J;(X(V))~/~ dW(v)} is a martingale, this gives 

t 

EX2(t) = X 2 ( 0 )  - 2 a l  E(X(v)(X(v) - 8))dw + u2 EX(u)d,u I' 
= X2(0) - 2 a ~ E X 2 ( v ) d v + ( ~ 2  + 2 d )  I' EX(v)dv 

Hence, using (13.1.29), the solution of this integral equation is 

Furthermore, 

In the remaining part of the present section we give a few technical remarks 
concerning the generator of the Markov process {X(t)} which is the solution 
to (13.1.17). 
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Suppose now that g(t,z) = g(z), where g : R + R is twice continuously 
differentiable. Furthermore, if we would know that g is such that the right- 
hand side of (13.1.31) is a martingale, then we would know that (g,Ag) 
belongs to the full generator of the Markov process { X ( t ) } .  However, it may 
be difficult to give conditions ensuring that a function g is in the domain 
D(A) of the full generator. We therefore generalize the definition of the 
full generator introduced in Section 11.1.4. The extended genmtor is the 
multivalued operator A consisting of all pairs (g,#) for which 

(13.1.33) 

is a local martingale. The set of all functions g such that there exists a 
with (g,#) E A is called the domain of the ex%ended generator. As before 
in Section 11.1.4, we denote the domain of the extended generator by D(A). 
Note that, obviously, the full generator is contained in the extended generator. 
This is the reason why we use the same symbol for the extended and for the 
full generator. For the rest of this chapter we simply say generator if we mean 
extended generator. We will write Ag for a version of the functions 4 such 
that (gr 8) E A. Note that by the dominated convergence theorem, the process 
given in (13.1.33) is a martingale if both g and Ag are bounded. 

13.1.3 LCvy’s Characterization Theorem 

The following auxiliary result will be useful in the proof of Theorem 13.1.4 
below. Note, however, that Lemma 13.1.2 is frequently used in other 
characterization theorems as well. 
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Assume o(t,z) and a( t , z )  are chosen such that (13.1.17) admits a unique 
solution. Then, if g ( t ,  z) fulfils the requirements of Theorem 13.1.2, it follows 
from ItB’s formula (13.1.12) that 

and hence 

(13.1.31) 

where 

(13.1.32) 

Suppose now that g ( t , z )  = g ( z ) ,  where g : R + R is twice continuously 
differentiable. Furthermore, if we would know that g is such that the right- 
hand side of (13.1.31) is a martingale, then we would know that ( g , A g )  
belongs to the full generator of the Markov process { X ( t ) } .  However, it may 
be difficult to give conditions ensuring that a function g is in the domain 
D(A) of the full generator. We therefore generalize the definition of the 
full generator introduced in Section 11.1.4. The extended g e n m t o r  is the 
multivalued operator A consisting of all pairs (g , i j )  for which 

(13.1.33) 

is a local martingale. The set of all functions g such that there exists a 
with ( g , # )  E A is called the domain of the ex%ended generator. As before 
in Section 11.1.4, we denote the domain of the extended generator by D ( A ) .  
Note that, obviously, the full generator is contained in the extended generator. 
This is the reason why we use the same symbol for the extended and for the 
full generator. For the rest of this chapter we simply say generator if we mean 
extended generator. We will write A g  for a version of the functions # such 
that (gr 8) E A. Note that by the dominated convergence theorem, the process 
given in (13.1.33) is a martingale if both g and A g  are bounded. 

13.1.3 LCvy’s Characterization Theorem 

The following auxiliary result will be useful in the proof of Theorem 13.1.4 
below. Note, however, that Lemma 13.1.2 is frequently used in other 
characterization theorems as well. 
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Lemma 13.1.2 Let { M ( t ) }  be a continuous local martingale with bounded 
uariution. Then { M ( t ) }  is constant. 

Proof Without loss of generality we assume M(0)  = 0. Denote by {V(t)}  the 
variation process, which can be written as 

where k, E K and 0 = tg' < tr) < . . . < tg) = t is a series of partitions 
such that 

k, m 

Here the supremum is taken over all partitions 0 = vo < u1 < . . . < v, = t and 
nz E N. Without loss of generality we can assume that sup{ti") - ti?;} + 0 
as n + 00. This is possible because by the triangle inequality we have 

(&\,t!")) and therefore one can consider a sequence of nested partitions. 
Since { M ( t ) }  is continuous, it is uniformly continuous on bounded intervals, 
i.e. Ihl(tj")) - iV(tiT\)l < E whenever It:"' - ti:\l < 6 = 6( w). Thus, for 
sup It!") - ti:\ I < 6 we have 

p ( t i n ) )  - n.i(t!?\)~ 5 IM(~') - kf(tfl',)I + I M ( ~ ? ) >  - nir(t')l for any t' E 

kn 8 ,  

C  ti")) - ~ ( t t : ) , ) ~ ~  5 pr(tl"1) - ~ ( t i f l , ) l  
i=1 i= 1 

and therefore 
k, 

lim C l ~ ~ ( t ~ n ) )  - ~ ( t f ? \ ) 1 ~  = 0 .  

-4ssume first that { V ( t ) }  and { h l ( t ) }  are bounded. Then { M ( t ) }  is a 
martingale which can be easily shown by the reader. From 

n-+m 
i=l 

E (M (ti"') - M(ti?) , ) )2  
= EM 2 (ti ("1 ) + EM 2 (ti-1) (n) - 2E (E (h.l(ti")) I .Ft!nj )M(t::\)) 

= E ( M  (ti ) - -M 
, - I  

2 (4 2 (n) 

it follows that 

i= 1 i= 1 
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The random variable on the right-hand side is bounded by 2sup{M(v) : 
0 5 v 5 t}V( t ) ,  and therefore the dominated convergence theorem yields 
EM2(t) = 0, that is M ( t )  = 0. In the general case, let T = inf{t > 0 : 
IM(t)l 3 1 or V( t )  2 1). This is a stopping time because { M ( t ) }  and {V(t)} 
are continuous processes. The stopped process { M ( T  A t)} is bounded and 
has a bounded variation process. Thus M(T A t )  = 0 and, consequently, 
V(T A t) = 0. By the definition of T, this is only possible if T > t. Hence 

0 

The next result is known as L4vy’s theorem. The theorem and the idea of 
its proof are used later in Section 13.4. 

Theorem 13.1.4 Let M(t )  = s,” a~(v) dW1 (v) + 6 az(v) dW2(w), where the 
processes { W’l ( t ) } ,  ( W 2 ( t ) }  are independent standard Brownian motions, whiZe 
{ 01 ( t ) }  { o2 ( t ) }  are stochwtdc processes in L&. Assume that { Ad2 (t) - t} is  
a local martingale. Then {M(t)} i s  a standard Brownian motion. 

Proof Note that, by Theorem 13.1.1, { M ( t ) }  is a local martingale. F’rom ItB’s 
formula (13.1.12) we obtain 

T = 00 and M ( t )  = 0 follows. 

2 t 
M 2 ( t )  - t  = c(2/ M(w)o;.(et)dWj(v)+ 

j=1 0 

The process {S,’(of(v) + ag(v)) dw - t} is a local martingale. For, by 
Theorem 13.1.lb and (13.1.111, the processes {s,’ M(v)crj(v) dWj(w)} for 
j = 1,2 are local martingales, while the sum and the daerence of two local 
martingales is a local martingale. Moreover, the process is continuous and of 
bounded variation. By Lemma 13.1.2, it needs to be constant. This means 
that a:(t) + o$(t)  = 1. Now, let s E R and consider the process { X ( t ) }  with 

~ ( t )  = exp(isM(t) + s2t/2), ( 13.1.34) 

where i denotes the imaginary unit. Iffor a complex-valued process we consider 
the real and the imaginary part separately, we see that ItB’s formula (13.1.12) 
is also valid for complex-valued processes. Thus, for the process defined in 
(13.1.34) we have 

S2 92 
dX(t )  = -.Y(t) dt + isX(t) dM(t) - yX(t)(o:( t )  + o;(t)) dt 2 

= isX(t)q ( t )  dWl(t) + isX(t)m(t) dWz(t). 

But then { X ( t ) }  can be represented as the sum of stochastic integrals that 
fulfil the conditions of Theorem 13.1.lb by (13.1.11). The process { X ( t ) }  
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therefore is a (C-valued) local martingale as a sum of two local martingales. 
Moreover, for any 2 > 0 we have supl<= IX(t)[  5 exp(8'2/2) .  Thus { X ( t ) }  
is bounded on bounded intervals andtherefore must be a martingale. Let 
0 5 w < t. Then 
E (eis(M(t)-M(u)) I F ~ )  = ,-**(t-~)/z (x(~))-'E ( ~ ( t )  I F ~ )  = e-82(t-v)/2. 

Thus M ( t )  - M ( v )  is independent of .Fv and has distribution "(0, t - v). Since 
M(0)  = 0 and { M ( t ) }  is continuous, { M ( t ) }  must be a standard Brownian 
motion. 0 

Bibliographical Notes. There are many books on stochastic calculus. The 
material presented in Section 13.1 is taken from Ethier and Kurt2 (1986), 
Karatzas and Shreve (1991) and Ikeda and Wat.a.nabe (1989). Techniques for 
numerics and simulation of stochastic differential equations are described in 
Kloeden and Platen (1992); see also Rogers and Talay (1997) in the context 
of applications to financial mathematics. 

13.2 PERTURBED RISK PROCESSES 

In previous chapters we considered the risk reserve process introduced in 
Section 5.1.4, where we assumed that premiums were collected at a constant 
rate /3 > 0. The cumulative income was a linear function of time. So 
far, the only model with a more general income function has been the 
compound Poisson model in an economic environment which was considered 
in Section 11.4. In the latter case, the income was typically a nonlinear, but 
still a deterministic, function of time. In reality, the income of an insurer is not 
deterministic. There are fluctuations in the number of customers, the claim 
arrival intensity may depend on time, the insurer invests the surplus, and 
claims as well as premiums increase with inflation. Moreover, the difference 
of interest and inflation rates is not always constant in time and yields still 
another source of uncertainty. To model these additional uncertainties, we 
consider a perturbed risk process { X ( t ) }  defined by X ( t )  = R(t)  + Z ( t ) ,  where 
{ R ( t ) }  is the risk reserve process introduced in Section 5.1.4 and { Z ( t ) )  is 
some stochastic perturbation process. 

13.2.1 Lundberg Bounds 

By way of example, in this section we only consider the case that 

X ( t )  = R(t) + eW(t ) ,  (13.2.1) 

where { R ( t ) }  is the (unperturbed) risk reserve process in a compound 
Poisson model as studied in Section 5.3, {TV(t)} is a standard Brownian 
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motion independent of { R ( t ) } ,  and E E R a constant. The reader should 
convince himself that { S ( t ) }  is a process with stationary and independent 
increments, hence { X ( t ) )  is a homogeneous Markov process with respect 
to its history {FF}. As in our investigation in Chapter 11 of infinite- 
horizon ruin probabilities, we again do not assume that the filtration {Fi'} is 
complete. Notice, however, that { X ( t ) }  is not a PDMP since the paths of the 
Brownian motion { W(C)} are nowhere differentiable. The martingale methods 
for PDMP, developed in Chapter 11, will show us a way how to study the ruin 
function @(u) = P(inft>o X ( t )  < 0) of the perturbed risk process { X ( t ) }  in 
the case of light-tailed claim sizes. The only difference will be that, while we 
do not necessarily obtain martingales, we still get local martingales. In most 
cases, however, it will be easy to prove that the local martingales actually are 
martingales. 

We first derive a representation for the extended generator of the hlarkov 
process { X ( t ) } .  We use the same notation as in Section 5.3. 

Lemma 13.2.1 Let g : R + R be a twice continuously differentiable function 
such that 

N(t)hn 

E c l 9 ( - , , ( 4 )  - S(X(Ui - 0))l < (13.2.2) 

for all t 2 0, n E IN. Then g is in the domain V ( A )  of the extended generator 
A of { X ( t ) } ,  where 

i= 1 

M E2 
A9(!/) = y9(2 ) (Y)  + &?(')(Y) + A(/ 9 b -  4 d W U )  - g(d)  * (13.2.3) 

0 

Proof Consider the perturbed risk process { X ( t ) }  up to time 0,. Then 

For every n E IN, let the process { M n ( t ) }  be defined by 

Mn(t)  = g ( X ( a n  A t )>  - g(u) - I"'^" Ag(X(V))  du , 

where Ag is given by (13.2.3). We apply It3s formula (13.1.12) to the process 
{g(X(un A t ) )  - ~ ( u ) ,  t 2 0) to obtain the formula 
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By Theorem 13.1.1b, the process {Jl Eg(')(X(v))  dW(u), t L 0) is a local 
martingale. We can thus find a sequence of stopping times {a;} with a; + 00 
such that {JiAsk sg( l ) (X(w))  dW(v), t 2 0) is a martingale. Furthermore, the 
expression 

N ( t ) A n  u,,At 00 c 9(X(ffi))-9(X(Ui-O))-X / J (g(X(zI)-Y)-g(X(v)))  dFu(9) dv 7 
0 0 t=l 

seen as a function of t ,  gives a martingale. This follows as in the 
proof of Theorem 11.2.2, where condition (13.2.2) is exploited. Thus, by 
Theorem 10.2.4, {Mn(t  A ad)) is a martingale. Since { a n  A a;} is a sequence 

U 

Our next goal is to show how to obtain an upper Lundberg-type bound for 
the ruin function $(u) = P(inft>o X ( t )  < 0). We proceed as in Section 11.3.1. 
For this purpose we assume in the rest of this section that the tail function 
of claim sizes is "light", i.e. there exists s > 0 such that pitu(s) < 00. To 
get an idea how to find a (local) martingale of the form {e-8X(f)}, we apply 
Lemma 13.2.1 and solve the equation A g ( y )  = 0 for g(y) = e-uY. After 
dividing by g(y), (13.2.3) yields that we have to solve the equation e(s) = 0, 
where 

qS) = -2 - 0s + X(&,(S) - 1). (13.2.4) 

Notice that this generalizes the function obtained in (11.3.2) for the unper- 
turbed case, where E = 0. Let now 8 = -y > 0 such that B(y) = 0, provided 
that this solution exists. Then. condition (13.2.2) is fulfilled because 

of stopping times with limn-tm an A a; = 00, the assertion follows. 

E2 

2 

n 
E (Ene-7x(ct, - e - ~ ( x ( ~ e ) + ~ i )  ) < - xEe- '"(Q*) 

1=1 i=l 
n 

where e27*/2 - 07 - X = --Xfhu(7) < 0. Thus, by Lemma 13.2.1, {e-7x(t)} 
is a local martingale. It turns out that {e--7X(t)} is even a martingale. 

Lemma 13.2.2 Assume that the equation B(s)  = 0 has a solutdon s = y > 0, 
where e(s) is given in (13.2.4). Then, {e-yX(t), t _> 0 )  is a martingale with 
respect to the (uncompleted) right-continuous filtration {FL}. 
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which proves the lemma. 0 

Theorem 13.2.1 Under the condition of Lemma 13.2.2, 

+(u) 5 e-7u, u 2 0. (13.25) 

Proof We use the martingale {e-rx(t)} obtained in Lemma 13.2.2 to change 
the probability measure P. For each t 3 0, we define 

p?)(A) = E [e-?(x(t)-u); A] (13.2.6) 

for any A E 3&. Recall that ~ ( u )  = inf{t : X ( t )  < 0) denotes the time of 
ruin. Since the filtration {F&} is right-continuous, T ( U )  is a stopping time 
with respect to this filtration, see Theorem 10.1.1. As in Section 11.3.1 it 
follows that 

q(u) = E ( ~ ) ( ~ T X ( T ( ~ ) ) ) ~ - P ,  (13.2.7) 

where E (-f) denotes the expectation with respect to the “global” measure P(?) 
on 32 = o ( ~ ~ , ~  ~i:) = o ( ~ ~ , ~  F?) corresponding to the family {P:”, t 2 
0 )  of probabilijy measures defined in (13.2.6); see also Section 10.2.6. The 
upper bound in (13.2.5) immediately follows because X ( T ( U ) )  5 0. 0 

Remark In contrast with the unperturbed case, the case E # 0 does not lead 
to an upper bound of the form 

q(u)  5 Ce-ya (13.2.8) 

for all u 3 0 and where c < 1. Indeed 
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where the last equality follows from Theorem 10.3.2. But the latter expression 
tends to 1 as u J- 0. Thus, $(O) = limuro+(u) = 1. In particular, there is no 
c < 1 such that (13.2.8) holds for all u 2 0. 

Turning to a lower Lundberg-type bound, we investigate the distribution of 
{X(t)} under the new probability measure P(7) corresponding to the “local” 
measures Pi7), as defined in (13.2.6). The results for the unperturbed case 
obtained in previous chapters suggest the conjecture that {X(t)} remains 
a perturbed compound Poisson risk process. The next lemma shows that 
this conjecture is true. However, in the present case also the premium rate 
changes and this is in contrast with the unperturbed compound Poisson model 
considered in Theorem 11.3.1. 

Lemma 13.2.3 Under the measure P(r), the stochwtic process { X ( t ) }  
is a perturbed compound Poisson risk process with claim arrival intensdty 
X(7) = X7FEu(?), claim size distribution Fg)(z) = J: e7y dFu(y)/+u(y) und 
premium rate = p - ~ ’ 7 ,  and with an independent Brownian perturbation 
process {&W’(t)}. Moreover, 

E(Y)X( l )  - u = - ( A h u  (1) (7) - @ + c2y) = -@)(?) < 0 

and therefore P(7) (~ (u)  < 00) = 1 for each u 2 0 .  

Proof Let R’(t) = R(t) - - y ~ ~ t ,  W ( t )  = W ( t )  + y t  and note that X ( t )  = 
R’(t) + cW’(t). Fix t > 0 and let AI E Fp = F:’ and A 2  E 3:’’ = Fy’ be 
two events. Then, by (13.2.6) we have 

P(’Y)(A1 n A2)  = E (o)[e-7(R’(t)-u)e-yEW’(t). >. 4 n A2] 
= E (0)[e-7(R‘(t)-U)-7’€2t/2. AI]E (0)[e-’Y&~”(f)+72&21/2. 7 A 21 9 

since { R ( t ) }  and {W(t)}  are independent under P(O). The same argument 
implies that {R’ ( t ) }  and {W‘(t)}  are independent under P(’). Moreover, 
Theorem 11.3.1 shows that under P(7) the process {R’( t )}  is a compound 
Poisson risk process with the desired parameters. Note that W-’(O) = 0 and 
that the sample paths of {W’(t)}  are from C(lR_t). By Theorem 10.1.2, 
{exp(-TeW‘(t) + = (exp(-yW(t) - r2tz2t/2)} is a positive 
martingale under P(O). Using (10.2.26) we find for 0 5 u < t and z E R 

P‘TJ(W’(t) - W’(U) 5 0 1 Fu) 
E (0)(e-7EW’(t)+-~2Eat/21(W‘(t) - W’(v)  5 0 )  I Fv) - - ~-~~W’(U)+T’E’U/~ 

- - E ( 0 ) ( e - 7 E ( W ( t ) - C C ‘ ( u ) ) - 7 a E 2 ( t - u ) / 2 1 ( W ( t )  - W ( v )  < - 5 - rE(t - v) I Fv) 
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where cP(y) denotes the distribution function of the standard normal distribu- 
tion. Thus, under the measure P(r), the process {W' ( t ) }  fulfils the conditions 
in the dehit.ion of the standard Brownian motion in Section 10.1.4. 0 

In a previous remark, we noted another major difference between the 
unperturbed and the perturbed models, in that $(O) = 1 in the perturbed 
case. Moreover, one can show that for u = 0, i.e. X(0) = 0, the perturbed risk 
process { X ( t ) }  crosses the level 0 infinitely often in any time interval (0, h). 
This follows from the following well-known property of the Brownian motion 
{ W ( t ) } .  Given W ( t )  = x, almost every trajectory of {W( t ) }  crosses the level 
x infinitely often in any interval ( t ,  t + h).  Thus ruin can occur in two ways: 
0 by an arriving claim causing a negative surplus (in which case we have 

0 by the Brownian motion (in which case we have X ( T ( U ) )  = 0). 
The value of E(Y)(eYX(r(U))) can therefore be split. into two components. Using 
the abbreviation T = ~ ( u )  we can write 

(13.2.9) 

where E(7)[e7x(r);dY(T) = 01 = P ( 7 ) ( X ( ~ )  = 0). Unfortunately, we do not 
have an explicit expression for the latter probability. But, using Lemma 13.2.3, 
we obtain the following lower bound for @(u). 
Theorem 13.2.2 Under the conditions of Lemma 13.2.2, for all u 2 0 

X(T(U)) < 01, 

E(7)(eYX(')) = E(7)[eYX(');X(T) < O] + E(')[eyX(');X(T) = 01, 

(13.2.10) 

where xo = sup{y : Fu(y) < 1). 
Proof The expectation E(')[e7x(r);X(7) < O] can be estimated by a 
conditioning on X ( T  - 0); see also (12.3.21). By the result of Lemma 13.2.3, 
this gives 

Kow, (13.2.10) immediately follows from (13.2.7) and (13.2.9). 0 

Fkom (13.2.5) and (13.2.10), we see that ')vfuMs (11.4.5) and (11.4.6). Thus, 
7 is the adjustment coeficient for the ruin function $(ti). We also remark that 
if we could estimate P(r) (X(~)  = 0) then the last inequality in the proof of 
Theorem 13.2.2 would lead to a refined upper bound for $(a). However, the 
problem is that P(?)(X(T) = 0) tends to 1 as u $0. 
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13.2.2 Modified Ladder Heights 

We turn to a more general perturbed risk model than in Section 13.2.1. We 
still assume that { X ( t ) }  has the form given in (13.2.1). But we admit now that 
the claim arrival process {(t~,, U,)} which generates the (unperturbed) risk 
process { R ( t ) } ,  is an arbitrary ergodic time-stationary marked point process 
for which the net profit condition (12.1.38) is fulfilled. The initial risk reserve 
u is taken to be 0. We extend Theorem 12.1.9 on the joint distribution of 
the surplus prior to ruin and the severity of ruin to t.he case of risk processes 
perturbed by the Brownian motion {€W(t )} .  Since inf{t > 0 : X ( t )  < 0) = 0 
we cannot use the same definition of ladder epochs as in the unperturbed case. 
We therefore consider the random variable 

T+ = inf {Ui : X(ag) < i n f { X ( t )  : 0 5 t < q}} (13.2.11) 

which is the fist time when a jump leads to a new minimum of { X ( t ) } .  
hrthermore, let 

kT,' = - inf{X(t> : 0 < t < T+} ,  Yd+ = -X(T+) - <+ (13.2.12) 

and X +  = X ( T +  - 0) + Y$. Then the size of the first claim leading to a new 
minimum is U+ = Yd+ + X". Note that k',+ is also well-defined if T+ = 00. For 
an illustration of these quantities, see Figure 13.2.1. Notice that in the special 
w e  E = 0, i.e. if there is no perturbation, then <+ = 0, T+ = ~(0) is the 
usual ruin time, and (X+, Yd+) coincides with the random vector ( X + ,  Y+) 
considered in Section 12.1.5. 

Figure 13.2.1 Modified ladder heights 
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Theorem 13.2.3 Let E # 0. Then, for z,yc,gd 2 0 

2 x  O0 - 
P ( X +  2 2, y,' 2 gc, %+ 2 yd, T+ < 00) = e-2@YJe -j l+,, Fob4 dv 

(13.2.13) 

(13.2.14) 

where @ denotes the P d m  mark distribution of claim sizes, and po its 
expectation. 

Proof Let N = {(un,Un), n E Z} denote the arrival process of past and 
future claims. Consider the perturbed risk process { X ( t ) ,  t E R) on the 
whole real line, where { X ( t ) ,  t 2 0 )  is dehed  as before. For t < 0, let 

and 
P(Y,' 2 gc, T+ = 00) = e - 2 ~ ~ c / e z W  

P 1  

00 

x(t> = ~t + C U-iP(C-j > t )  + E M I ( - ~ ) ,  
i=O 

where { - W ( - t ) ,  t 1 0 )  is an independent standard Brownian motion. 
Furthermore, let 

g ( N , u ) = P ( X + 1 2 , Y , + L y , , Y ~  > ? ) d , T + = Z I I N )  

and 

sup 
-t<w<O 

( X ( 0  - 0)  - X(w)) 2 z, 

Here, Po denotes the product measure built by the Palm distribution of N 
and by the distribut.ion of { d V ( t ) } .  Then, by Campbell's formula (12.1.34), 
we have 

P ( X +  2 271;' 2 &,,Ydf 2 gd,T+ < 00) = E[Q(N,T+) ;T+  < 0O] 

= A J d m p ( t ) d t .  

Consider the process { X ( t ) }  backwards, i.e. let X ' ( t )  = - X ( - t  - 0) and let 
n/r'(t) = ~ u p ~ < ~ < ~ X ' ( w ) .  Then X'(0) = -UO under the measure Po. Note 
that the function p( t )  can be written as 

p ( t )  = P"U0 + n/r'(t) 2 z , M ' ( t )  - X'(t  - 0)  2 yc, -A!f'(t) 2 
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The event no,, , ,{Xf(w - 0) 5 s~p,<,<~X'(v)} certainly occurs for all t 
in the interval (O?-o-l). Thereafter it does not occur until the first epoch 
t 2 -u-1 such that X'( t )  = X'(-a_l -O) .  If we cut out all intervals on which 
this event does not occur and put all the pieces together we get a Brownian 
motion with drift P starting in UO because { W ( t ) }  is a strong Markov process. 
Define z(t) = s ~ p ~ < , < ~ { ~ W ( w )  - -  + Pw} and put 

0 -  p(t) = p ( M ( t )  - EW(t) - Pt 2 &c, -v(t) 2 yd - u~J,z ( t )  2 z) . 
Then 

The condition M ( t )  2 x is not fulfilled until &W(t) + Bt = x for the first time 
and is fulfilled thereafter. Cutting out the piece where %(t) < 5 yields 

1" F ( t )  dt = I" P W  dt > (13.2.15) 

where 

p' ( t )  = Po(%(t) - cu'(t) - @ 2 yc, -m(t) 2 yd f x - UO) . 
Obviously UO > 2 + gd has to be fulfilled for p'(t) # 0. Equation (13.2.13) 
now readily follows using the well-known formula 

x exp{2x(x - v) / (e2 t ) }  dv ; (13.2.16) 
see, for example, Theorem 4.2 in Anderson (1960). Further details are left to 
the reader. We now sketch the proof of (13.2.14). Using (13.2.13), it suffices 
to show that 

p(q+  2 y c ) - - e  -2Pvc/e2 (13.2.17) 
for d l  yc > 0. Put TI: = inf{t 2 O : X ( t )  5 - l a } ,  T; = inf{t 2 o : ~ ~ ( t ) + $ t  5 
-la} for h > 0, and for i = 1,2 

X ( t  + $) - ~(7;) if T; < 00, 

otherwise. 
X f f ( t )  = 

Further, consider the shifted process { X k ( t ) ,  t 2 0) instead of ( X ( t j ,  t 2 0) 
and let yCi,h denote the ladder height defined in the same way as E'z, but now 
with respect to {Xk( t ) ,  t 2 0). Then we obtain the following representation 
of the tail function of Y,+. For each x > 0 we have 

P ( q +  2 2 + la )  = P(T,: < co, X(7.i) = x(7; - O), Y& 2 2) 
P(T," < c o , J y h  2 5) + o(h) 
P(T," < co)P(Y,+ 2 2 )  +o(h)  

= 
= 
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as h + 0. Here the last equality is obtained from the law of total probability 
using the facts that { W ( t ) }  and {(u,,, Un)} are independent, that {W(t)}  has 
stationary and independent increments and that {(on, li,)} is a stationary 
point process. Using (10.3.7) this gives 

(13.2.18) 

as h + 0. Hence, the tail function of k',+ is continuous on (0,~). Moreover, 
using (13.2.18) we get for the right-hand derivative 

which yields (13.2.17) since P(<+ > 0) = 1 by the definition of Y,+. 0 

Theorem 13.2.3 shows that Y,+ has the same distribution as the minimum of 
a (P, e2)-Brownian motion {&W(t) + Pt } ;  see (10.3.7). The joint distribution 
of the overshoot E'z and the size U+ of the first claim leading to a new 
minimum is the same as in the unperturbed case; see Theorem 12.1.9. In 
particular, the probability P(T+ < 00) is the same as in the unperturbed 
case. For the perturbed compound Poisson risk model, this immediately leads 
to the following formula of the Pollaczek-Khinchin type. 

Corollary 13.2.1 Let { ( c T ~ ,  Un)) be an independently marked Poisson process 
and assume that j3 > Xpo. Then, for all u 2 0 

(13.2.19) 

where F,(s) = 1 - exp(-2$z/~~).  

Proof Let v be the number of (modified) ladder epochs rf such that T+ < 00. 
Let y,", Y! for k 5 v and Y[+l be the corresponding (modified) ladder 
heights. Note that 

Furthermore, note that by the stationary and independent increments of 
the compound Poisson process (see Theorem 5.2.1) and the Brownian 
motion (see Section 10.1.4), the random variables y,", Y t  for k 5 v and 
Y:+l are independent. Formula (13.2.19) is then a simple consequence of 
Theorem 13.2.3. 0 
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13.2.3 Cram&-Lundberg Approximation 

Assume that { X ( t ) }  is given by (13.2.1), where { ( G ~ ,  Un)) is an independently 
marked Poisson process. Let r?w(s) < 00 for some s > 0 and let e(8) = 0 
have a solution s = 7 > 0: where O(s) is given in (13.2.4). We now 
turn to the Crambr-Lundberg approximation to the ruin function $(u) = 
P(inft>o X ( t )  < 0). For this purpose, we split the event of ruin into the two 
eventsrruin cawed by a claim and ruin caused by the Brownian motion. For 
the ruin probability $(u), this leads to the representation $(u) = $1 (u)+@z(z(u) 
with $~(u) = P(T < o ~ , X ( T )  < 0) and &(u) = P(T < o ~ , X ( T )  = 0), where 

Theorem 13.2.4 Let f$)(y) < 00. Then, 

7 = inf{t : X ( t )  < 0). 

and 
7E2/2 lim $2(u)eTU = 

U+50 Xr$'(y) - p + &2y 

Proof From (13.2.7) and (13.2.9) we get 

$1 (u) = E (7)[erx(r); X ( T )  < 

$z(u) = E(7)[eyX(r); X ( T )  = Ole-?'. 
and 

(13.2.20) 

(13.2.21) 

We therefore have to show that the expectations E(7)[e7x(T); X ( T )  < 01 and 
E(7)[eTX('); X ( T )  = O] converge to the limits stated in (13.2.20) and (13.2.21) 
respectively, as u -+ 00. Put g(u) = E(7)[e7X(r); X ( T )  < 01. In Lemma 13.2.3 
we proved that under P(7) the process { X ( t ) )  has a negative drift. Hence, 
P(')(T+ < 00) = 1, where T+ is defined in (13.2.11). Let G, and Gd denote 
the distributions of Y,+ and ydt under the measure P(7), where Y$ and Yd+ 
are defined in (13.2.12). By Lemma 13.2.3 and Theorem 13.2.3 

P"'(Y2 E B,, Yd+ E Bd) = E(o)[e-f(y$+yz); Y: E Bc, y: E B d ,  T+ < W] 

= E ( O ) [ ~ ~ Y $ ; Y , +  E B,IE(O)[~~Y,+;Y~+ E Bd,T+ < 
= P(')(l<+ E Bc) P(''(Yd+ E B d )  

for any Bore1 sets B d ,  Bc E B(lR). Therefore Y,+ and Yd+ are independent 
under P(7). Thus, G = G, * Gd is the distribution of Yft + Yd+. Hence, g(u) 
fulfils the renewal equation 
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Integrating the last term over u E (O,oo), we find 

1" 1" lyz ef(u-2-y) dGd(y) dGc(z) du 
m w o m  

e7(u--x-y) dGd(y) du dGc(s) 
= I I L2 
= lw /c" e?("-')dGd(y) du dGc(z) 

where E(Y)(e-TYd+) = E[eTY.f;7+ < 001. Thus, by Theorem 13.2.3 we have 

In particular, we see that the conditions of Lemma 5.4.2 are fulfilled with 
z1(u) = e7u. Thus, we can conclude that 

The denominator simplifies since 

where we used A(ljLv(7) - 1) = 0-y - y2e2/2. This proves (13.2.20). To 
show (13.2.21), consider the function g'(u) = E(7)[e7X(');X(r) = O] = 
P(")(X(T) = 0). Then 

By Lemma 5.4.2, we then have 

and (13.2.21) follows in the same way as (13.2.20). 
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13.2.4 Subexponential Claim Sizes 

We return to the more general perturbed risk process { X ( t ) }  considered in 
Section 13.2.2. Let SO > 0 be fixed and sufficiently small. The claim arrival 
process {(crn,Un)} is taken to be an arbitrary marked point process. The 
(unperturbed) ruin function is &s(u) = P ( s u p t > o { C ~ ~ '  Ui - (P - b) t }  > U) 
with N ( t )  = maxila : nn 5 t}. We assume that Tor all S E (-60,&), 

(13.2.23) 

for some distribution F E S which does not depend on 6 and where c(6) E 
(0,oo). firtherrnore, c(6) is taken to be continuous at  6 = 0. 

Recall that various examples of marked point processes fulfil the above 
conditions, as was discussed in Section 12.6. It turns out that, in this case, 
the ruin function 

of the corresponding perturbed risk process has the same asymptotic behav- 
iour as +o(u). 

Theorem 13.2.5 Under the above conditions, 

(13.2.24) 

Proof Let 6 E (0,p) be sufficiently small. Then, 

By Lemma 2.5.2 and Theorem 10.3.1, this and (13.2.23) yield 

( 13.2.25) 

To get a lower bound, observe that 

Thus: in the same way as above we obtain 

(13.2.26) 
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Using the assumption that c(6) is continuous at 6 = 0, the assertion follows 
from (13.2.25) and (13.2.26). 0 

Kotice that the conditions of Theorem 13.2.5 are especially fulfilled if 
{(cn, Un)} is an independently marked Poisson process. This immediately 
follows from Theorem 5.4.3. Besides this, an alternative way to investigate 
the asymptotic behaviour of the ruin function $(u) in this specific perturbed 
risk model is given by the Pollaczek-Khinchin formula (13.2.19). 

Corollary 13.2.2 Let @(PI) be the man function in the perturbed compound 
Poisson risk model wtth positive safety loading. Assume that Ft; E S.  Then 

(13.2.27) 

Proof Recall that F,(z) = 1 - exp(-2,Bz/e2}. By Lemma 2.5.2 and 
Theorem 2.5.2 we have limz-tco Pv * F , ( s ) / T ( x )  + 1. By Theorem 2.5.4 
we find 

Thus, using (13.2.19) and applying Lemma 2.5.2 again, assertion (13.2.27) 
follows. 

Bibliographical Notes. The perturbed compound Poisson risk model has 
been introduced in Gerber (1970), where t,he perturbation process is a 
Brownian motion. For this model, the case of light-tailed claim sizes has 
been comprehensively analysed in Dufresne and Gerber (1991). Moreover, 
from Dufresne and Gerber (1991) the idea emerged to distinguish between the 
ladder heights Y$ due to the continuous part of the perturbed risk process and 
Yz due to jumps; see also Gerber and Landry (1998). The present approach 
follows Furrer and Schmidli (1994) and Schmidli (1995), where also other 
models like the perturbed Markov modulated risk model and the perturbed 
Bjork-Grandell model are treated. The lower Lundberg bound (13.2.10) seems 
to be new. For the perturbed compound Poisson risk model, the ladder 
height formulae (13.2.13) and (13.2.14) have been derived in Dufresne and 
Gerber (1991). For the more general model considered in Theorem 13.2.3, 
they correspond to a result derived in Asmussen and Schmidt (1995) for 
unperturbed risk processes with general stationary claim arrival processes; 
see also Theorem 12.1.9. Formula (13.2.19) is of the Polluczek-Khinchin type; 
see also Section 5.3. Using Laplace transforms, a related formula has been 
discussed in Bingham (19751, Harrison (1977b) and Zolotarev (1964) for the 
supremum of negatively drifted Lkwpry processes with no negative jumps. The 
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case of heavy-tailed claim sizes in the perturbed compound Poisson risk model 
was first studied in Veraverbeke (1993). For more general perturbed risk 
models this has been done in Schlegel (1998), where Theorem 13.2.5 and 
various extensions of it have been derived. Notice that in Schlegel (1998) 
it is neither assumed that the claim arrival process is Poisson nor that the 
perturbation process is a Brownian motion. The compound Poisson risk model 
perturbed by an a-stable Lkvy motion has been studied in Furrer (1998). A 
barrier strategy for dividend payments in a perturbed compound Poisson risk 
model with state-dependent stochastic premiums is investigated in Paulsen 
and Gjessing (1997a). They model the perturba.tion by two independent 
Brownian motions that can be interpreted as stochastic models for the 
fluctuations of both the rate of inflation and the return on investments; see also 
Gjessing and Paulsen (1997) and Paulsen and Gjessing (1997b). For the case 
where the risk reserve process and the perturbation process are independent 
Lhvy processes, see Paulsen (1993,1998). 

13.3 OTHER APPLICATIONS TO INSURANCE AND 
FINANCE 

Apart from the perturbed risk processes considered in Section 13.2, there are 
many other models with diffusion components that have found applications in 
insurance and finance. In the present section, we treat some typical examples. 
Further applications to model stochastic interest rates will be considered in 
Section 13.4. The reader should be aware that a comprehensive overview of 
diffusion models in actuarial and financial mathematics would fl1 more than 
one book. 

If not stated otherwise: {Ft} denotes the smallest complete and right- 
continuous filtration such that the standard Brownian motion {W( t ) }  is 
adapted with respect to {Ft}. 

13.3.1 The Black-Scholes Model 

The Black-Scholes model is one of the most popular models in financial 
mathematics. It describes a market with two financial goods: a risky security 
(such as stocks or other risky assets) and a riskless bond. Let us first consider 
the ridq security and denote its price at time t by X ( t ) .  Assume that {X(t)} 
is an {Ft}-adapted stochastic process which fulfils the stochastic differential 
equation 

(13.3.1) 

Since P(.4) = 0 or P(.4) = 1 for all A E Fc,, we have P(X(0) = c) = 1 for 
some constant c > 0. In Example 1 of Section 13.1.2 we showed, see (13.1.22), 

dX(t) = p X ( t )  dt + a X ( t )  dW(t) , X ( 0 )  > 0. 
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that the solution to (13.3.1) is the geometric Brownian motion given by 

~ ( t )  = X(O) exp((p - u2/2)t + a ~ ( t ) )  . ( 13.3.2) 

It follows from (13.3.2) that the filtration {Ft} defined at the beginning 
of Section 13.3 is also the natural filtration of the price process { X ( t ) } .  
Furthermore, we find EX(t) = X(0)ept, since Ee'"(t) = exp(02t/2). Thus 
p is similar to the force of interest considered in Section 11.4. We call p the 
expected mte of return. Moreover, the return is the stochastic process {X'(t)} 
defined via the stochastic differential equation 

= pdt  + adW(t)  . dX ( t )  dX'(t) = - X ( t )  (13.3.3) 

The infinitesimal variance o > 0 of the return is called the volatility. 
We also consider a riskless bond, i.e. a possibility to invest without any 

risk. The deterministic price of the bond at time t is denoted by I ( t )  and we 
assume that the function I : lEt+ --t R+ fulfils the differential equation 

dI(t) = 6I( t )  dt , I (0 )  = 1 , (13.3.4) 

for some constant 6 2 0 which is called the force of interest. The ordinary 
differential equation (13.3.4) has the solution I ( t )  = e6t. The discounting 
factor for a time intend of length t is l/I(t) = e-*t. Notice that the 
assumption 6 1 0 is quite natural. Otherwise it would be possible to borrow 
money (by selling bonds) at a negative interest rate, i.e. to pay back less than 
one has borrowed. Furthermore, because the price process { X ( t ) }  is more 
risky than that of the riskless bond, a risk premium has to be added. We 
model this by assuming that p > 6. We also consider the discounted price 
process { X * ( t ) }  with X*(t) = e-**X(t). By (13.1.16) we have 

dX*(t) = (/J - 6)X*(t)dt + OX*(t)dW(t), X*(O) = X ( 0 ) .  (13.3.5) 

Imagine an agent who is buying and selling risky assets and riskless bonds. 
Assume that the agent can do this continuously in time, that any fraction 
of the asset and the bond can be traded, that he can take a short position 
(holding a negative amount of the security) in both risky asset and riskless 
bond, that there is always an agent to deal with and that there are no 
transaction costs. The agent may use a strategy. A trading strategy is a pair 
{(a( t ) ,r( t ) )}  of adapted stochastic processes. The pair has the meaning that 
at time t the agent holds a(t) unit>s of the asset and y ( t )  units of the bond 
in his portfolio. In order to introduce the notion of a self-financing trading 
strategy, we consider the stochastic process { M ( t ) }  with 
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Notice that { M ( t ) }  is a martingale by the result of Theorem 10.1.2~. A self- 
financing trading strategg is a trading strategy such that for all t 2 0 

t 
4 t > X ( t >  + r(t)l(t) 

= a(O)X(O) + y(O)l(O) + .(v) dX(w) + r(w) U(V) (13.3.7) 

and 
E M ( t )  a2(v)X2(v)  dw < 00. (13.3.8) 

Remarks 1. Condition (13.3.7) states that, for a self-financing strategy, the 
value of the portfolio at time t is the value invested at time 0 plus the gains 
from the asset and the bond, where no money can be put into or taken out of 
the portfolio after time 0. 
2. Condition (13.3.8) is technical. It is related to the notion of arbitrage. 
Let V ( t )  = a ( t ) X ( t )  + r(t)l(t) denote the value of the portfolio at time 
t. A trading strategy is called an arbitrage if V(0)  5 0, V ( t )  2 0 and 
P ( V ( t )  - V(0) > 0) > 0 for some t > 0. A basic requirement for an 
economy is that there is no arbitrage, i.e. there is no strategy that allows 
to achieve a positive gain without any risk. Note, however, that arbitrage is 
generally possible. However, the expected amount of money needed to play 
such a strategy is infinite; see Chapter 6 of D a e  (1996). We will see in 
Theorem 13.3.1 below that one way to exclude such strategies is the technical 
condition (13.3.8) in the definition of a self-financing strategy. 

For the rest of this section and in Section 13.3.2 we consider a finite horizon 
to > 0 and we restrict the stochastic process to the interval [0, to]. Proceeding 
in the same way as in Section 10.2.6, define the new measure P on 3t0 by 

P(A) = E [ M ( t ) ;  A ] ,  A E Ft, (13.3.9) 

for each 0 5 t 5 to, where { M ( t ) }  is the positive martingale given in (13.3.6). 
Then {W*( t ) }  with W ( t )  = W(t)  + ( ( p  - # ) / o ) t  is a standard Brownian 
motion under the new measure P. This can be verified as in the proof of 
Lemma 13.2.3. Moreover, by (13.3.5) we have 

dX*(t)  = oX*(t)dWa(t) ( 13.3.10) 

which means that X * ( t )  = X(0) exp(oW*(t) - 02t/2). By Theorem 10.1.2c, 
( X * ( t ) }  is a martingale under P .  

Lemma 13.3.1 Let { (a( t>,r( t ) ) )  be a self-financing strategg and define 
V*( t )  = V ( t ) / l ( t )  as the diacounted value of the portfolio at time t .  Then 
the process {V*( t ) }  is a martingale under P. 



DIFFUSION MODELS 585 

Proof By (13.1.12) and (13.3.7), the process {V'( t )}  fulfils the stochastic 
differential equation 

dV*(t) = d V ( t ) / l ( t )  - V ( t ) / 1 2 ( t ) d l ( t )  
= a( t )dX( t ) / l ( t )  + (7(t) - 4t )X*( t )  - $t ) )  d W / l ( t )  
= a(t)X*(t)(a dW(t) + (p  - 6) dt) . 

Condition (13.3.7) translates into 

t 
a(t)X*(t) + ~ ( t )  = a(O)X*(O) +$0) + 1 a(v)X*(v)odW*(v). (13.3.11) 

Hence, the discounted process { V * ( t ) } ,  given by V * ( t )  = a(t)X*(t) + 
y( t ) ,  is a P-local martingale. Since condition (13.3.8) ensures that 
E J lo2(v)X2(~)dv  = EM(t)J~ct2(u)Xz(z~)dv < 00, { V * ( t ) }  isamartingale 

0 under P; see Theorem 13.1.1. 

As was already mentioned, a feasible requirement for an economy is the 
impossibility to produce money out of nothing. In other words, if one wants 
to achieve a profit there will also be a risk of losing money. The next theorem 
shows that t.he Black-Scholes model is arbitrage-free, i.e. a profit without risk 
is not possible in this model. 

Theorem 13.3.1 There exists no self-financing trading strategy such that 

V ( 0 )  5 0 ,  V ( t )  2 0, P ( V ( t )  - V ( 0 )  > 0) > 0 (13.3.12) 

for some t > 0. 
Proof Suppose that there is a self-financing strategy such that (13.3.12) holds 
for some t > 0. Choose to 2 t. Note that it is no loss of generality to assume 
V(0)  = 0: otherwise we replace V ( t )  by V ( t )  - V(0) .  Since P ( V ( t )  2 0) = 1 
and since the measures P and P are equivalent on Ft0, we also have 
P(V(t) 2 0) = 1 and P(V*(t) 2 0) = 1. Since {V*( t ] }  is a martingale under 
P, see Lemma 13.3.1, we have E VR(t) = E V * ( O )  = E V ( 0 )  = 0 and therefore 
P(V*(t) = 0) = 1. ThusP(V(t) = 0) = l.ThisgivesP(V(t) = 0) = 1 because 

In addition to the two primary securities considered above, we now 
introduce a derivative security into our market, i.e. a security depending on 
the price process {X(t), 0 5 t 5 t o } .  Let us consider the following special 
case. Imagine that at time t 5 to an agent sells an option on the risky asset: 
where the buyer has the right (but not the obligation) to buy an asset for 
a fixed price K at time to. Such a security is called a European call option. 
The holder of the option will exercise the option if and only if X(to) > K ,  

the measures P and are equivalent. 0 
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i.e. there will only be a cashflow g ( X ( t 0 ) )  = ( X ( t 0 )  - K)+ at time to- The 
random variable g ( X ( t 0 ) )  = (X( t0 )  - K ) +  is said to be a Black-Scholes claim. 
In Theorem 13.3.2 below, we will see that there is a self-financing strategy 
{ (a( t ) ,y ( t ) ) } ,  called a duplication strategy, that yields the value 

a(to)X(to) + y ( t 0 ) W o )  = s (X( to )>  (13.3.13) 
of the European call option at time to. A duplication strategy is also called 
a hedging strategy. Such a strategy is important for the seller of a derivative 
security, who therefore has the possibility to hedge away the financial risk 
involved. 

We first want to find out how a fair (arbitrage-free) price of a European call 
option can be defined. Suppose that { ( a ( t ) , ~ ( t ) ) }  is a duplication strategy of 
the European call option. Then, according to the no-arbitrage principle, V ( t )  
is the value of this option at time t 5 to .  Indeed, if the price would be larger 
than V ( t ) ,  then one could sell the option and the duplication strategy would 
lead to a riskless profit. If the price would be lower than V( t ) ,  then one could 
buy the option and use the strategy {(-a( t ) ,  - y ( t ) ) }  to make a riskless profit. 
Notice that a similar argument makes it plausible that there cannot be two 
different duplication strategies. If so, the value of the two portfolios would be 
different at some time point with positive probability. Then a change from 
the more expensive portfolio to the cheaper one would yield an arbitrage. 

Since by the result of Lemma 13.3.1 the discounted process {V'(t)} is a 
martingale under p, we can write 

~ ( t )  = e6tE ( e-6to V@O) I Ft) 

- - fi (,-6(to-t) (X(t0) - K)+ I &) (13.3.14) 
for t 5 to ,  where we used (13.3.13) in the last equality. The conditional 
expectation in (13.3.14) can be determined more explicitly, leading to the 
Blaek-Scholes formula (13.3.15) for the option price V( t ) .  Moreover, the 
duplication strategy of the European call option can be given by similar 
formulae. It turns out that V(t )  only depends on the price X(t) of the 
underlying primary security at time t, but not on earlier prices of this security. 
This is a consequence of the fact that the geometric Brownian motion { X ( t ) }  
is a Markov process. Moreover, formula (13.3.15) below shows that V ( t )  does 
not depend on the rate of return p, which is important because this parameter 
is difficult to estimate. 
Theorem 13.3.2 The value V ( t )  at tame t < t o  of the European call optaon 
is  given by 

1 iog(x(t)/Kj + (6 + 02/z)(t0 - t )  V ( t )  = X(t)rp( 
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Moreover, the duplication strategy { (a(t), y ( t ) ) }  has the form 

and 

(13.3.16) 

where B(z) denotes the distribution function of the N(0, 1)-distribution. 

Proof We first show that the right-hand sides of (13.3.14) and (13.3.15) 
coincide for t = 0. Indeed, by (13.3.10) we have 

E (e-6to(4Y(to) - K)+ I FO) = e-6toii:  to) - K ) +  
- - e-6toE ( x (0) exp(oW'(t0) + bto - o2to/2) - K ) +  

- - e-6toE (cez - K ) +  , 
where 2 is N( (6 - 02/2)to, a2to)-distributed under P and c = X ( 0 ) .  Using the 
formula for the density of normal distributions, an easy substitution yields 

b ( b 1 + 
log(c/K) + a + b2 - K @  E ( .eZ - K)+ = Cea+b2/2+ 

where a = (6 - o2/2)t0 and 6 = u&. This proves (13.3.15) for t = 0. If 
0 < 1 < to ,  we can write 

E (e-6(60-')(X(to) - K)+ I ~ t )  

- - e -6 ( to - t )E  ( ( ~ ( t ) ~ u ( w * ( t o ) - W ' ( t ) ) + 6 ( ' 0 - t ) - u ~ ( f o - t ) / 2  - K )  + 13~) .  

Since the random variable W*(to) - W*( t )  is independent of Ft, formula 
(13.3.15) follows in the same way as before if 0 and to  are replaced by t and to- 
t, respectively. We still have to show that the tradiig strategy { ( a ( t ) , r ( t ) ) }  
given by (13.3.16) and (13.3.17) is a duplication strategy for the European 
call option. Since the validity of a( to)X( to)  + y(to)l(to) = ( X ( t o )  - K ) +  is 
obvious, it remains to prove that ( ( ~ ( t ) ,  y ( t ) ) }  is self-financing. Consider the 
function f : (0,oo) x [O,to]  + R defined by f(z,t) = xa(z,t) + r(s,t)ebt, 
where ) i f 0  5 t < to ,  

if t = to 
cr(x,t)  = 

P(x > K )  
and 
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Then, V ( t )  = f(X(t),t) and It6's formula (13.1.12) give 

On the other hand, since r(X(t), t) de6t = 6eb'r(X(t), t )  dt, condition (13.3.7) 
is fulfilled if 

dV(t) = a(X(t) ,  t) dX(t) + de"T(X(t), t) dt . 

Thus, we have to show that fz(z, t) = a(z, t) and 

which is left to the reader. Using (13.3.2) and (13.3.6), the validity of (13.3.8) 
follows from the facts that 0 5 a(%, t) < 1 and EeSW(') = exp(s2t/2). 0 

We need to remark that the existence of a duplication strategy can be proved 
for a much broader class of Black-Scholes claims. Indeed, one can show that 
any Ft,,-measurable claim Y with E Y 2  < 00 can be duplicated, i.e. there is a 
self-financing trading strategy { (a(t), ~ ( t ) ) }  such that, 

see D d e  (1996). In this case, we say that {(a(t) ,r(t))} hedges the claim Y. A 
market which allows duplication strategies for all Fto-measurable claims with 
finite variance under P is said to be complete. In extension of (13.3.14), the 
correct price at time t of the claim Y is then given by the random variable 
I ( t ) E ( Y / l ( t o )  I 3t). Thus, option prices in the Black-Scholes model can be 
calculated under the changed meawre P defhed in (13.3.9), instead of using 
the original probability measure P. 

13.3.2 Equity Linked Life Insurance 

For the life insurance models treated in this section, net premiums will be 
calculated using the ideas developed in Section 13.3.1 on the Black-Scholes 
model. However, the reader has to keep in mind that the real premium will 
also include administration costs and a security loading. 

In classical life insurance, interest is paid at a fixed (technical) rate. In 
reality, however, insurance companies invest parts of the reserve in financial 
markets. The expected return is then higher than by investing into riskless 
bonds, but there is a financial risk involved. The idea of an equity linked life 
insurance contract is to transfer some of this risk to the policy-holder. .4t the 
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Same time, one can offer an interest rate that is higher than in a classicd 
contract, but stochastic. This might be more attractive to some customers. 

Assume now that the payoff of a life insurance contract is linked to 
an equity like a portfolio, a security price or a financial index. We will 
only consider the w e  where the payoff is the maximum of the value of 
the equity and of a guaranteed amount b. This will lower the risk for the 
policy-holder. Furthermore, we assume that the d u e  of the equity follows 
a geometric Brownian motion { S ( t ) )  as in the Black-Scholes model studied 
in Section 13.3.1. Suppose that the payoff is at time T ,  where in general T 
is a random variable. The time T can be related to the death of the policy- 
holder or to another event specified in the contract. The payoff at time T is 
then X ( T )  V b. There are two types of contracts and in both of them a finite 
(deterministic) time horizon to is considered: 

0 lenn insurunce, where the policy-holder gets the value X ( T )  V b upon death 

0 pure endowment itzsumnce, where the policy-holder gets the value X( t0 )  V b 

Usually these two types of life insurances are combined (maybe with different 
bs) in one contract. However, we can consider the two types separately. In order 
to treat a combined insurance contract, one simply has to add the premiums 
and/or the trading strategies. 

For simplicity, we assume that T is the lifetime of the insured (after policy 
issue) and that the price process { X ( t ) }  and the lifetime T are independent. 
In particular, let T = Ta denote the remaining lifetime of an a-year-old 
policy-holder. The distribution of Ta will depend on different external factors, 
such as sex, health, country of residence, etc. Let 1 - F,(t) = P(T, > t) 
denote the probability that the policy-holder survives the next t years. We 
assume that the distribution of T a  is absolutely continuous with density 
fa(t) and we denote the hazard rate function of Fa by {ma(t)} ,  where 
rn,(t) = fa(t)/(l - Fa(t)). Note that 1 - F,(t) = exp(-Jo ma(V)dv); see 
also Section 2.4.2. 

There are two types of risks involved in an equity linked life insurance 
contract: 

0 the financial risk due to the development of the equity, 
0 the mortality risk due to the death (survival) of the policy-holder. 

This is reflected by the fact that the payoff depends on two sources of 
randomness, the stochastic price process { X ( t ) }  and the remaining lifetime 
Ta. Note that the form of the payoff X(Ta)  V b = b + ( X ( T a )  - b)+ is similar 
to the d u e  of a European call option studied in Section 13.3.1, but this 
payoff is now paid at a random time. We have seen in Section 13.3.1 that in 
some cases the financial risk can be removed. Indeed, we showed that there 

at time T E [0, to], 

provided he is still alive at time to .  

t 
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is a duplication strategy which hedges the payout at a deterministic point 
in time. However, there is no possibility to hedge mortality as well because 
we assumed independence of mortality and financial assets. Thus, our life 
insurance market is not complete. 

We want to get rid of the financial risk in order to be left with the mortality 
risk only. Let us first consider the case of a term znsumnce. Suppose we 
know that the insured dies in the interval [v,v + dv), where 21 < to.  Then, 
in accordance with the procedure developed in Section 13.3.1, we would 
use a strategy { (a( t ,v ) , r ( t , v ) )}  which duplicates the claim X(v) V b = 
b + (X(v) - b)+.  The insurer should therefore hold a portfolio (a(t ,  v), r(t, v)) 
for each possible time of death v, weighted with the probability of death in 
the interval [v,v + dv). This leads to the strategy { ( a t ( t ) , y t ( t ) ) } ,  where the 
portfolio (at(t),yt(t)) to hold at time t < to is 

at(t) = I(Ta > t> a(t,v)m,(u)(l - Fa+t(c - t)) dv,  6'" 
yt(t) = I(Ta > t )  ~ ( t ,  v)ma(v) (1 - Fa+t(v - t ) )  dv 7 I"" 

since P(o < T, < v + dv I T a  > t )  = ma(v)(l - F,+t(v - t)) dv. Note that 
the insurer only has to hold the portfolio as long as the insured is alive. We 
therefore have to condition on the event {T, > t }  that the insured is still alive 
at time t .  

For the pure endowment insurnlace the situation is easier. There is only 
one possible payout time and therefore the strategy { ( a e ( t ) , y e ( t ) ) }  for this 
contract is given by 

ae(t) 

ye( t )  

= 
= 

I(Ta > t)a(tt t0)(1 - Fa+t(to - t ) )  7 

l(Ta > t ) ~ ( t ,  t0)(1 - Fa+t(to - t ) )  . 
Note that, due to the mortality risk, the strategies {(at(t):yt(t))} and 
{(ae(t) ,re(t))}  are not self-financing. Hence, the portfolios (at(t),rt(t)) and 
(ae(t),-ye(t)) have to be adjusted continuously in time if the policy-holder 
does not die. 

Let us now compute the net premium of equity linked iife insurance 
contracts. We first consider the case of a term insurance. Recall from (13.3.14) 
that, given T, = v, the arbitrage-free Value V(0) of the contract at time t = 0 
(seen from the policy issue at time a) is 

V(0)  = a(0, v)S(O) + y(0, v) = E ( ( b  v X ( v ) ) / I ( w ) )  

and therefore the single net premium JJt of a term insurance contract is given 
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while for the single net premium He of a pure endowment contract., we have 

ne = ( ( b  v ~ ( t o ) ) / ~ ( t o ) ) ( l -  Fa(to)) * ( 1  3.3.20) 

Using arguments as in the proof of (13.3.15), a simple calculation yields the 
formula 

Thus, if the mortality rate function {ma( t ) }  is known, then the net premiums 
IIt and rIe can be calculated explicitly. However, in the case of a term 
insurance, this does not lead to a closed formula for Ht, even in the case 
where rna(t) is constant. 

Assume now that the policy-holder wants to pay his premiums IIt and He at 
a constant mte p ,  where payments will have to be made as long as the policy- 
holder is alive, but not longer than to. The cumulative discounted payment 
up to time t 5 to is then 

The hedging strategy for a constant. amount, say 1, to be paid out at time 2' 
is simply y ( t )  = l/I(v). The value at  time t is y ( t ) I ( t )  = I ( t )E  ( l / l (v)  I Ft). 
Thus, if the premium payments are invested in the riskless bond, the strategy 
of the insurer is given by 

r t n  

in the term insurance case, and by 
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in the pure endowment insurance case. Furthermore, having in mind that the 
d u e  BE I(v)-I dv should be equal to the net 
premiums lF and IIe determined in (13.3.19) and (13.3.20), respectively, the 
net premium rote f i  is given by 

I(v)-I dv = PE so 

I'" E ( ( b  v x(v))/l(v))ma(V)(l- ~ a ( v ) ) d v  
(13.3.21) 

E J:" I(v)-I dv 
P =  

in the term insurance case, and by 

i3 ( (b  v X(to))lWo))(l - Fa(t0))  

E J:"' I(v)-I dv 
(13.3.22) P =  

in the pure endowment insurance case. 

Remarks 1. As we have already mentioned, the disadvantage of the hedging 
strategies { ( a t ( t ) , y t ( t ) ) }  and {(cre(t),ye(t))} is that the portfolio has to be 
adjusted continuously in time. 
2. An alternative hedging possibitity can be given because t.he claim X ( v ) V b  = 
b + (X(w) - b)+ is similar to the value of a European call option. Let 
us discuss this for the term insurance case. The reserves for the constant 
value b have to be built up classically, i.e. at time t one holds B(Ta > 
t ) b L f o  ma(v)(l -F,+t(v- t ) )  dv units of the bond. Furthermore, for the event 
Ta E [v, 0 + dv) one holds rna(v)(l - Fa+t(v - t ) )  dv units of a European 
call option with exercise date e, and strike price b. Of course, in practice one 
divides the interval (t,to] into small subintervals. Then, for T, E (v ,v  + Av] 
one would hold JUv+*' m,(w)(l - Fa+t(w - t ) )  dw units of a European call 
option with exercise date v + Av. 
3. Fkom the theoretical point of view: it would be possible to get completely rid 
of the risk. In the case of a term insurance, the insurer could buy an American 
type option where one can exercise the option at any time point in the interval 
(0, to ] .  The price of such an option at time 0 would be sup, E ( X ( T )  v b ) / I ( ~ ) ,  
where the supremum is taken over all stopping times T to; see Chapter 8 
of D&e (1996). Then there will be a duplication strategy ensuring that 
V ( t )  2 max{X(t),b} for all t E [O,to].  In the case of pure endowment 
insurance, a European type option would do the job. However, it would 
be cheaper for the insured to buy such a product directly on the financial 
market. In this case he would avoid the administration costs of the insurer. 
However, the direct investment in the market would then not only cover death 
or survival, but also other risks which could be associated with the family of all 
possible stopping times T 5 to. Thus, this product should be more expensive 
than an equity linked life insurance. 
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13.3.3 

Consider the general life insurance model of Section 8.4.3 and assume that 
the Markov process { X ( t ) }  and the cumulative loss B'(t) defined by B'(t) = 
B(t )  - n(t)  fulfil the conditions formulated there. In the present section, 
however, we consider the case that the (riskless) force of interest 6 ( t )  is a 
random variable which is independent of the state of the insured, that is 
independent of { X ( t ) } .  Furthermore, we assume that the stochastic process 
{s( t ) }  is given by a stochastic differential equation of the form 

Stochastic Interest Rates in Life Insurance 

d6(t) = a( t ,b ( t ) )  dt + o(t, 6 ( t ) )  dW(t) , (13.3.23) 

where the functions a(t,z) and a(t,z) are such that the solution {b ( t ) }  to 
(13.3.23) exists, is unique and Markovian. This is, for instance, the w e  under 
the conditions of Theorem 13.1.3. Examples of stochastic processes satisfying 
(13.3.23) have been studied in Section 13.1.2; see also Section 13.4. Notice 
that to have { S ( t ) }  and { X ( t ) }  independent, we must assume that 6(0) and 
{U'(t)}  are independent of { X ( t ) } .  Let { 3 t }  be the smallest complete and 
right-continuous filtration such that b(0) is &measurable and the processes 
{ X ( t ) }  and (IV(t)}  are adapted with respect to {Ft}. Instead of the net 
prospective premium reserve k(t) given in (8.4.29), we now consider the 
reserve 

03 

pi(t ,  z )  = E (1 v(t ,  z) dB'(z) I X ( t )  = i, 6 ( t )  = z )  , (13.3.24) 

where v(t ,z)  = exp(-LS6(w)dw). Let b:(t)  = bi ( t )  - pi( t ) .  Recall that by 
our assumptions in Section 8.4.3, the functions b{(z), b i j ( z )  and qij(z) are 
bounded. Thus, f: v(0,z) dB'(z) is a well-defined and integrable random 
variable if 

E l m v ( O , z ) d z  < 00. (13.3.25) 

Notice that the latter holds in all cases of practical interest. Indeed, one 
expects an exponential decay of Eu(0,z) as 2 + 00. Otherwise it would 
not at all be favourable to invest money; see also Section 13.4. 

Assume that condition (13.3.25) is fulfilled. Furthermore, suppose that 
the functions pf(t ,  z) ,  i = 1 , .  . . , l ,  fulfil the smoothness assumptions of 
Theorem 13.1.2. Whether or not this will be the case depends on the functions 
bi(z), b i j ( z ) ,  qi,(zj, a(t ,  z )  and a(t, z) .  For explicit conditions, see for instance 
Appendix E of Duffie (1996) or Karatzas and Shreve (1991). 

Theorem 13.3.3 Under the above conditions, the net prospective premium 
reserve pi( t ,  z )  fulfils the system of partdal diflmntaal equations 

b:(t) + C(bij(t) + pj ( t ,  2) - pi(tt z))qij(tj - z ~ i ( t ,  2) 

j # i  
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a2(t ,z)  @pa + - ( t ,  Bpi .) + a(t, z)--(t, 8146 z )  + - T ( t ,  Z )  = 0 .  (13.3.26) at dz 2 a. 
Proof Take the martingale { M ( t ) } ,  where M(t)  = E (s,” v(0,z) dB’(z) I Ft). 
Notice that 

The first two terms on the right-hand side of this equation can be written in 
the form 

where 

+ pj(z,6(z)) - ~i(z,6(z)))(dNij(z) - I(X(2) = i )qi j (x)b) .  

Notice that ( M ’ ( t ) }  is a local martingale. A proof of this fact can be found for 
instance in Bremaud (1981): p. 27. hrthermore, by It6’s formula (13.1.12)7 
we have 
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where 
@ X ( z )  

t 
W ( t )  = 1 v(O,r)o(z,b(z))~(2,6(r)) dW(z).  

By Theorem 13.1.1, the. stochastic process { M “ ( t ) }  is a local martingale. 
Thus, the process { M * ( t ) }  with M*(t) = M(t) - hP(t) - M”(t) is also a local 
martingale. Since 

the local martingale { M * ( t ) }  is continuous and has bounded variation. By 
Lemma 13.1.2, { M * ( t ) }  must be constant. Using the fact that v(0,z) > 0: 

Remarks 1. The partial differential equation (13.3.26) is a generalization 
of Thiele’s differential equation (8.4.32). Note also that equation (13.3.26) is 
similar to (11.2.13). 
2. The terms in (13.3.26) can be interpreted as follows: $02(t, z )  b2pi /dz2( t ,  z )  
is the diffusion term, api /a t ( t ,  z )  + a(t, d)Opl/8z(t, z) is the drift term, qi3 ( t )  
is the intensity of a jump from i to j ,  b i j ( t )  + p j ( t ,  z )  is the d u e  of just 
after a jump from i to j ,  and pt(t, z )  is the value of px(t)  immediately before 
the jump. Finally, the factor z in (13.3.26) corresponds to the function IE in 
Theorem 11.2.3, while b:(t) corresponds to the function 7 there. 
3. Equation (13.3.26) is difficult to solve analytically. I€ we are only interested 
in &(0,6(0)), then the problem can be simplified. Since the processes { 6 ( t ) }  
and { X ( t ) }  are independent, we have 

this gives (13.3.26). 0 
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Let 0 5 t 5 z. If we put d( t ,  z) = E v(t, z) and 

then 

t S'(t) = --logEexp(-/ a S(v)dv)? 
at 0 

v'(t,z) =exp(-l'S'(u)dv). 

(13.3.27) 

Note that by the assumptions made in this section, the random variable 
~ ' (0 ,  t) dB'(t) is well-defined and integrable. We can now consider the 

functions 
00 

pi( t )  = E (/ v'(t,z)dB'(z) I X ( t )  = i ) .  

Note that px(o)(O,S(0)) = p i ( o , ( 0 ) .  l\lloreover, Theorem 13.3.3 implies that 
the functions pf( t )  fulfil the ordinary system of differential equations 

t 

b:( t )  +C(bij(t) +p[ i ( t )  - ~ : ( t ) ) q i j ( t ) - S ' ( t ) p : ( t )  + (/.t;)(')(t) = 0 -  (13-3-28) 
j # i  

The advantage of (13.3.28) is that this system of differential equations is easier 
to solve than (13.3.26). But if one is interested in reserves at another point 
in time than at t = 0, one has to solve the equations (13.3.28) again with 
a different function S'(t); for then, the initial condition S(0) has changed, 
whereas (13.3.26) gives a solution for each initial value S(0). 

Example Let S(0) be deterministic and assume that { S ( t ) }  is an Ornstein- 
Uhlenbeck process as considered in Example 2 of Section 13.1.2. We showed 
there that then the integral S,'d(v)du has a normal distribution with 
expectation p = E $S(w)dv and variance (r2 = Var S,'S(v)dv given 
in (13.1.26) and (13.1.27), respectively. Thus, the random variable 2 = 
exp(- s," b(v)dv) is lognormally distributed with EZ = exp(-p + 02/2). 
Using (13.1.26) and (13.1.27) it follows that 

t 
- 1ogE exp(- 1 6(u) dv) 

0 

and therefore 

0 2  o2 
2a2 2a2 

S' ( t )  = 6 - - + (d(0) - 8)e-Qt + -(2eWat - e-'Ot) . (13.3.29) 

Notice that condition (13.3.25) for { S ( t ) }  is fulfilled if u2 5 2a28. We will see 
in Section 13.4.2 that this assumption is quite natural. For t large, the force of 
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interest 6‘(t)  used is smaller than the long-run expectation 6 of the real force 
of interest 6( t ) .  This is due to the stochastic fluctuations of {6 ( t ) } .  Solving 
the differential equations (13.3.28) for the function 6’(t) given in (13.3.29) will 
yield the reserve pa(0,6(0)) for i = 1,.  . . , P .  

Bibliographical Notes. The correct option price formula (13.3.15) was 
first obtained by Black and Scholes (1973). The connection to equivalent 
martingale measures leading to (13.3.14) and (13.3.18) was treated in Harrison 
and Kreps (1979) and Harrison and Pliska (1981). Examples of introductory 
textbooks on option pricing in the Black-Scholes model include Bingham and 
Kiesel(1998), Lamberton and Lapeyre (1997), Irle (1998) and Mikosch (1998). 
For a broader introduction to diffusion models in financial mathematics, see 
for instance Duffie (1996) and Musiela and Rutkowski (1997). Recall that 
in the Black-Scholes model, the price process {X(t)) given in (13.3.2) has 
continuous sample paths. However, in some cases, the price of a risky asset 
can change discontinuously from time to time where the jump epochs and the 
jump sizes are random. In the intervals between the jumps the price behaves 
like the sample path of a diffusion process. This situation can be modelled by 
a jump-daffusion process. Notice that the structure of jump-diffusion processes 
is similar to that of perturbed risk processes considered in Section 13.2. Their 
usage typically leads to incomplete fmancial markets. More details on this 
class of stochastic processes and on pricing and hedging of derivatives in 
incomplete markets can be found, for instance, in Aase (1988), Bakshi, Cao 
and Chen (1997), Bardhan and Chaa (1993), Bladt and Rydberg (1998), 
Colwell and Elliott (1993), El Karoui and Quenez (1995), Follmer and 
Schweizer (1991), Schweizer (1992,1994), Lamberton and Lapeyre (1997) and 
Mercurio and Runggaldier (1993). Furthermore, recall that, in the Black- 
Scholes model, the return { X ’ ( t ) }  defined in (13.3.3) is simply a Brownian 
motion with drift. But the normal distribution does not always fit empirical 
return data sufficiently well. In Barndorf€-Nielsen (1997,1998) and Eberlein 
and Keller (1995), alternative distributions are proposed which are based on 
a background driving Lduu process. Examples of papers where option price 
formulae have been derived when the underlying security price follows a pure 
jump process (without a diffusion component) include Elliot and Kopp (1990), 
Korn, Kreer and Lenssen (1998) and Page and Sanders (1986). Results on 
equity linked insurance contracts can be found in papers like A= and 
Persson (1994), Delbaen (1990), Maller (1998), Nielsen and Sandmann (1995) 
and Russ (1998). The generalization (13.3.26) of Thiele’s differential equation 
goes back to Norberg and Mprller (1996), and equation (13.3.28) is due to 
Schmidli (1996); see also Levikson and Mizrahi (1994). 
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13.4 SIMPLE INTEREST RATE MODELS 

We continue the discussion of two simple classes of diffusion processes which 
have been mentioned before in Examples 2 and 3 of Section 13.1.2. They 
can be used as stochastic models of the force of interest. In particular, we 
determine the no-arbitrage price of a zero-coupon bond in these models. 

Since the only source of randomness considered in the present section is 
the standard Brownian motion {U'(t)}, we assume that {Fit) is the smallest 
complete and right-continuous filtration such that { W ( t ) )  is adapted. 

13.4.1 Zero-Coupon Bonds 

In Section 8.4.3 and also in Section 13.3.3 of the present, chapter. we have 
modelled interest rates via the (time-dependent) force of interest {b(t)} ,  
i.e. the value at time t 2 0 of a unit invested at time 0 is exp(J, 6(v) dw). 
In practice, the force of interest is piecewise constant. However, since it 
usually changes in small steps, we assume in this section that {6 ( t ) }  is a 
stochastic process with continuous sample paths. More specifically, let { d ( t ) )  
be a diffusion process given by the stochastic differential equation (13.3.23), 
i.e. 

d6(t) = a( t ,  6 ) )  dt + o(t, 6 ( t ) )  dW(t) . (13.4.1) 
A zero-coupon bond is a security that pays a dividend of one unit at time 

to > 0. We denote the value at time t E [O,to] of a zero-coupon bond by 
D(t ,  to). It is clear that D(t0,to) = 1. If {6 ( t ) }  is deterministic, we would have 
D(t ,  t o )  = exp(- J: 6(u) dv). Indeed, by borrowing the amount D(t,to), at 
time to one would have to pay back the amount 1. To get an idea of how to 
determine the (arbitragefree) value D(t,to) in the case of a stochastic force 
of interest {6 ( t ) } ,  we recall the option price formula (13.3.15) in the Black- 
Schoies model. This formula shows that for pricing one can use a changed 
measure P defined on Fto which is equivalent to the restriction of the origiual 
measure P to Ft,, such that {D*(t , to) ,  t E [ O , t o ] }  becomes a martingale 
under P. Here 

is the discounted value of the zero-coupon bond price D(t ,  to). Then, 

D(t,to) = exp(l6(v)dv)D*(t, to) = exp(/ 0 b(c)dv)E(D*(to,to) I Ft) 
t 

= E (exp(- [ 6(w) dv) I Ft) (13.4.2) 



DIFFUSION MODELS 599 

Equation (13.4.2) means that the zero-coupon bond price is the conditional 
expectation under a changed measure of the same discount factor as in the 
deterministic case. At  first glance, one could think that the set of possible 
changed measures P is large and that one therefore would be able to choose 
the price of the zero-coupon bond from a continuum of possible prices. Usually 
there are however other securities in the market where the discounted values 
of these securities should also be martingales under P. This means that the 
set of measures P to choose from may be quite small. The actual measure @ 
chosen for pricing, if there are several, will be selected by the preferences of 
the agents present in the market. In the rest of this section we assume that 
there is at least one measure P which is equivalent to P on Ft,, and such that 
{D*( t ,  to), t E [0, to]} is a martingale under P. 

The following lemma is useful in many situations. Theorem 13.4.1 below 
illustrates how the zero-coupon price D(t,to),  given in (13.4.2), can be 
expressed by the original probability measure P. 

Lemma 13.4.1 Let { M ( t ) }  be an {Ft}-local martingale. Then there exists a 
unique adaptedprocess { Y ( t ) )  E Lfoc such that M ( t )  = M(O)+J,  Y(w) dW(v) 
for all t 2 0. I f E M 2 ( t )  < 00 for all t 2 0 then { Y ( t ) }  E L2. 

The proof of Lemma 13.4.1 goes beyond the scope of this book. It can be 
found, for instance, in Karatzas and Shreve (1991). 

We first use the result of Lemma 13.4.1 in the following context. RRcall that 
we consider the finite time horizon to. Let. L(t0) denote the Radon-Nikodym 
derivative &/dP on Fto, i.e. for all B E .Tto we have P(B) = E [L(to); B] .  
Let (L( t ) :  t E [ O , t o ] }  be the martingale defined by L( t )  = E(L(to) I &). By 
Lemma 10.2.2, the random variable L(t )  is the Radon-Nikodym derivative of 
the measures P and P restricted to Ft. Then the martingale { L ( t ) }  has the 
following representation. 

Lemma 13.4.2 There exists a p m e s s  { Z ( t > }  E Lfoc such that for each 
t E P , t o J  

t 
L(t)  = exp(- 1 Z(v) dW(u) - 3 1 Z 2 ( v )  dv) (13.4.3) 

Proof By Lemma 13.4.1, there is a process {Y(t)} such that L( t )  = 1 + 
s,’I’(v) dW(v). ItB’s formula (13.1.12) implies t.hat 

The choice Z(t) = -Y( t ) /L ( t )  gives (13.4.3). CI 
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Theorem 13.4.1 The zero-coupon price D(t,to) given in (13.4.2) can be 
qressed  0s 

where { Z ( t ) }  i s  the process appearing an Lemma 13.4.2. 

Proof Using (10.2.26), for any nonnegative Fto-measurable random variable 
X we have 

(13.4.5) 

for all t E [O,tO] .  Now, putting X = exp(- fo 6(v) dv), formula (13.4.4) is 

Define the process {W’(t)}  by W * ( t )  = W ( t )  + S,’Z(v)dv, where 
{ Z ( t ) }  is from Lemma 13.4.2. Using similar arguments as in the proof of 
Theorem 13.1.4, one can show that {W*( t ) }  is a standard Brownian motion 
under P. The details are left to the reader. Equation (13.4.1) can be written 

obtained from (13.4.5) if we use (13.4.2) and (13.4.3). 

as 

dd(t) = (a(t ,6(t))  - Z(t)u(t,d(t))) dt + ~ ( t , s ( t ) )  dl.V*(t) , (13.4.6) 

for t E [ O , t ~ ] .  Using the notation a*(t,s) = a(t,s) - Z(t) [~(t ,z) ,  we see 
that under P the process (d(t)} fulfils equation (13.4.1) with respect to the 
Brownian motion {W*( t ) }  and now with the new drift a’(t,s). Since the term 
a( t ,d ( t ) )  in (13.4.6) can be interpreted as the return of the bond at time t 
(under P), the random variable Z ( t )  can be seen as a risk premivm per unit 
of volatility. 

13.4.2 The Vasicek Model 

Next we consider a special case of a stochastic force of interest {d(t)} which is 
usually called the Vasicek model. Let d(0) be deterministic and assume that 
{ 6 ( t ) }  is an Ornstein-Uhlenbeck process. More precisely, we assume that the 
process ( b ( t ) }  satisfies the stochastic differential equation 

d6(t) = -a(6(t) - (6 + Po -)) dt + [T dW(t) 
a 

for some constants a, p, 6, Q > 0. We also assume that the risk premium Z ( t )  
is constant and equal to ,i3. Using (13.4.6) we see that { d ( t ) }  remains an 
Omstein-Uhlenbeck process when passing from P to the changed measure P. 
Indeed, under P we have 

d6(t) = -a(b(t)  - 8) dt + u d W * ( t ) ,  (13.4.7) 
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where the standard Brownian motion { W * ( t ) }  is given by W*(t) = W(t)+Pt .  
We have seen in Example 2 of Section 13.1.2 that then {6 ( t ) }  is a Gaussian 
Markov process under P. This makes it possible to specify the general formulae 
(13.4.2) and (13.4.4) for the zero-coupon bond price D(t , to) .  

Theorem 13.4.2 For 0 5 t 5 to,  

(13.4.8) 

Proof Using the fact that {6 ( t ) }  is Markov under P, formula (13.4.2) yields 

hrthermore, using (13.1.26) and (13.1.27) we have 

and 

From the considerations in Example 2 of Section 13.1.2 we have that, given 
6( t ) ,  the random variable D(t ,  t o )  is lognormally distributed. Thus, proceeding 
in a similar way to that in the example of Section 13.3.3 we get 

D(t ,  t o )  = E (exp(- 4’” 6(v) dv) I 6 ( t ) )  

= exp(-*(’ 6(v) dv 1 6 ( t ) )  + $%ii (6’” 6(v) dv 1 6 ( t ) ) )  

This proves the theorem. 
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Remarks 1. If to - t is large, then D(t,to)-is approximately exp(-(8 - 
a2/(2a2)))(to - t ) .  This implies that u2 5 2 ~ ~ 6  should hold. If not, then the 
price of a zero-coupon bond would ultimately be larger than 1. That would 
mean that one has to pay more than one monetary unit in order to get a 
monetary unit at time t o .  Therefore, one would keep a monetary unit at home 
until time to, rather than investing it. 
2. The Vasicek model has the following disadvantage. Since {d(t)} is a 
Gaussian process we have P(S(t) < 0) > 0. Now if S ( t )  < 0 for some time t 
then D(t , t ‘ )  > 1 for t‘ small enough; t’ > t .  We saw above that this should 
not happen. Nevertheless the model is often used because a Gaussian process 
is easy to handle. One then argues that the probability of a negative 6 ( t )  for 
t E [O,k) is small, provided that 6(0) is not too small. 
3. Rom the considerations stated in Section 13.3.1 we know that the price 
D(t ,  to) given in (13.4.8) should be arbitragefree. But since D(1, to)  > 1 with 
positive probability we can find the following arbitrage. If D(t ,  t o )  > 1, sell 
a zero-coupon bond and keep the money. Then at time to  pay the dividend. 
This gives a riskless profit of D(t ,  to )  - 1 monetary units. The reason for this 
arbitrage is that we here introduced a new security called “money”. Together 
with this new security the market allows arbitrage. Indeed, the discounted 
d u e  exp(- s,” S(v) dv) of umoney’‘ is not a martingale under the pricing 
measure P. If the agents are only allowed to buy zero-coupon bonds and 
keep money on a bank account, then there is no arbitrage as indicated in 
Section 13.3.1. 

13.4.3 The Cox-Ingersoll-Ross Model 

The difficulty with d(t) < 0 mentioned in Section 13.4.2 can be overcome 
by choosing the model of Example 3 of Section 13.1.2. Assume that {d(t)} 
satisfies 

db(t) = -(a - .)(d(t) - -) a5 dt + o&T)dW(t) 
a--4 

(13.4.9) 

for some constants a,8,-4 > 0 such that a > 0. Furthermore, let the risk 
premium process {Z ( t ) }  be given by Z ( t )  = m. Then, the stochastic 
differential equation (13.4.6) takes the form 

dd(t) = -a(d(t) - 8) dt + -4&T)dW*(t). (13.4.10) 

Under the changed measure P, the diffusion process { 6 ( t ) }  satisfying (13.4.10) 
belongs to the same class of processes as considered in Example 3 of 
Section 13.1.2. Thus, under P, the solution { b ( t ) }  to (13.4.10) is a Markov 
process, such that d(t) 2 0 and both the processes {s,” m d W * ( t l ) }  and 
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{ ~ ~ ( 6 ( u )  3/2 dW*(v)} are martingales. However, the zero-coupon bond price 
is much harder to obtain than in the case of the Vasicek model considered in 
Section 13.4.2. 

We first mswer the question under which condition the force of interest 
never becomes zero, that is d( t )  > 0 for all t > 0. It turns out that this event 
has probability 1 (both under P and P) if and only if the inequality u2 5 2a6 
holds. Let T= = inf{t 2 0 : d(t) = E )  and T€,€I = T€ A T~#. 

Lemma 13.4.3 Assume that d(0) > 0. 
(a) 1fu2 5 2ab, then P ( T ~  < 00) = 0. 
(b) Ifu2 > 2a8, then P(TO < 00) = 1. 

Proof Consider the extended generator A of the Markov process {6 ( t ) }  under 
P. We want to solve Ag(y) = 0 for some twice continuously differentiable 
function g : (0,00) + R, where A is given by (13.1.32). Thus, we search for 
a solution to 

U2 

2 
-yg(2)(y) - a(y - b)g("(a() = 0 .  

Such a solution on (0, 00) is given by 

g(y) = /' e2Q"/"2v-2aa/@2 dg. 
1 

Let 0 < E C 6(0) < E' < 00. t'sing (13.1.31) we find 

(13.4.11) 

for the function g given in (13.4.11). Since the integrand in (13.4.12) is 
bounded, {g(6(TE,Lt A t))} is a martingale by the result of Theorem 13.1.la. 
Moreover, consider the process {M'(t)} defined in (13.1.6) with X ( v )  = 
Y(v)  = g'l)(6(v)),/8(& Then, using (13.4.12) and Theorem 13.1.la, we get 

0O > (9(6(T€.E' A t ) )  - g(a(o)))2 

where c = inf{v(g(')(v))2 : E 5 u 5 E ' }  > 0. The left-hand side of the above 
equations is bounded, uniformly with respect to t. Thus, it follows by the 
monotone convergence theorem, that E T ~ , ~ ~  < 00 and hence re,€! < 00. Since 
E can be chosen arbitrarily close to 6(0), it follows that ~~j < 00. Moreover, 
since the martingale {g(6(TE,Ef A t))} is bounded, we have 

g(6(0)) = Eg(S(TE,E')) = g(€)P(T,  < T E ' )  + g(2)(1 - P(T,  c Td)) 
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( 13.4.13) 

Assume now that o2 5 2a8. Then l i i , , o g ( & )  = -w. Thus, letting E -b 0 in 
(13.4.13) yields P(TO < ~ ~ r )  = 0. Now letting E' + 30 shows (a). If o2 > 2ab, 
we have lim,,og(~) > -w. Letting first E -b 0 and then E' + 00 in (13.4.13) 

0 

We now show that the class of Cox-IngersoU-Ross models with a fixed 
pair of parameters a,o > 0 is closed under convolution. In other words, the 
sum of two independent diffusion processes of the Cox-Ingersoil-Ross type 
with identical parameters a,o  > 0 is a diffusion process of the same type. 
Lemma 13.4.4 is used in the proof of Theorem 13.4.3 below. We therefore 
formulate this closure property in terms of the changed probability measure 
P starting from the stochastic differential equation (13.4.10). But it is obvious 
that the same result is true under the original measure P. 

Let {6 ( t ) }  be given by (13.4.10). Let {W'(t)}  be a standard Brownian 
motion independent of { W* ( t ) }  and consider the Cox-Ingersoll-Ross model 
{6'(t)}  given by 

(13.4.14) 

gives (b) because g(m) = 00. 

dS'(t) = -a(s'(t) - 8') dt + o m d W ' ( t )  

for some 8' > 0. 
Lemma 13.4.4 The process {d"(t)} with P ( t )  = 6( t )  + 6'(t)  is a Cox- 
Ingersoll-Ross model fulfilling 

(13.4.15) d6"(t) = -a(d"(t) - (8 + 8')) dt + a m d W " ( t ) ,  

for some standard Brownian motion { W" ( t ) } .  

Proof Adding (13.4.10) and (13.4.15) sidewise yields 

@@jdW*(t) + m d W ' ( t )  

m d6"(t) = -a(d"(t) - ( 8 + 8 ' ) ) d t + o m  

Let dW"(t) = (&@dWa(t) + m d W ' ( t ) ) / m .  It remains to show 
that {PV"(t)} is a standard Brownian motion. Using the representation 
formula - 
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and Theorem 13.1.1b, one can prove that {(W‘’(t))2 - t} is a local martingale. 
D 

We are now ready to determine the price D(t ,  t o )  of a zero-coupon bond in 

Hence, the assertion follows fiom Theorem 13.1.4. 

the Cox-Ingersoll-Ross model. 

Theorem 13.4.3 For 0 5 t 5 to, 

~ ( t y t o )  = (c-a+ec(to-r)(c+a) ) 2ab/ua exp ( - a ( t )  

where c = d w .  

2ce.e(~+a)(t0-t)/2 2(ee(to-t) - 1) 
c - Q + e+o--t) (c + a) > !  

(13.4.16) 

Proof Since { 6 ( t ) }  is a Markov process, it is enough to consider the case 
t = 0. Write the price D(0,to) of a zero-coupon bond as D(O,to;6(0),8). 
Suppose that 

D(0, to; S(O),J) = exp(-&?* ( t o )  - 6(0)92(tO)) (13.4.17) 

for some functions g1 and 92 (this guess is justified by (13.4.2) and 
Lemma 13.4.4). Let C(z,y) = exp(-8gl(z) - ygzfs)). It will be useful to 
find g ~ ( z )  and g2(z) such that <(z, y) fulfils the partial differential equation 

Hence, we consider the equation 

and since the terms in y have to match we get the two equations 

0 2  - gf’(z) = 5(92(z))’ + ag2(z) - 1 ,  gp’(z) = a g 2 ( ~ ) .  (13.4.19) 

We choose as boundary condition c(0, y) = 1, i.e. gl(0) = g2(0) = 0. Then the 
solution t.0 (13.4.19) with gI(0) = g2(0) = 0 is 

For this solution (g1,gz) to (1.3.4.19), consider the process { M ( t ) ,  t E [O , to ] }  
with 

M ( t )  =exp(-/ 0 b(v)dv)C(to - t , d ( t ) ) .  
t 
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Recall that. 
t 

d ( t )  = 6(0) - / cy(d(v) - 8) dv + o m d W " ( v )  
0 I" 

Hence, from It6's formula (13.1.12) we find 

+ l e x p ( -  1" d(v) d u ) o m g ( t o  Y - w,d(w)) dW*(w) 

where we used (13.4.18) in the last equation. Thus { M ( t ) )  is a local martingale 
by Theorem 13.1.1. Note that gZ(w) 2 0 for w 2 0 and E6(w) is bounded for 
0 5 w 5 t o .  Thus 

is bounded for 0 5 w 5 to.  Now, using Theorem 13.1.1 again, we see that 
{ M ( t ) }  is a martingale. Hence: 

to 
C(to,b(O)) = M(0)  = EM(t0) = E ( e x p ( - l  6(v)dv)~(O,d(O))) 

= D(O,to) 

because C(O,b(O)) = 1. This proves the theorem. U 

Remark The method used in the proof of Theorem 13.4.3 can be applied 
to obtain the price D(t,to) not only for a zero-coupon bond, but for any 
sufficiently integrable claim g(d(t0)) such that g : (0,m) -+ R+ is some 
appropriately smooth function. Indeed, an extension of (13.4.2) and (13.4.16) 
gives 

m , t o )  = (exp(- I'" d(v> dv)dd(to)) I w) 
= <(to - t ,d ( t )>  > 
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where the function C(w,y) is the solution to the Feynman-Kac partial 
diflerentaol equation (13.4.18) with the boundary condition ( (0 ,~)  = g(y) 
for all y > 0. 

Bibliographical Notes. The approach to the pricing of zero-coupon bonds in 
models with stochastic interest rates presented in Section 13.4 follows Artzner 
and Delbaen (1989); see also Lamberton and Lapeyre (1997). A broader 
introduction to stochastic interest rate models can be found in Chen (1996), 
Duffie (1996), Musiela and Rutkowski (1.997) and Rebonato (1997), where 
also multlfactor models axe discussed such as models with stochastic volatility, 
and the Heath-JarrowMorton model of forward rates. For numerics and 
simulation of interest rate models, see Pliska and Rogers (1995). In t.he 
financial context, the Vasicek model has been introduced in Vasicek (1977). 
Parker (1994) studied the present value of a portfolio when the force of 
interest is modelled by an Omstein-Uhlenbeck process. The Cox-Ingersoll- 
Ross model can be found, for instance, in Cox, Ingenoll and Ross (1985); see 
also Feller (1951). Recently, this model has been used in Paulsen (1997) to 
study the present value of an insurance portfolio. 



APPENDIX 

Distribution Tables 

The tables on the following pages review the distributions used frequently 
in this book. For each of the distributions the mean, the variance 
and the coefficient of variation (c.v.) defined BS d m / E X  are given. 
The probability generating function (p.g.f.) defined as EsX for discrete 
distributions as well as the moment generating function (m.g.f.) defined as 
E exp(sX) for absolutely continuous distributions can be found in the table, 
provided a closed expression for the m.g.f. can be obtained. For the lognormal, 
the Pareto and the Weibull distribution no closed form of the m.g.f. is 
available. This is indicated by the symbol *. For a more detailed discussion of 
these distributions, see Chapter 2. 
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Distribution Parameters Probability function { p k }  

B(n: PI n = 1 , 2 ,  ... 
o s p  5 l , q  = 1 - p  k = 0 , l :  . . . , n. 

Ber(p) 0 5 p 5 1,q  = 1 - p  pkq l -k ;  k = 0 , l  

Poi ( A) A > O  
k 

Le-'; k = 0,1, .  . . k! 

"r, PI r > 0,O < p < 1 

q = l - p  
. ,  

k = 0,1, .  . . 

Geo(p) 0 < p 5 1,q = 1 - p  qpk; k = O,1,. . . 

Pk r - - ; k =  1 ,2 , . .  k 

1 
n' 

n = 1,2,  ... - - . k = l , . . . , n .  U D ( 4  

Table 1 Discrete distributions 
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Mean Variance C.V. p.g.f. 

P w P S  + 9 

x x 

P E - 
9 q2 

- a + l  n 2 - 1  3 

2 12 (-) k=1 

611 

a b l e  1 Discrete distributions (cont.) 
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Distribution Parameters Density f(x) 

1 
6 - a  
-. -GO < a <  b C 00 1 3 :  E (a,b) Wa, b)  

Erl(n, A) n = 1 , 2 . .  . X > 0 
le-Xz 

; x > o  
(n - l)! 

--oo < p < 00, 

0 > 0  

exp (-W) 
LN(a, b)  -GO < a < 00, b > 0 

w = exp(b2) 
; x > o  x b a  

Table 2 Absolutely continuous distributions 
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Mean Variance C.V. m.g.f. 

a + b  (b  - b - a  eba - ea8 - 
2 12 &(b + a)  s(b - a) 

a 
x 
- 

1 
x 
- 1 - ;s<x 

A 
A - S  

P 

It 2n f i  (1 - 29)-"/2; 9 < 1/2 

exp ( a +  g) e2aw(u - 1) (w - 114 * 

Table 2 Absolutely continuous distributions (cont.) 
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Distribution Parameters Density f ( z )  

Q,C > 0 01 c &+l -(--) ; z > c  
c 

..=+) r + n  

Table 2 Absolutely continuous distributions (cont.) 
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Mean Variance C.V. m.g.f. 

n 

O C  ac? - [a(a - 2)]4 
a - 1 (a - 1>ya - 2) 
a > l  a > 2  a > 2  

* 

* 

P 2 x 

1 

s < o  

Table 2 Absolutely continuous distributions (cont.) 
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Pareto-type distribution, 54,62,71 
partial ordering, 84 
Pascal 

compound, 103 
distribution, 32 
process, 370 

Pareto 

175, 267 

PDMP, 448, 514,531, 569 
pension insurance, 354 
period of a state, 286 
periodic Poisson process, 506, 526 
Per ron-Fkobenius 

eigenvalue, 284, 517 
theorem, 283, 518 

perturbed risk process, 20, 568 
phase-type distribution, 330 
piecewise deterministic Markov pro- 

point process, 152 
cess, (see PMDP) 
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ergodic, 490 
independently marked, 495 
marked, 152,493 
Palm-stationary, 484 
Poisson, 156 
renewal, 205 
simple, 486 
time-stationary, 485, 486 

cluster process, 508 
compound, 6: 160,495 
doubly stochastic, 503 
homogeneous, 3, 156,485 
Markov-modulated, 506 
mixed, 358, 485, 493, 495 
nonhomogeneous, 502 
periodic, 506, 526 
with aggregate claims, 261 

Poisson 

Poisson-inverse Gauss distribution, 

Poisson's summation formula, 184 
Pollaczek-Khinchin formula, 166, 

P6lya 

115 

169, 250,577,581 

frequency function, 96 
process, 361, 370 

P6lya-Aeppli distribution, 113 
polynomial 

. generalized Laguerre: 37 
Laguerre, 37, 105, 113 

Gerber's, 144 
homogeneous, 99 

portfolio 

positively correlated random vari- 
ables, 26 

pre-occupation measure, 238 
premium, 79 

calculation principle, 79 
a.bsolute deviation, 83 
expected value: 80 
exponential, 80 
modified variance, 80 
monotone, 91 

net, 80 
risk-adjusted, 82 
standard deviation, 80 
variance, 80 

net prospective, 352 
reserve, 383 

savings, 383 
stoploss, 88, 106 

price process, 22, 582 
probability 

conditional, 27 
extinction, 363 
function, 24 

logconcave, 45 
logconvex, 45 

generating function, 6, 28 
law of total, 27 
measure, 23 
ruin, (see ruin) 
space 

canonical, 396,397,421 
complete, 405 

process (see also under birth-and- 
death process, Markov pro- 
cess, Poisson, renewal process) 

adapted, 404 
additive, 426 
Ammeter, 507, 538 
Bjork-Grandell, 507, 534, 551 
branching, 303 

age-depending, 304 
c&dl&g, 404 
claim surplus, 148, 153 
cluster, 508 
counting, 152 
Cox, 503 
cumulative arrival, 152 
Delaporte, 372 
diffusion, 561 
doubly stochastic Poisson, 503 
Galton-Watson-Bienaymb, 303 
gamma, 169 
Gaussian, 562 
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intensity, 503 
inverse Gauss-Poisson, 371 
jump-diffision, 597 
Evy, 581,597 
marked point, 152,493 
Markov renewal, 318 
net premium, 393 
Neyman-type A, 370 
Omstein-Uhlenbeck, 562, 596 
Pascal, 370 
point, 156,493 
Pblya, 361, 370 
pure jump, 412, 597 
risk reserve, 153 

discounted, 473 
discrete-time, 147 
perturbed, 20: 568 

semi-Markov: 513 
Sichel, 371 
stochastic, 309 
with independent increments, 

with stationary increments, 156 
product integrals, 357 
profit condition, 162,496,516,531 
property 

156 

duality, 151 
lack-of-memory, 45, 46 
Markov, 271,368 

proportional reinsurance, 15, 95 
proportionality, 80 
Pure 

birth process, 361 
endowment insurance, 589 
jump process, 412, 597 

quadratic variation, 560 
quantile function, 69, 82 

inverse, 77 
quantile plot, 69 
Quantile-Quantile plot, 68 
queue length, 151 
quota-share reinsurance, 15 

radius of convergence, 29 
Radon-Nikodym derivative, 395 
random 

counting measure, 483 
intensity measure, 504 
measure, 504 

variable, 23 
vector, 24 

stationary, 505 

random walk, 12, 148, 232, 380, 
516 

associated, 259 
oscillating, 235 
with drift, 235 

birth, 320, 351 
death, 320 
hazard, 44 
instantaneous birth, 363 
interest, 290 
of convergence, 282 
of return, 290, 583 

Panjer's: 111 

rate 

recurrence relation 

recursive stochastic equation, 276 
reduced Palm distribution, 487 
reflexivity, 84 
regenerative structure, 543 
regular 

bonus-malus system, 300 
matrix, 281 

regularly varying tail, 54 
reinsurance, 14, 94 

excess-loss, 15 
proportional, 15, 95 
quota-share, 15 
stoploss, 16, 95 

reinsurance chain, 303 
relative safety loading, 250 
renewal 

epoch, 205 
equation, 172, 213, 259,305,464 

defective, 125, 165, 213 
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transient, 125 

harmonic, 224 
weighted, 221 

alternating, 513 
delayed, 212 
Markov, 318 
shadow, 224 
terminating, 206 
reward, 219 

sequence, 210 
theorem 

function, 208 

process, 205, 485, 515, 548 

Blackwell’s, 216 
Blackwell-type, 225 
elementary, 21 1 
key, 172, 218, 306 

retention 
function, 94 
limit, 278 

return, 383 
reversed 

filtration, 431 
martingale, 431 

reward, 291 
discounted, 291 
rate, 293 

right-continuous filtration, 404 
risk, 7, 24 

insurable, 79 
premium, 383, 600 
reserve process, 153 

discounted, 473 
discrete-time, 147 
perturbed, 568 

risk-adjusted principle, 82 
riskless bond, 583 
ruin, 17, 147 

claim causing: 153, 522, 578 
probability 

finite-horizon, 148, 153, 399, 
424, 429: 434, 463, 524, 
541 

infinite-horizon, 18, 148, 153, 
261, 340, 474, 509, 522, 
537,570 

multivariate, 155 
simulation of, 401 

severity of, 154 
surplus prior to, 134 
time of, 148, 153,467 

Runge-Kutta method, 342 

safety loading, 79, 91 
no unjustified, 80, 91 
relative, 250 

sample path, 403 
Seal’s formulae, 193 
security, 582 
self-financing trading strategy, 584 
semi-Markov point. processes, 513 
set function 

severity of ruin, 154, 167 
shadow renewal process, 224 
shifted gamma distribution, 372 
Sichel 

exponential, 139 

distribution, 32, 115 
process, 371 

signed measure, 138 
simple 

marked point processes, 493 
point process, 486 

Markov processes, 317 
nonhomogeneous Markov pro- 

cesses, 330 
ruin probabilities, 401 

single-server system, 153 
skewness 

Slivnyak’s theorem, 508 
slowly varying function, 33, 63 
Slutsky’s arguments, 30 
Smith’s theorem, 221 
sojourn time, 317 

simulation of 

coefficient of, 26 
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Sparre -4ndersen model, 205, 258, 

spectral representation, 274 
spot rate, 472 
stable state, 313, 361 
standard 

478,500 

Brownian motion, 411 
deviation, 26 
deviation principle, 80 

absorbing, 313 
accessible, 285 
aperiodic, 286 
communicating, 285 
instantaneous, 313 
period of, 286 
stable, 311, 361 

distribution, 486 
excess distribution, 36 
increments, 156 
initial distribution, 287, 323 
point process, 485, 486 
random measure, 505 
reward rate, 293 
sequence, 288, 484 
Sparre Andersen model, 500 

statistical ergodic theorem, 490 
Stieltjes integral, 25 
stochastic 

state 

stationary 

differential equation, 561 
integral, 559 
matrix, 269 
order, 86,96 

preservation of, 80 
process, 309,403 

adapted, 404 
additive, 426 
c8dl&g.g, 404 
continuous-time, 403 
increasing, 420 
measurable, 403 
piecewise constant, 555 

stochastically equivalent, 276 
volatility, 607 

equivalent processes, 276 
monotone intensity matrix, 320 
monotone transition matrix, 297 

distance, 132 
order, 86 
premium, 88 

generalized, 106 
reinsurance, 16, 95 
transform, 120 

stopped martingale, 419 
stopping 

stochastically 

stop-loss 

rule, 375 
time, 232, 377, 404 

bounded, 378 
Strassen's theorem, 94 
Stratonovich integral, 560 
strong Markov process, 412,439 
subadditivity, 80, 214 
subexponential distribution, 49, 

102, 174,263, 543,551,580 
submartingale, 379,407 

reversed, 431 
convergence theorem, 385, 416 

subordinated Markov process, 321 
superbonus, 278 
supermalus, 278 
supermartingale, 379, 407 
supremum 

distance, 132 
norm, 437 

surplus prior to ruin, 154 
survival probability, 18, 153 

tail, 23 
exponentially bounded, 33 
heavy, 33, 49, 65 
regular varying, 54 
tail-equivalent distributions 56 

Takks' formulae, 501 
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term insurance, 589 
terminating renewal process, 206 
test function, 375 
theorem 

Bernstein’s, 28 
Blackwell’s renewal, 216, 225 
central limit, 207 
coupling, 86, 88 
Efron’s, 96 
elementary renewal: 211 
HattendorFs, 384 
Helly-Bray, 30, 77 
individual ergodic, 490 
Karamata, 62 
key renewal, 172, 218, 306 
Kolmogorov’s extension, 396,421, 

Levy, 567 
local limit, 42 
optional sampling, 387, 419 
Perron-Fkobenius, 283, 517 
Slivnyak’s, 508 
Smith’s, 221 
statistical ergodic, 490 
Strassen’s, 94 
submartingale convergence, 385, 

Thiele’s differential equation, 352, 

time-dependent force of interest, 

time in the red, 155 
time-stationary 

438 

416 

355,595 

35 1 

counting measure, 484 
marked point process, 493 
point process, 485, 486 

discounted reward, 292 
maximal deficit, 155 
variation, 139 
variation distance, 132 

trading strategy, 583 
self-financing, 584 

total 

trajectory, 403 
transform 

Esscher, 39 
Euler, 188 
fast Fourier, 142 
Fourier, 29, 141 
Laplace, 28 
Laplace-Stieltjes, 28 
stoploss, 120 

transient renewal equation, 125 
transition 

function, 310 
conservative, 3 12 
matrix, 310 

nonhomogeneous, 345 
intensity, 312 
kernel, 438, 447 
matrix 

aperiodic, 286 
irreducible, 286 
n-step, 271 
stochastically monotone, 297 

transitivity, 84 
transposition, 272 
truncated 

distribution, 35 
exponential distribution, 70 
geometric distribution, 35 

two-sided Lundberg bound, 171 
typical point, 492 

ultimate ruin 
probability of, 153 

unbiased estimator, 401 
uncorrelated random variables, 26 
underdispersed distribution, 111 
undershoot, 237 
undiscounted reward, 292 
uniform 

distribution 32, 33 
integrability, 410, 412 
representat.ion , 32 1 

uniformization method, 341 
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upcrossing inequality, 385 
usual conditions, 405 
utility function, 84 

variance, 26 
infinitesimal, 561 

principle, 80 
reduction, 402 

coefficient of, 26 
total, 139 

Vasicek model, 600 
vector field, 446 
version of a stochastic process, 426 
volatility, 583 

variation 

stochastic, 607 

Wald’s identity, 102,210,220,233, 

weak convergence, 30, 335 
Weibull distribution, 34,49,61, 71, 

weighted renewal function, 221 
Wiener-Hopf factorization, 239 

389 

75, 267 

zero 
truncation, 35 
utility principle, 91 

zero-coupon bond, 598 


